Received Signal Strength Indicator-Based Recursive Set-Membership Localization With Unknown Transmit Power and Path Loss Exponent

In most of the existing localization schemes based on received signal strength indicator (RSSI), the target location is calculated based on typical parameters and the statistical information of measurement noise is needed. This article addresses these problems of localization by implementing recursi...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 21; no. 22; pp. 26175 - 26185
Main Authors Zhang, Lijun, Yang, Bo, You, Xiu
Format Journal Article
LanguageEnglish
Published New York IEEE 15.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2021.3118536

Cover

Loading…
Abstract In most of the existing localization schemes based on received signal strength indicator (RSSI), the target location is calculated based on typical parameters and the statistical information of measurement noise is needed. This article addresses these problems of localization by implementing recursive set-membership filtering under unknown-but-bounded (UBB) parameters, process and measurement noise. First, a new prediction scheme is developed to confine the real location included in a reliable confidence region at each instant. Second, the nonlinear remainder bound of the Taylor series expansion of the measurement function is obtained analytically on-line. Furthermore, an efficient optimization procedure is developed. Third, an alternating iterative recursive convex optimization algorithm is given to derive a set of optimized ellipsoids and intervals which confine real location and parameters, respectively. Finally, experimental validation and numerical examples are provided to demonstrate the effectiveness and accuracy of the proposed method.
AbstractList In most of the existing localization schemes based on received signal strength indicator (RSSI), the target location is calculated based on typical parameters and the statistical information of measurement noise is needed. This article addresses these problems of localization by implementing recursive set-membership filtering under unknown-but-bounded (UBB) parameters, process and measurement noise. First, a new prediction scheme is developed to confine the real location included in a reliable confidence region at each instant. Second, the nonlinear remainder bound of the Taylor series expansion of the measurement function is obtained analytically on-line. Furthermore, an efficient optimization procedure is developed. Third, an alternating iterative recursive convex optimization algorithm is given to derive a set of optimized ellipsoids and intervals which confine real location and parameters, respectively. Finally, experimental validation and numerical examples are provided to demonstrate the effectiveness and accuracy of the proposed method.
Author Zhang, Lijun
Yang, Bo
You, Xiu
Author_xml – sequence: 1
  givenname: Lijun
  surname: Zhang
  fullname: Zhang, Lijun
  email: 2453447012@qq.com
  organization: School of Mathematical Sciences, Shanxi University, Taiyuan, China
– sequence: 2
  givenname: Bo
  orcidid: 0000-0002-5137-0648
  surname: Yang
  fullname: Yang, Bo
  email: yangbo@sxu.edu.cn
  organization: School of Mathematical Sciences, Shanxi University, Taiyuan, China
– sequence: 3
  givenname: Xiu
  orcidid: 0000-0001-6175-7187
  surname: You
  fullname: You, Xiu
  email: youxiu@sxu.edu.cn
  organization: School of Mathematical Sciences, Shanxi University, Taiyuan, China
BookMark eNp9kM1OGzEYRS0EEr8PgNhY6nqCf2bG42WLAqVKAREQ7EbfON-AaWIH2ymUHW9ehyAWLFjZ0j3H8r3bZN15h4TsczbgnOnDX-Ph2UAwwQeS86aS9RrZ4lXVFFyVzfryLllRSnW7SbZjfGCMa1WpLfJ6iQbtX5zQsb1zMKXjFNDdpXt66ibWQPKh-AEx5xlchJhROsZU_MZZhyHe2zkdeQNT-wLJekdvbFav3R_nnxy9CuDizCZ64Z8wUHATegE5H_kY6fB5niu4tEs2ephG3Hs_d8j18fDq6GcxOj85Pfo-KozQMhU9A1lCr7UqtZJKQyd7aRgXnS65qvUEwNTYlLqRou9MhYDY8U6VXcNqIWq5Q76t3p0H_7jAmNoHvwi5cmxFpWvV8EbwTKkVZUL-ZMC-NTa9VUsB7LTlrF3u3S73bpd7t-97Z5N_MufBziD8-9I5WDkWET94XdWizPl_7HKPSw
CODEN ISJEAZ
CitedBy_id crossref_primary_10_3934_aci_2024018
crossref_primary_10_1109_JSEN_2023_3279399
crossref_primary_10_1109_LSENS_2023_3282023
crossref_primary_10_1109_JIOT_2023_3244982
Cites_doi 10.1109/COMST.2014.2320073
10.1109/TSMCA.2005.843383
10.1109/TSP.2012.2232664
10.1109/TIM.2018.2851675
10.1109/TAC.2009.2029403
10.1109/JPROC.1998.735454
10.1109/JIOT.2019.2940368
10.1109/JAS.2019.1911651
10.1016/S1474-6670(17)58301-9
10.1109/TSP.2018.2833811
10.1109/LSP.2020.3005298
10.1109/LRA.2021.3057838
10.1109/TCYB.2020.2983544
10.1109/TASLP.2020.3039569
10.1109/LWC.2021.3055558
10.1109/TAES.2018.2852398
10.1109/25.289429
10.1109/TIM.2020.3033728
10.1109/TCYB.2020.2987576
10.1109/CDC.2006.377036
10.1109/TCSII.2021.3057107
10.1016/j.jfranklin.2021.01.041
10.1007/s12555-019-0973-9
10.1109/JSEN.2020.2972315
10.1016/j.automatica.2019.108737
10.1109/JIOT.2020.3016146
10.1109/JAS.2021.1003826
10.1109/TASE.2020.2975287
10.1109/TAES.2021.3061826
10.1109/TAC.2020.3024169
10.1109/WCL.2012.072012.120428
10.1109/TSP.2019.2908910
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2021.3118536
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 26185
ExternalDocumentID 10_1109_JSEN_2021_3118536
9562485
Genre orig-research
GrantInformation_xml – fundername: Postdoctoral Innovative Talent Support Program of China
  grantid: BX20200201
– fundername: Research Project Supported by Shanxi Scholarship Council of China
  grantid: 2021-008
  funderid: 10.13039/501100003398
– fundername: National Natural Science Foundation of China
  grantid: 61803243
  funderid: 10.13039/501100001809
– fundername: Science and Technology Innovation Project of Shanxi Provincial Department of Education
  grantid: 2020L0011
  funderid: 10.13039/501100013794
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-f0a34af997497379ab3f3c012b941769daac6e849832fbc5eaeeb1b74b8062263
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:24:06 EDT 2025
Thu Apr 24 23:11:41 EDT 2025
Tue Jul 01 04:26:41 EDT 2025
Wed Aug 27 02:26:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f0a34af997497379ab3f3c012b941769daac6e849832fbc5eaeeb1b74b8062263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6175-7187
0000-0002-5137-0648
PQID 2596781821
PQPubID 75733
PageCount 11
ParticipantIDs ieee_primary_9562485
proquest_journals_2596781821
crossref_citationtrail_10_1109_JSEN_2021_3118536
crossref_primary_10_1109_JSEN_2021_3118536
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref15
ref14
ref31
ref30
skelton (ref34) 1997
ref11
ref32
ref10
ref1
ref17
ref16
ref19
ref18
zhang (ref2) 2020; 7
zhu (ref33) 2002
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
khan (ref28) 2019; 29
References_xml – ident: ref1
  doi: 10.1109/COMST.2014.2320073
– ident: ref22
  doi: 10.1109/TSMCA.2005.843383
– ident: ref14
  doi: 10.1109/TSP.2012.2232664
– ident: ref10
  doi: 10.1109/TIM.2018.2851675
– year: 2002
  ident: ref33
  publication-title: Multisensor Decision and Estimation Fusion
– volume: 29
  start-page: 289
  year: 2019
  ident: ref28
  article-title: Interval state estimation for linear time-varying (LTV) discrete-time systems subject to component faults and uncertainties
  publication-title: Arch Control Sci
– ident: ref23
  doi: 10.1109/TAC.2009.2029403
– ident: ref35
  doi: 10.1109/JPROC.1998.735454
– ident: ref11
  doi: 10.1109/JIOT.2019.2940368
– volume: 7
  start-page: 1
  year: 2020
  ident: ref2
  article-title: Networked control systems: A survey of trends and techniques
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2019.1911651
– ident: ref31
  doi: 10.1016/S1474-6670(17)58301-9
– ident: ref20
  doi: 10.1109/TSP.2018.2833811
– ident: ref15
  doi: 10.1109/LSP.2020.3005298
– ident: ref5
  doi: 10.1109/LRA.2021.3057838
– ident: ref7
  doi: 10.1109/TCYB.2020.2983544
– ident: ref9
  doi: 10.1109/TASLP.2020.3039569
– ident: ref6
  doi: 10.1109/LWC.2021.3055558
– ident: ref18
  doi: 10.1109/TAES.2018.2852398
– ident: ref29
  doi: 10.1109/25.289429
– ident: ref3
  doi: 10.1109/TIM.2020.3033728
– ident: ref24
  doi: 10.1109/TCYB.2020.2987576
– ident: ref30
  doi: 10.1109/CDC.2006.377036
– ident: ref27
  doi: 10.1109/TCSII.2021.3057107
– ident: ref26
  doi: 10.1016/j.jfranklin.2021.01.041
– year: 1997
  ident: ref34
  publication-title: A Unified Algebraic Approach to Control Design
– ident: ref17
  doi: 10.1007/s12555-019-0973-9
– ident: ref25
  doi: 10.1109/JSEN.2020.2972315
– ident: ref4
  doi: 10.1016/j.automatica.2019.108737
– ident: ref12
  doi: 10.1109/JIOT.2020.3016146
– ident: ref32
  doi: 10.1109/JAS.2021.1003826
– ident: ref16
  doi: 10.1109/TASE.2020.2975287
– ident: ref8
  doi: 10.1109/TAES.2021.3061826
– ident: ref21
  doi: 10.1109/TAC.2020.3024169
– ident: ref13
  doi: 10.1109/WCL.2012.072012.120428
– ident: ref19
  doi: 10.1109/TSP.2019.2908910
SSID ssj0019757
Score 2.3415105
Snippet In most of the existing localization schemes based on received signal strength indicator (RSSI), the target location is calculated based on typical parameters...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26175
SubjectTerms Algorithms
Computational geometry
Convexity
Ellipsoids
interval mathematics
Iterative methods
Kalman filters
Localization
Location awareness
Noise measurement
Noise prediction
Optimization
Process parameters
Propagation losses
recursive convex optimization
Sensors
Series expansion
Set-membership filter
Signal strength
Target tracking
Taylor series
unknown-but-bound (UBB) noise
Wireless sensor networks
wireless sensor networks (WSNs)
Title Received Signal Strength Indicator-Based Recursive Set-Membership Localization With Unknown Transmit Power and Path Loss Exponent
URI https://ieeexplore.ieee.org/document/9562485
https://www.proquest.com/docview/2596781821
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4Bl8IBKA8RHpUPnBAbbNb78LGtgihqECKNyG1le22IWhZENhJw4593ZuNElFYVtz3s7Fqasb9vPC-AfemUlxyNV-fSRjKXuOe011Gmc8elEMZ6KhTunqenfXk2SAZzcDirhXHONclnrk2PTSy_vLNjuio7Qi5PHbjmYR4dt0mt1ixioLKmqyduYB7JOBuECKbg6uis1zlHT_BYoINK8JT-gUHNUJW_TuIGXk5WoDtd2CSr5Gd7XJu2fX7Ts_G9K1-F5cAz2eeJYXyEOVetwdKr7oNr8CEMQL95WocXpI8OD76S9YbXJEjR6uq6vmHfKorkoGcefUHAK9klXdBTzjvruTrqOhooQhlf7DuhYqjqZFdDFO1XdGNXsQYPb4c1u6CRbExXJbtA4okSoxHrPN7fVbj4DeifdH58PY3CdIbIIkWoI891LLVX6JCoLM6UNrGPLeKdUVJkqSq1tqnLpcIzwxubOO0QF0wmTc5TJH3xJixU-IMtYCbhPqU-NiIWMlFOJciij5XmZeylFqYFfKqvwobW5TRB41fRuDBcFaTiglRcBBW34GAmcj_p2_G_l9dJZbMXg7ZasDs1iiLs7FGB7iLiO3plYvvfUjuwSN-mekWR7MJC_TB2e0hcavOpsdjfQhfqhw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5RONAeSgtFTQutDz1V3WCz3oePgIICTSLUEDW3le21IWq7oGYjtb3xz5nZOBFQVPW2hx3Z0oz9feN5AXyQTnnJ0Xh1Lm0kc4lnTnsdZTp3XAphrKdC4f4g7Y7k6TgZr8CnZS2Mc65JPnNt-mxi-eWVndFT2R5yeerA9QTWEirGnVdrLWMGKmv6euIR5pGMs3GIYQqu9k6HnQH6gvsCXVQCqPQeCjVjVf66ixuAOd6A_mJr87ySb-1Zbdr2z4Oujf-79xfwPDBNdjA3jZew4qpNeHan_-AmrIcR6Je_t-AGCaTDq69kw8kFCVK8urqoL9lJRbEc9M2jQ4S8kn2hJ3rKemdDV0d9RyNFKOeL9QgXQ10n-zpB0VFFb3YVaxDxx6RmZzSUjemqZGdIPVFiOmWdX9dXFW7-FYyOO-dH3SjMZ4gskoQ68lzHUnuFLonK4kxpE_vYIuIZJUWWqlJrm7pcKrw1vLGJ0w6RwWTS5DxF2hdvw2qFC7wGZhLuU-pkI2IhE-VUgjx6X2lexl5qYVrAF_oqbGheTjM0vheNE8NVQSouSMVFUHELPi5FruedO_718xapbPlj0FYLdhZGUYSzPS3QYUSER79MvHlc6j2sd8_7vaJ3Mvj8Fp7SOlS9KJIdWK1_ztwu0pjavGus9xagSu3P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Received+Signal+Strength+Indicator-Based+Recursive+Set-Membership+Localization+With+Unknown+Transmit+Power+and+Path+Loss+Exponent&rft.jtitle=IEEE+sensors+journal&rft.au=Zhang%2C+Lijun&rft.au=Yang%2C+Bo&rft.au=You%2C+Xiu&rft.date=2021-11-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=22&rft.spage=26175&rft_id=info:doi/10.1109%2FJSEN.2021.3118536&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon