Analysis of Vehicle Location Prediction Errors for Safety Applications in Cooperative-Intelligent Transportation Systems
Cooperative-Intelligent Transportation System (C-ITS) safety applications depend on reliable location information timely exchanged by road users. Due to inter-vehicle communication delays and sampling frequency, there always exists a time gap between the state observation update time and safety deci...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 23; no. 9; pp. 15512 - 15521 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1524-9050 1558-0016 |
DOI | 10.1109/TITS.2022.3141710 |
Cover
Loading…
Abstract | Cooperative-Intelligent Transportation System (C-ITS) safety applications depend on reliable location information timely exchanged by road users. Due to inter-vehicle communication delays and sampling frequency, there always exists a time gap between the state observation update time and safety decision time. Predicting the vehicle's locations into a future time epoch common to both host and subject vehicles enables real-time collision detection. Current studies of vehicle positioning performance mostly focus on the accuracy and availability of vehicle navigation solutions at equal observation intervals. Location error propagation over the prediction time intervals and dependence on various factors is not much understood. In this paper, we analyzed how the accuracy of the location prediction degrades depending on prediction intervals and state estimate errors from the measurement updates. We adopted the Kalman Filter method to predict locations with two representative location data sets collected in real road environments. Results from a dual-frequency Global Navigation Satellite System (GNSS)/Real-time Kinematic (RTK) receiver show that the Root Mean Square Error (RMSE) of prediction locations grow from a few centimeters at the state updates to about 50 and 100 cm within the prediction intervals of 1 and 2 seconds, respectively. This implies that GNSS/RTK positioning capability is a prerequisite for C-ITS safety applications. The experimental results from a surveying-grade GNSS/Inertial Navigation System (INS) receiver show that the RMSE can remain within 10 cm for the prediction interval of 2 s. High-rate INS velocity measurements provide significant advantages in efficient control of the error growth of the predicted vehicle locations. |
---|---|
AbstractList | Cooperative-Intelligent Transportation System (C-ITS) safety applications depend on reliable location information timely exchanged by road users. Due to inter-vehicle communication delays and sampling frequency, there always exists a time gap between the state observation update time and safety decision time. Predicting the vehicle's locations into a future time epoch common to both host and subject vehicles enables real-time collision detection. Current studies of vehicle positioning performance mostly focus on the accuracy and availability of vehicle navigation solutions at equal observation intervals. Location error propagation over the prediction time intervals and dependence on various factors is not much understood. In this paper, we analyzed how the accuracy of the location prediction degrades depending on prediction intervals and state estimate errors from the measurement updates. We adopted the Kalman Filter method to predict locations with two representative location data sets collected in real road environments. Results from a dual-frequency Global Navigation Satellite System (GNSS)/Real-time Kinematic (RTK) receiver show that the Root Mean Square Error (RMSE) of prediction locations grow from a few centimeters at the state updates to about 50 and 100 cm within the prediction intervals of 1 and 2 seconds, respectively. This implies that GNSS/RTK positioning capability is a prerequisite for C-ITS safety applications. The experimental results from a surveying-grade GNSS/Inertial Navigation System (INS) receiver show that the RMSE can remain within 10 cm for the prediction interval of 2 s. High-rate INS velocity measurements provide significant advantages in efficient control of the error growth of the predicted vehicle locations. |
Author | Dasanayaka, Nishanthi Feng, Yanming |
Author_xml | – sequence: 1 givenname: Nishanthi orcidid: 0000-0002-2899-9536 surname: Dasanayaka fullname: Dasanayaka, Nishanthi email: n.mudiyanselage@qut.edu.au organization: School of Computer Science, Queensland University of Technology, Brisbane, QLD, Australia – sequence: 2 givenname: Yanming orcidid: 0000-0001-6548-3347 surname: Feng fullname: Feng, Yanming email: y.feng@qut.edu.au organization: School of Computer Science, Queensland University of Technology, Brisbane, QLD, Australia |
BookMark | eNp9kEFLAzEQhYNUsK3-APES8Lw1k0222WMpVQsFhVavS7o70ci6WZNU7L936xYPHjzNm-F7w8wbkUHjGiTkEtgEgOU3m-VmPeGM80kKAqbATsgQpFQJY5ANDpqLJGeSnZFRCG_dVEiAIfmaNbreBxuoM_QZX21ZI125UkfrGvrosbLlj1x473ygxnm61gbjns7atrY9GKht6Ny5Fn3Xf2KybCLWtX3BJtKN101onY_9zvU-RHwP5-TU6DrgxbGOydPtYjO_T1YPd8v5bJWUPE9jYpgGUJKbLWRK6q3kuZDMlNIYngOrjNDaMJXxUmLFO1QwNEpUbJpXqlIiHZPrfm_r3ccOQyze3M53T4eCT0GoXKVCdtS0p0rvQvBoitL290avbV0AKw4xF4eYi0PMxTHmzgl_nK2379rv__Vc9R6LiL98nqks4zL9Bs9_jKc |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1007_s10291_024_01665_z crossref_primary_10_1007_s12083_024_01627_9 crossref_primary_10_1109_TIM_2022_3170985 crossref_primary_10_1016_j_adhoc_2023_103300 crossref_primary_10_1109_TITS_2024_3363488 crossref_primary_10_1109_TITS_2024_3410185 crossref_primary_10_1109_TIM_2024_3440416 crossref_primary_10_1007_s12046_023_02128_w |
Cites_doi | 10.1109/COMST.2018.2841901 10.1080/19427867.2019.1650430 10.1109/WCNC.2003.1200689 10.1109/MAES.2005.1499276 10.1007/s11277-014-2025-3 10.3390/s8042240 10.1016/j.comcom.2007.12.004 10.1007/s11276-016-1265-4 10.3390/s131115307 10.1109/MCS.2010.937003 10.7307/ptt.v30i2.2500 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2022.3141710 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 15521 |
ExternalDocumentID | 10_1109_TITS_2022_3141710 9686625 |
Genre | orig-research |
GrantInformation_xml | – fundername: Queensland University of Technology, Australia funderid: 10.13039/501100001793 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-f0a11852fb1685ab529450fc5ff2910df4aaf0862c5ed211840ef84d079d8d843 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Mon Jun 30 02:59:47 EDT 2025 Tue Jul 01 04:29:08 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Wed Aug 27 02:18:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-f0a11852fb1685ab529450fc5ff2910df4aaf0862c5ed211840ef84d079d8d843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2899-9536 0000-0001-6548-3347 |
PQID | 2714898345 |
PQPubID | 75735 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_TITS_2022_3141710 ieee_primary_9686625 crossref_primary_10_1109_TITS_2022_3141710 proquest_journals_2714898345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref15 ref14 ref11 Welch (ref17) 2001; 8 ref10 ref16 ref18 (ref7) 2020 ref8 ref9 (ref2) 2019 ref4 ref3 (ref1) 2013 ref5 King (ref6) Kim (ref13) 2011 Kim (ref12) 2018 |
References_xml | – ident: ref4 doi: 10.1109/COMST.2018.2841901 – ident: ref3 doi: 10.1080/19427867.2019.1650430 – ident: ref16 doi: 10.1109/WCNC.2003.1200689 – volume-title: Kalman Filter for Beginners: With MATLAB Examples year: 2011 ident: ref13 – ident: ref14 doi: 10.1109/MAES.2005.1499276 – volume-title: Introduction to Kalman Filter and Its Applications year: 2018 ident: ref12 – volume-title: Intelligent Transport System (ITS); V2X Applications; Part 3: Longitudinal Collision Risk Warning (LCRW) Application Requirement Specification year: 2013 ident: ref1 – start-page: 199 volume-title: Proc. Int. Workshop Intell. Transp. (WIT) ident: ref6 article-title: Dead-reckoning for position-based forwarding on highways – volume: 8 start-page: 41 issue: 27599 year: 2001 ident: ref17 article-title: An introduction to the Kalman filter publication-title: Proc. SIGGRAPH, Course – ident: ref15 doi: 10.1007/s11277-014-2025-3 – ident: ref8 doi: 10.3390/s8042240 – ident: ref5 doi: 10.1016/j.comcom.2007.12.004 – ident: ref11 doi: 10.1007/s11276-016-1265-4 – volume-title: Intelligent Transport System (ITS); Vulnerable Road Users (VRU) Awareness; Part 1: Use Cases Definition; Release 2 year: 2019 ident: ref2 – volume-title: Oem-Imu-eg370n Product Sheet year: 2020 ident: ref7 – ident: ref10 doi: 10.3390/s131115307 – ident: ref18 doi: 10.1109/MCS.2010.937003 – ident: ref9 doi: 10.7307/ptt.v30i2.2500 |
SSID | ssj0014511 |
Score | 2.4194772 |
Snippet | Cooperative-Intelligent Transportation System (C-ITS) safety applications depend on reliable location information timely exchanged by road users. Due to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15512 |
SubjectTerms | C-ITS Covariance matrices Global navigation satellite system Inertial navigation Intelligent transportation systems Intervals Kalman filter Kalman filters Kinematics location prediction Measurement uncertainty Navigation systems prediction errors Real time real-time kinematic Roads Root-mean-square errors Safety Sensors Time measurement V2X communication |
Title | Analysis of Vehicle Location Prediction Errors for Safety Applications in Cooperative-Intelligent Transportation Systems |
URI | https://ieeexplore.ieee.org/document/9686625 https://www.proquest.com/docview/2714898345 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFL2Ms9KFb3F0lCxciR37SNJmOYii4ojgKO5KmweKMh06HVC_3pu-GFTEXRY3IXDS5pzc3BOAI2TEiRfy1OEKtQnlmjoRj6hDg9BNqCcZNzajO7rllw_0-ok9deCkrYXRWpeXz_TANstcvsrk3B6VnQoeceTrS7CEwq2q1WozBtZnq_RG9akjXNZkMD1XnI6vxveoBH0fBSr1Qlssu7AHlY-q_PgTl9vLxRqMmolVt0peB_MiHcjPb56N_535OqzWPJMMq4WxAR092YSVBffBLXhvDElIZsijfraB5CarzvDIXW5TOGXzPM-zfEaQ3pL7xOjigwwX0t7kZULOsmyqKw9x56o1-SxIa51ejVnbo2_Dw8X5-OzSqR9icCSygcIxbuLZImuTejxiScp8QZlrJDPGR7qhDE0SY7WRZFqhokTRqE1ElRsKFamIBjvQnWQTvQsE-VUqPBQ5RinKpZ-IMEDFJAM7KFKNHrgNNLGsXcrtYxlvcalWXBFbNGOLZlyj2YPjtsu0suj4K3jLotMG1sD0oN_gH9cf8Sz2Q9SKIgoo2_u91z4s27GrK2d96Bb5XB8gRynSw3JxfgGFVOL8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT9swFL1i3QPjAcYYolCGH_Y0LSUfthM_VlVRO1qEREG8RYk_tAnUVGkqAb-e63ypYmjamx9sx9Kx43N8fY8BviMjTryQpw5XqE0o19SJeEQdGoRuQj3JuLER3dkVH9_SX_fsfgt-trkwWuvy8pnu22IZy1eZXNujsnPBI458_QN8xH2fiipbq40ZWKet0h3Vp45wWRPD9FxxPp_Mb1AL-j5KVOqFNl12Yxcqn1X5619cbjAXezBrhlbdK3nor4u0L1_euDb-79g_w27NNMmgmhr7sKUXX2Bnw3_wAJ4aSxKSGXKnf9uKZJpVp3jkOrdBnLI4yvMsXxEkuOQmMbp4JoONwDf5syDDLFvqykXcmbQ2nwVpzdOrPmuD9K9wezGaD8dO_RSDI5EPFI5xE8-mWZvU4xFLUuYLylwjmTE-Eg5laJIYq44k0wo1JcpGbSKq3FCoSEU0OITOIlvoIyDIsFLhocwxSlEu_USEAWomGdhOkWx0wW2giWXtU26fy3iMS73iitiiGVs04xrNLvxomywrk45_VT6w6LQVa2C60Gvwj-tlvIr9ENWiiALKjt9vdQbb4_lsGk8nV5cn8Ml-p7qA1oNOka_1KTKWIv1WTtRXlHbmTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Vehicle+Location+Prediction+Errors+for+Safety+Applications+in+Cooperative-Intelligent+Transportation+Systems&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Dasanayaka%2C+Nishanthi&rft.au=Feng%2C+Yanming&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=9&rft.spage=15512&rft.epage=15521&rft_id=info:doi/10.1109%2FTITS.2022.3141710&rft.externalDocID=9686625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |