Wave Attenuation by Australian Temperate Mangroves
Wave attenuation by natural coastal features is recognised as a soft engineering approach to shoreline protection from storm surges and destructive waves. The effectiveness of wave energy dissipation is determined, in part, by vegetation structure, extent, and distribution. Mangroves line ca. 15% of...
Saved in:
Published in | Journal of marine science and engineering Vol. 13; no. 2; p. 382 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Wave attenuation by natural coastal features is recognised as a soft engineering approach to shoreline protection from storm surges and destructive waves. The effectiveness of wave energy dissipation is determined, in part, by vegetation structure, extent, and distribution. Mangroves line ca. 15% of the world’s coastlines, primarily in tropical and subtropical regions but also extending into temperate climates, where mangroves are shorter and multi-stemmed. Using wave loggers deployed across mangrove and non-mangrove shorelines, we studied the wave attenuating capacity and the drag coefficient (CD) of temperate Avicennia marina mangrove forests of varying structure in Western Port, Australia. The structure of the vegetation obstructing the flow path was represented along each transect in a three-dimensional point cloud derived from overlapping uncrewed aerial vehicle (UAV) images and structure-from-motion (SfM) algorithms. The wave attenuation coefficient (b) calculated from a fitted exponential decay model at the vegetated sites was on average 0.011 m−1 relative to only 0.009 m−1 at the unvegetated site. We calculated a CD for this forest type that ranged between 2.7 and 4.9, which is within the range of other pencil-rooted species such as Sonneratia sp. but significantly lower than prop-rooted species such as Rhizophora spp. Wave attenuation efficiency significantly decreased with increasing water depth, highlighting the dominance of near-bed friction on attenuation in this forest type. The UAV-derived point cloud did not describe the vegetation (especially near-bed) in sufficient detail to accurately depict the obstacles. We found that a temperate mangrove greenbelt of just 100 m can decrease incoming wave heights by close to 70%, indicating that, similarly to tropical and subtropical forests, temperate mangroves significantly attenuate incoming wave energy under normal sea conditions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2077-1312 2077-1312 |
DOI: | 10.3390/jmse13020382 |