A Collaborative Neurodynamic Approach to Distributed Global Optimization

In this article, we present a collaborative neurodynamic approach to distributed optimization with nonconvex functions. We develop a recurrent neural network (RNN) group by connecting individual projection neural networks through a communication network. We prove the convergence of the RNN group to...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man, and cybernetics. Systems Vol. 53; no. 5; pp. 3141 - 3151
Main Authors Xia, Zicong, Liu, Yang, Wang, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we present a collaborative neurodynamic approach to distributed optimization with nonconvex functions. We develop a recurrent neural network (RNN) group by connecting individual projection neural networks through a communication network. We prove the convergence of the RNN group to the local optimal solutions of a given distributed optimization problem. We propose a collaborative neurodynamic optimization system with multiple RNN groups for scattered searches and a metaheuristic rule for reinitializing the neuronal states upon their local convergence. We elaborate on three numerical examples to demonstrate the efficacy of the proposed approach to distributed global optimization in the presence of nonconvexity.
AbstractList In this article, we present a collaborative neurodynamic approach to distributed optimization with nonconvex functions. We develop a recurrent neural network (RNN) group by connecting individual projection neural networks through a communication network. We prove the convergence of the RNN group to the local optimal solutions of a given distributed optimization problem. We propose a collaborative neurodynamic optimization system with multiple RNN groups for scattered searches and a metaheuristic rule for reinitializing the neuronal states upon their local convergence. We elaborate on three numerical examples to demonstrate the efficacy of the proposed approach to distributed global optimization in the presence of nonconvexity.
Author Xia, Zicong
Wang, Jun
Liu, Yang
Author_xml – sequence: 1
  givenname: Zicong
  orcidid: 0000-0001-9943-5087
  surname: Xia
  fullname: Xia, Zicong
  email: 201531700128@zjnu.edu.cn
  organization: College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
– sequence: 2
  givenname: Yang
  orcidid: 0000-0003-3761-0104
  surname: Liu
  fullname: Liu, Yang
  email: liuyang@zjnu.edu.cn
  organization: Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province and College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-1305-5735
  surname: Wang
  fullname: Wang, Jun
  email: jwang.cs@cityu.edu.hk
  organization: Department of Computer Science and the School of Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong
BookMark eNp9kD9PwzAQxS1UJErpB0AskZhTznbqP2MVoEUqdKDMluM6wlUaB8dBKp-elKIODEx3Or3f3bt3iQa1ry1C1xgmGIO8W78-5xMChEwoIVhSfoaGBDOREkLJ4NRjdoHGbbsFAEwEo8CGaDFLcl9VuvBBR_dpkxfbBb_Z13rnTDJrmuC1eU-iT-5dG4Mrumg3ybzyha6SVRPdzn31oK-v0Hmpq9aOf-sIvT0-rPNFulzNn_LZMjVE0piW2Jis5CLTwAkGmoEUOhMbDmCKfpwB5YBBaE0yrjGjVrD-Cyy0BUynlI7Q7XFv7-yjs21UW9-Fuj-piACQjEjOexU_qkzwbRtsqYyLPz5j0K5SGNQhOXVITh2SU7_J9ST-QzbB7XTY_8vcHBlnrT3ppWSUTQX9BqhHeRc
CODEN ITSMFE
CitedBy_id crossref_primary_10_1109_TCYB_2024_3394394
crossref_primary_10_1109_TNSE_2024_3401748
crossref_primary_10_1109_TSMC_2023_3336200
crossref_primary_10_1007_s11432_022_3781_4
crossref_primary_10_1109_TETCI_2024_3369667
crossref_primary_10_1109_TSMC_2024_3417900
crossref_primary_10_1016_j_neunet_2023_06_003
crossref_primary_10_1016_j_cnsns_2024_107999
crossref_primary_10_1109_TSMC_2023_3331260
crossref_primary_10_1016_j_neunet_2024_106525
crossref_primary_10_1016_j_neunet_2023_10_011
crossref_primary_10_1016_j_neunet_2023_10_022
crossref_primary_10_1016_j_neunet_2025_107257
crossref_primary_10_1016_j_neunet_2024_106791
crossref_primary_10_1109_JAS_2024_124935
crossref_primary_10_1016_j_neunet_2023_12_011
crossref_primary_10_1016_j_neunet_2024_107027
Cites_doi 10.1109/TSMC.2016.2531649
10.1109/TNNLS.2016.2582381
10.2307/j.ctvcm4hcj
10.1109/TCNS.2020.3024321
10.1109/TAC.2018.2862471
10.1109/TNNLS.2021.3098668
10.1137/140975991
10.1109/TCNS.2020.3027787
10.1109/ALLERTON.2010.5706956
10.1109/TAC.2015.2416927
10.1109/TNNLS.2019.2918984
10.1109/TCYB.2020.3031687
10.1109/TSMC.2021.3138109
10.1109/TNNLS.2021.3139865
10.1109/TNNLS.2014.2387862
10.1109/TCYB.2017.2759141
10.1109/TAC.2013.2278132
10.1109/TNNLS.2021.3068500
10.1109/4235.985692
10.1109/TAC.2020.2979274
10.1109/TSMC.2019.2957156
10.1109/TETCI.2017.2716377
10.1109/TSMC.2014.2332306
10.1016/j.ins.2018.01.040
10.1016/j.arcontrol.2019.05.006
10.1137/030602770
10.1109/TNSE.2021.3133541
10.1109/TAC.2021.3071651
10.1137/1.9780898719451
10.1162/089976604322860730
10.1109/TNNLS.2016.2549566
10.1109/TNNLS.2021.3082528
10.1109/TAC.2017.2648041
10.1109/TSMC.2019.2898551
10.1109/81.995659
10.1109/TAC.2008.2009515
10.1109/TAC.2020.3034869
10.1016/j.neunet.2019.02.002
10.1109/TSMC.2019.2933005
10.1016/j.automatica.2021.109899
10.1109/TCYB.2017.2766762
10.1109/TNNLS.2016.2524619
10.1109/TCYB.2019.2948424
10.1109/TCSI.2004.830694
10.1109/TCYB.2021.3102941
10.1016/j.automatica.2018.05.013
10.1109/TCYB.2017.2760908
10.1109/TSMC.2019.2931846
10.1109/TAC.2015.2449811
10.1007/978-3-540-72395-0_25
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMC.2022.3221937
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2232
EndPage 3151
ExternalDocumentID 10_1109_TSMC_2022_3221937
9963658
Genre orig-research
GrantInformation_xml – fundername: Research Grants Council of the Hong Kong Special Administrative Region of China through the General Research Fund
  grantid: 11202318; 11202019; 11203721
  funderid: 10.13039/501100002920
– fundername: Jinhua Science and Technology Project
  grantid: 2022-1-042
– fundername: Natural Science Foundation of Zhejiang Province of China
  grantid: LR20F030001; LD19A010001
  funderid: 10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 62173308
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-f1cc4f784a0721034098a48d700cb78440370108aa247a163e8622318ae013533
IEDL.DBID RIE
ISSN 2168-2216
IngestDate Mon Jun 30 04:28:29 EDT 2025
Tue Jul 01 02:29:22 EDT 2025
Thu Apr 24 23:06:47 EDT 2025
Wed Aug 27 02:55:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f1cc4f784a0721034098a48d700cb78440370108aa247a163e8622318ae013533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3761-0104
0000-0002-1305-5735
0000-0001-9943-5087
PQID 2800962977
PQPubID 75739
PageCount 11
ParticipantIDs proquest_journals_2800962977
ieee_primary_9963658
crossref_citationtrail_10_1109_TSMC_2022_3221937
crossref_primary_10_1109_TSMC_2022_3221937
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref19
  doi: 10.1109/TSMC.2016.2531649
– ident: ref36
  doi: 10.1109/TNNLS.2016.2582381
– ident: ref47
  doi: 10.2307/j.ctvcm4hcj
– ident: ref32
  doi: 10.1109/TCNS.2020.3024321
– ident: ref15
  doi: 10.1109/TAC.2018.2862471
– ident: ref17
  doi: 10.1109/TNNLS.2021.3098668
– ident: ref29
  doi: 10.1137/140975991
– ident: ref31
  doi: 10.1109/TCNS.2020.3027787
– ident: ref44
  doi: 10.1109/ALLERTON.2010.5706956
– ident: ref11
  doi: 10.1109/TAC.2015.2416927
– ident: ref40
  doi: 10.1109/TNNLS.2019.2918984
– ident: ref27
  doi: 10.1109/TCYB.2020.3031687
– ident: ref26
  doi: 10.1109/TSMC.2021.3138109
– ident: ref28
  doi: 10.1109/TNNLS.2021.3139865
– ident: ref35
  doi: 10.1109/TNNLS.2014.2387862
– ident: ref7
  doi: 10.1109/TCYB.2017.2759141
– ident: ref10
  doi: 10.1109/TAC.2013.2278132
– ident: ref42
  doi: 10.1109/TNNLS.2021.3068500
– ident: ref43
  doi: 10.1109/4235.985692
– ident: ref8
  doi: 10.1109/TAC.2020.2979274
– ident: ref16
  doi: 10.1109/TSMC.2019.2957156
– ident: ref13
  doi: 10.1109/TETCI.2017.2716377
– ident: ref18
  doi: 10.1109/TSMC.2014.2332306
– ident: ref20
  doi: 10.1016/j.ins.2018.01.040
– ident: ref1
  doi: 10.1016/j.arcontrol.2019.05.006
– ident: ref50
  doi: 10.1137/030602770
– ident: ref25
  doi: 10.1109/TNSE.2021.3133541
– ident: ref22
  doi: 10.1109/TAC.2021.3071651
– ident: ref45
  doi: 10.1137/1.9780898719451
– ident: ref49
  doi: 10.1162/089976604322860730
– ident: ref12
  doi: 10.1109/TNNLS.2016.2549566
– ident: ref38
  doi: 10.1109/TNNLS.2021.3082528
– ident: ref30
  doi: 10.1109/TAC.2017.2648041
– ident: ref6
  doi: 10.1109/TSMC.2019.2898551
– ident: ref39
  doi: 10.1109/81.995659
– ident: ref9
  doi: 10.1109/TAC.2008.2009515
– ident: ref33
  doi: 10.1109/TAC.2020.3034869
– ident: ref41
  doi: 10.1016/j.neunet.2019.02.002
– ident: ref24
  doi: 10.1109/TSMC.2019.2933005
– ident: ref21
  doi: 10.1016/j.automatica.2021.109899
– ident: ref23
  doi: 10.1109/TCYB.2017.2766762
– ident: ref34
  doi: 10.1109/TNNLS.2016.2524619
– ident: ref2
  doi: 10.1109/TCYB.2019.2948424
– ident: ref48
  doi: 10.1109/TCSI.2004.830694
– ident: ref37
  doi: 10.1109/TCYB.2021.3102941
– ident: ref5
  doi: 10.1016/j.automatica.2018.05.013
– ident: ref14
  doi: 10.1109/TCYB.2017.2760908
– ident: ref3
  doi: 10.1109/TSMC.2019.2931846
– ident: ref4
  doi: 10.1109/TAC.2015.2449811
– ident: ref46
  doi: 10.1007/978-3-540-72395-0_25
SSID ssj0001286306
Score 2.3640091
Snippet In this article, we present a collaborative neurodynamic approach to distributed optimization with nonconvex functions. We develop a recurrent neural network...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3141
SubjectTerms Collaboration
Collaborative neurodynamic optimization (CNO)
Convergence
distributed optimization
Global optimization
Heuristic methods
Linear programming
Metaheuristics
Neurodynamics
nonconvex functions
Optimization
Recurrent neural networks
recurrent neural networks (RNNs)
Title A Collaborative Neurodynamic Approach to Distributed Global Optimization
URI https://ieeexplore.ieee.org/document/9963658
https://www.proquest.com/docview/2800962977
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFL0qnWDgVRCFgjwwIdI6jhs7Y1WoKqTCQCt1ixzbWYAWQcrA13OduKU8hFiiKLIly_fGPsePcwDOc5sYoYUKoliagHMrg0zbLAiVykQ3jIzI3Trk6DYeTvjNtDutweXqLoy1tjx8ZtvutdzLN3O9cEtlHcTmEc6YG7CBxK26q7W2niLjqLTSZGGMwcen38QMadIZ34_6SAYZa2MCI2YRX6ah0lflx2BczjCDHRgt21YdLHloL4qsrd-_yTb-t_G7sO2hJulVubEHNTvbh601AcIGDHuk_5kIb5aUWh2mcqknPa83Too5uXICu84byxpS-QSQOxxtnvw1zgOYDK7H_WHgvRUCjRN8EeSh1jwXkisnkEYjpHlScWkEpTrDz5xGAqmaVIpxoRC0WaQ-iAWlstRZZUSHUJ_NZ_YISBwjRUyUQfDGORNMhVmcG00Nj3XIDGsCXXZ1qr3wuPO_eExLAkKT1EUnddFJfXSacLGq8lypbvxVuOF6e1XQd3QTWst4pv6_fE2ZdJyNIeg9_r3WCWw6Q_nqSGML6sXLwp4i7CiyszLfPgAFbtF1
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6I8PTAh0jqOGztjVajKozBQJLbIsZ0FaBGkDPx6zolbnkIsURTZkuW7-L6zz98HcJjbxAgtVBDF0gScWxlk2mZBqFQmWmFkRO72IftXce-Wn9-17mbgeHoXxlpbFp_Zhnstz_LNSI_dVlkTsXmEEXMW5jDut8LqttanHRUZR6WYJgtjND8-_TFmSJPm4KbfwXSQsQa6MKIW8SUQlcoqP5bjMsZ0l6E_GV1VWnLfGBdZQ799I2787_BXYMmDTdKuvGMVZuxwDRY_URCuQ69NOh-u8GpJydZhKp160vaM46QYkRNHsevUsawhlVIAucb15tFf5NyA2-7poNMLvLpCoDHEF0Eeas1zIblyFGk0wkRPKi6NoFRn-JnTSGCyJpViXCiEbRaTH0SDUlnqxDKiTagNR0O7BSSOMUlMlEH4xjkTTIVZnBtNDY91yAyrA51Mdao99bhTwHhIyxSEJqmzTuqsk3rr1OFo2uWp4t34q_G6m-1pQz_Rddid2DP1f-ZLyqTL2hjC3u3fex3AfG_Qv0wvz64udmDByctXBY67UCuex3YPQUiR7Ze-9w4iM9S-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Collaborative+Neurodynamic+Approach+to+Distributed+Global+Optimization&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Xia%2C+Zicong&rft.au=Liu%2C+Yang&rft.au=Wang%2C+Jun&rft.date=2023-05-01&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=53&rft.issue=5&rft.spage=3141&rft.epage=3151&rft_id=info:doi/10.1109%2FTSMC.2022.3221937&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMC_2022_3221937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon