Analysis of Vehicle Location Prediction Errors for Safety Applications in Cooperative-Intelligent Transportation Systems

Cooperative-Intelligent Transportation System (C-ITS) safety applications depend on reliable location information timely exchanged by road users. Due to inter-vehicle communication delays and sampling frequency, there always exists a time gap between the state observation update time and safety deci...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 23; no. 9; pp. 15512 - 15521
Main Authors Dasanayaka, Nishanthi, Feng, Yanming
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2022.3141710

Cover

Loading…
Abstract Cooperative-Intelligent Transportation System (C-ITS) safety applications depend on reliable location information timely exchanged by road users. Due to inter-vehicle communication delays and sampling frequency, there always exists a time gap between the state observation update time and safety decision time. Predicting the vehicle's locations into a future time epoch common to both host and subject vehicles enables real-time collision detection. Current studies of vehicle positioning performance mostly focus on the accuracy and availability of vehicle navigation solutions at equal observation intervals. Location error propagation over the prediction time intervals and dependence on various factors is not much understood. In this paper, we analyzed how the accuracy of the location prediction degrades depending on prediction intervals and state estimate errors from the measurement updates. We adopted the Kalman Filter method to predict locations with two representative location data sets collected in real road environments. Results from a dual-frequency Global Navigation Satellite System (GNSS)/Real-time Kinematic (RTK) receiver show that the Root Mean Square Error (RMSE) of prediction locations grow from a few centimeters at the state updates to about 50 and 100 cm within the prediction intervals of 1 and 2 seconds, respectively. This implies that GNSS/RTK positioning capability is a prerequisite for C-ITS safety applications. The experimental results from a surveying-grade GNSS/Inertial Navigation System (INS) receiver show that the RMSE can remain within 10 cm for the prediction interval of 2 s. High-rate INS velocity measurements provide significant advantages in efficient control of the error growth of the predicted vehicle locations.
AbstractList Cooperative-Intelligent Transportation System (C-ITS) safety applications depend on reliable location information timely exchanged by road users. Due to inter-vehicle communication delays and sampling frequency, there always exists a time gap between the state observation update time and safety decision time. Predicting the vehicle's locations into a future time epoch common to both host and subject vehicles enables real-time collision detection. Current studies of vehicle positioning performance mostly focus on the accuracy and availability of vehicle navigation solutions at equal observation intervals. Location error propagation over the prediction time intervals and dependence on various factors is not much understood. In this paper, we analyzed how the accuracy of the location prediction degrades depending on prediction intervals and state estimate errors from the measurement updates. We adopted the Kalman Filter method to predict locations with two representative location data sets collected in real road environments. Results from a dual-frequency Global Navigation Satellite System (GNSS)/Real-time Kinematic (RTK) receiver show that the Root Mean Square Error (RMSE) of prediction locations grow from a few centimeters at the state updates to about 50 and 100 cm within the prediction intervals of 1 and 2 seconds, respectively. This implies that GNSS/RTK positioning capability is a prerequisite for C-ITS safety applications. The experimental results from a surveying-grade GNSS/Inertial Navigation System (INS) receiver show that the RMSE can remain within 10 cm for the prediction interval of 2 s. High-rate INS velocity measurements provide significant advantages in efficient control of the error growth of the predicted vehicle locations.
Author Dasanayaka, Nishanthi
Feng, Yanming
Author_xml – sequence: 1
  givenname: Nishanthi
  orcidid: 0000-0002-2899-9536
  surname: Dasanayaka
  fullname: Dasanayaka, Nishanthi
  email: n.mudiyanselage@qut.edu.au
  organization: School of Computer Science, Queensland University of Technology, Brisbane, QLD, Australia
– sequence: 2
  givenname: Yanming
  orcidid: 0000-0001-6548-3347
  surname: Feng
  fullname: Feng, Yanming
  email: y.feng@qut.edu.au
  organization: School of Computer Science, Queensland University of Technology, Brisbane, QLD, Australia
BookMark eNp9kEFLAzEQhYNUsK3-APES8Lw1k0222WMpVQsFhVavS7o70ci6WZNU7L936xYPHjzNm-F7w8wbkUHjGiTkEtgEgOU3m-VmPeGM80kKAqbATsgQpFQJY5ANDpqLJGeSnZFRCG_dVEiAIfmaNbreBxuoM_QZX21ZI125UkfrGvrosbLlj1x473ygxnm61gbjns7atrY9GKht6Ny5Fn3Xf2KybCLWtX3BJtKN101onY_9zvU-RHwP5-TU6DrgxbGOydPtYjO_T1YPd8v5bJWUPE9jYpgGUJKbLWRK6q3kuZDMlNIYngOrjNDaMJXxUmLFO1QwNEpUbJpXqlIiHZPrfm_r3ccOQyze3M53T4eCT0GoXKVCdtS0p0rvQvBoitL290avbV0AKw4xF4eYi0PMxTHmzgl_nK2379rv__Vc9R6LiL98nqks4zL9Bs9_jKc
CODEN ITISFG
CitedBy_id crossref_primary_10_1007_s10291_024_01665_z
crossref_primary_10_1007_s12083_024_01627_9
crossref_primary_10_1109_TIM_2022_3170985
crossref_primary_10_1016_j_adhoc_2023_103300
crossref_primary_10_1109_TITS_2024_3363488
crossref_primary_10_1109_TITS_2024_3410185
crossref_primary_10_1109_TIM_2024_3440416
crossref_primary_10_1007_s12046_023_02128_w
Cites_doi 10.1109/COMST.2018.2841901
10.1080/19427867.2019.1650430
10.1109/WCNC.2003.1200689
10.1109/MAES.2005.1499276
10.1007/s11277-014-2025-3
10.3390/s8042240
10.1016/j.comcom.2007.12.004
10.1007/s11276-016-1265-4
10.3390/s131115307
10.1109/MCS.2010.937003
10.7307/ptt.v30i2.2500
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3141710
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 15521
ExternalDocumentID 10_1109_TITS_2022_3141710
9686625
Genre orig-research
GrantInformation_xml – fundername: Queensland University of Technology, Australia
  funderid: 10.13039/501100001793
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-f0a11852fb1685ab529450fc5ff2910df4aaf0862c5ed211840ef84d079d8d843
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 02:59:47 EDT 2025
Tue Jul 01 04:29:08 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Wed Aug 27 02:18:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f0a11852fb1685ab529450fc5ff2910df4aaf0862c5ed211840ef84d079d8d843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2899-9536
0000-0001-6548-3347
PQID 2714898345
PQPubID 75735
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TITS_2022_3141710
ieee_primary_9686625
crossref_primary_10_1109_TITS_2022_3141710
proquest_journals_2714898345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
ref11
Welch (ref17) 2001; 8
ref10
ref16
ref18
(ref7) 2020
ref8
ref9
(ref2) 2019
ref4
ref3
(ref1) 2013
ref5
King (ref6)
Kim (ref13) 2011
Kim (ref12) 2018
References_xml – ident: ref4
  doi: 10.1109/COMST.2018.2841901
– ident: ref3
  doi: 10.1080/19427867.2019.1650430
– ident: ref16
  doi: 10.1109/WCNC.2003.1200689
– volume-title: Kalman Filter for Beginners: With MATLAB Examples
  year: 2011
  ident: ref13
– ident: ref14
  doi: 10.1109/MAES.2005.1499276
– volume-title: Introduction to Kalman Filter and Its Applications
  year: 2018
  ident: ref12
– volume-title: Intelligent Transport System (ITS); V2X Applications; Part 3: Longitudinal Collision Risk Warning (LCRW) Application Requirement Specification
  year: 2013
  ident: ref1
– start-page: 199
  volume-title: Proc. Int. Workshop Intell. Transp. (WIT)
  ident: ref6
  article-title: Dead-reckoning for position-based forwarding on highways
– volume: 8
  start-page: 41
  issue: 27599
  year: 2001
  ident: ref17
  article-title: An introduction to the Kalman filter
  publication-title: Proc. SIGGRAPH, Course
– ident: ref15
  doi: 10.1007/s11277-014-2025-3
– ident: ref8
  doi: 10.3390/s8042240
– ident: ref5
  doi: 10.1016/j.comcom.2007.12.004
– ident: ref11
  doi: 10.1007/s11276-016-1265-4
– volume-title: Intelligent Transport System (ITS); Vulnerable Road Users (VRU) Awareness; Part 1: Use Cases Definition; Release 2
  year: 2019
  ident: ref2
– volume-title: Oem-Imu-eg370n Product Sheet
  year: 2020
  ident: ref7
– ident: ref10
  doi: 10.3390/s131115307
– ident: ref18
  doi: 10.1109/MCS.2010.937003
– ident: ref9
  doi: 10.7307/ptt.v30i2.2500
SSID ssj0014511
Score 2.4194772
Snippet Cooperative-Intelligent Transportation System (C-ITS) safety applications depend on reliable location information timely exchanged by road users. Due to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15512
SubjectTerms C-ITS
Covariance matrices
Global navigation satellite system
Inertial navigation
Intelligent transportation systems
Intervals
Kalman filter
Kalman filters
Kinematics
location prediction
Measurement uncertainty
Navigation systems
prediction errors
Real time
real-time kinematic
Roads
Root-mean-square errors
Safety
Sensors
Time measurement
V2X communication
Title Analysis of Vehicle Location Prediction Errors for Safety Applications in Cooperative-Intelligent Transportation Systems
URI https://ieeexplore.ieee.org/document/9686625
https://www.proquest.com/docview/2714898345
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFL2Ms9KFb3F0lCxciR37SNJmOYii4ojgKO5KmweKMh06HVC_3pu-GFTEXRY3IXDS5pzc3BOAI2TEiRfy1OEKtQnlmjoRj6hDg9BNqCcZNzajO7rllw_0-ok9deCkrYXRWpeXz_TANstcvsrk3B6VnQoeceTrS7CEwq2q1WozBtZnq_RG9akjXNZkMD1XnI6vxveoBH0fBSr1Qlssu7AHlY-q_PgTl9vLxRqMmolVt0peB_MiHcjPb56N_535OqzWPJMMq4WxAR092YSVBffBLXhvDElIZsijfraB5CarzvDIXW5TOGXzPM-zfEaQ3pL7xOjigwwX0t7kZULOsmyqKw9x56o1-SxIa51ejVnbo2_Dw8X5-OzSqR9icCSygcIxbuLZImuTejxiScp8QZlrJDPGR7qhDE0SY7WRZFqhokTRqE1ElRsKFamIBjvQnWQTvQsE-VUqPBQ5RinKpZ-IMEDFJAM7KFKNHrgNNLGsXcrtYxlvcalWXBFbNGOLZlyj2YPjtsu0suj4K3jLotMG1sD0oN_gH9cf8Sz2Q9SKIgoo2_u91z4s27GrK2d96Bb5XB8gRynSw3JxfgGFVOL8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT9swFL1i3QPjAcYYolCGH_Y0LSUfthM_VlVRO1qEREG8RYk_tAnUVGkqAb-e63ypYmjamx9sx9Kx43N8fY8BviMjTryQpw5XqE0o19SJeEQdGoRuQj3JuLER3dkVH9_SX_fsfgt-trkwWuvy8pnu22IZy1eZXNujsnPBI458_QN8xH2fiipbq40ZWKet0h3Vp45wWRPD9FxxPp_Mb1AL-j5KVOqFNl12Yxcqn1X5619cbjAXezBrhlbdK3nor4u0L1_euDb-79g_w27NNMmgmhr7sKUXX2Bnw3_wAJ4aSxKSGXKnf9uKZJpVp3jkOrdBnLI4yvMsXxEkuOQmMbp4JoONwDf5syDDLFvqykXcmbQ2nwVpzdOrPmuD9K9wezGaD8dO_RSDI5EPFI5xE8-mWZvU4xFLUuYLylwjmTE-Eg5laJIYq44k0wo1JcpGbSKq3FCoSEU0OITOIlvoIyDIsFLhocwxSlEu_USEAWomGdhOkWx0wW2giWXtU26fy3iMS73iitiiGVs04xrNLvxomywrk45_VT6w6LQVa2C60Gvwj-tlvIr9ENWiiALKjt9vdQbb4_lsGk8nV5cn8Ml-p7qA1oNOka_1KTKWIv1WTtRXlHbmTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Vehicle+Location+Prediction+Errors+for+Safety+Applications+in+Cooperative-Intelligent+Transportation+Systems&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Dasanayaka%2C+Nishanthi&rft.au=Feng%2C+Yanming&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=9&rft.spage=15512&rft.epage=15521&rft_id=info:doi/10.1109%2FTITS.2022.3141710&rft.externalDocID=9686625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon