iMGC: Interactive Multiple Graph Clustering With Constrained Laplacian Rank

Numerous graph clustering methods have been proposed to explore aggregation structures across multiple graphs. In these methods, single-graph features are merely considered or multigraph features are simply weighted, which are insufficient for the construction of reasonable multiple graph clustering...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 53; no. 2; pp. 427 - 437
Main Authors Zhou, Zhiguang, Sun, Ling, Wang, Haoxuan, Yu, Wanghao, Liu, Yuhua, Zhang, Xiang, Wang, Yigang, Chen, Wei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2291
2168-2305
DOI10.1109/THMS.2022.3227181

Cover

Abstract Numerous graph clustering methods have been proposed to explore aggregation structures across multiple graphs. In these methods, single-graph features are merely considered or multigraph features are simply weighted, which are insufficient for the construction of reasonable multiple graph clustering features, since the association information between pairwise graphs is ignored and the varied local correlations might influence the clustering preference. Thus, we propose an interactive multiple graph clustering model, iMGC, in this article, to achieve reasonable multiple graph clustering features, which cannot only express multiple relationships, but also preserve associations of nodes across multiple graphs. First, a unified graph matrix is constructed with the combination of structural differences quantified by graph representation learning, which is further optimized by minimizing the difference of structural characteristics between it and each single graph matrix. Thus, multiple relationships are well integrated and expressed, while the varied local correlations within different graphs are also balanced in the unified graph matrix. Then, a constrained Laplacian rank is applied on the unified graph matrix to generate the unified clustering result directly, which is able to preserve association features across multiple graphs. Furthermore, we provide a set of visualization and interaction interfaces, enabling users to intuitively optimize and evaluate the multiple graph clustering features, and interactively explore the multiple graphs. Case studies and quantitative comparisons based on real-world datasets have demonstrated the effectiveness of iMGC in the clustering performance from various perspectives and exploration of multiple graphs.
AbstractList Numerous graph clustering methods have been proposed to explore aggregation structures across multiple graphs. In these methods, single-graph features are merely considered or multigraph features are simply weighted, which are insufficient for the construction of reasonable multiple graph clustering features, since the association information between pairwise graphs is ignored and the varied local correlations might influence the clustering preference. Thus, we propose an interactive multiple graph clustering model, iMGC, in this article, to achieve reasonable multiple graph clustering features, which cannot only express multiple relationships, but also preserve associations of nodes across multiple graphs. First, a unified graph matrix is constructed with the combination of structural differences quantified by graph representation learning, which is further optimized by minimizing the difference of structural characteristics between it and each single graph matrix. Thus, multiple relationships are well integrated and expressed, while the varied local correlations within different graphs are also balanced in the unified graph matrix. Then, a constrained Laplacian rank is applied on the unified graph matrix to generate the unified clustering result directly, which is able to preserve association features across multiple graphs. Furthermore, we provide a set of visualization and interaction interfaces, enabling users to intuitively optimize and evaluate the multiple graph clustering features, and interactively explore the multiple graphs. Case studies and quantitative comparisons based on real-world datasets have demonstrated the effectiveness of iMGC in the clustering performance from various perspectives and exploration of multiple graphs.
Author Chen, Wei
Sun, Ling
Wang, Haoxuan
Zhou, Zhiguang
Wang, Yigang
Yu, Wanghao
Liu, Yuhua
Zhang, Xiang
Author_xml – sequence: 1
  givenname: Zhiguang
  orcidid: 0000-0003-2968-7830
  surname: Zhou
  fullname: Zhou, Zhiguang
  email: zhgzhou1983@163.com
  organization: Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Ling
  surname: Sun
  fullname: Sun, Ling
  email: 1055389464@qq.com
  organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China
– sequence: 3
  givenname: Haoxuan
  surname: Wang
  fullname: Wang, Haoxuan
  email: 1337368578@qq.com
  organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China
– sequence: 4
  givenname: Wanghao
  surname: Yu
  fullname: Yu, Wanghao
  email: 1968480927@qq.com
  organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China
– sequence: 5
  givenname: Yuhua
  surname: Liu
  fullname: Liu, Yuhua
  email: liuyuhua@hdu.edu.cn
  organization: Hangzhou Dianzi University, Hangzhou, China
– sequence: 6
  givenname: Xiang
  surname: Zhang
  fullname: Zhang, Xiang
  email: zxiang@zufe.edu.cn
  organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China
– sequence: 7
  givenname: Yigang
  orcidid: 0000-0002-4131-2719
  surname: Wang
  fullname: Wang, Yigang
  email: yigang.wang@hdu.edu.cn
  organization: Hangzhou Dianzi University, Hangzhou, China
– sequence: 8
  givenname: Wei
  orcidid: 0000-0002-8365-4741
  surname: Chen
  fullname: Chen, Wei
  email: chenwei@cad.zju.edu.cn
  organization: State Key Lab of CAD & CG, Zhejiang University, Hangzhou, China
BookMark eNp9UMFOwzAMjRBIjLEPQFwqcd5InKVpuaEKtolNSDDEMUo7BzJKWtIUib-n1QYHDryLbfk9P_mdkENXOSTkjNEJYzS9XM9XjxOgABMOIFnCDsgAWJyMgVNx-NNDyo7JqGm2tEMCQohkQO7sapZdRQsX0Osi2E-MVm0ZbF1iNPO6fo2ysm26pXUv0bMN3Vy5JnhtHW6ipa5LXVjtogft3k7JkdFlg6N9HZKn25t1Nh8v72eL7Ho5LiDlYYwIMtdoOEgjmRE534ipwU3MtSiw0AnqnMppwWOTMgZggOYcci4BYyG05kNysbtb--qjxSaobdV611kqkImUdMo57Vhsxyp81TQejaq9fdf-SzGq-thUH5vqY1P72DqN_KMpbNDBVq7_uPxXeb5TWkT8dUo7MA78G3b-fAg
CODEN ITHSA6
CitedBy_id crossref_primary_10_3390_en16031166
crossref_primary_10_1007_s12650_024_00971_5
crossref_primary_10_1109_THMS_2024_3483848
crossref_primary_10_1007_s12650_024_00955_5
crossref_primary_10_1007_s12650_024_00956_4
crossref_primary_10_1007_s12650_024_00990_2
Cites_doi 10.1016/j.knosys.2020.106666
10.1038/ncomms7864
10.1111/j.1467-8659.2012.03110.x
10.1109/FSKD.2010.5569740
10.1111/cgf.13728
10.5555/3001460.3001507
10.1109/TVCG.2020.3030440
10.2307/2346830
10.1109/JBHI.2020.2975199
10.1609/aaai.v30i1.10179
10.1103/PhysRevE.69.026113
10.1109/TNNLS.2019.2920905
10.1109/TNNLS.2018.2829867
10.1126/science.290.5500.2323
10.1109/TNNLS.2018.2817538
10.1073/pnas.35.11.652
10.1109/TSP.2013.2295553
10.1109/TVCG.2018.2865940
10.1145/3274895.3274896
10.1109/ICCSA.2019.000-1
10.1145/2939672.2939754
10.1016/B978-008044910-4.00481-8
10.1109/DSC.2018.00122
10.1109/iV.2015.25
10.1109/TKDE.2018.2832205
10.1111/cgf.13184
10.1093/ije/dyq191
10.1109/TCYB.2020.3000799
10.1109/ASONAM.2011.104
10.1103/PhysRevLett.116.228301
10.1504/IJBRA.2016.077122
10.1016/0377-0427(87)90125-7
10.1145/2623330.2623726
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/THMS.2022.3227181
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2305
EndPage 437
ExternalDocumentID 10_1109_THMS_2022_3227181
9999132
Genre orig-research
GrantInformation_xml – fundername: National Statistical Science Research
  grantid: 2022LY099
– fundername: Zhejiang Provincial Science and Technology Program in China
  grantid: 2021C03137
– fundername: Zhejiang Statistical Science Research Project
– fundername: Public Welfare Plan Research Project of Zhejiang Provincial Science and Technology Department
  grantid: LTGG23H260003
– fundername: National Natural Science Foundation of China
  grantid: 62277013; 62177040; 62132017
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-ee27baef327f71f5b3d54fed63a5ceca8eab074c36f91122f20b32b372e655aa3
IEDL.DBID RIE
ISSN 2168-2291
IngestDate Mon Jun 30 07:16:36 EDT 2025
Tue Jul 01 03:00:59 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Wed Aug 27 01:53:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ee27baef327f71f5b3d54fed63a5ceca8eab074c36f91122f20b32b372e655aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4131-2719
0000-0003-2968-7830
0000-0002-8365-4741
PQID 2787704330
PQPubID 85416
PageCount 11
ParticipantIDs crossref_primary_10_1109_THMS_2022_3227181
crossref_citationtrail_10_1109_THMS_2022_3227181
proquest_journals_2787704330
ieee_primary_9999132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-April
2023-4-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-April
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on human-machine systems
PublicationTitleAbbrev THMS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Dhne (ref35) 2019
Saad (ref3) 1990
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
Bertsekas (ref29) 1982
Mohar (ref27) 1991; 2
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref34
  doi: 10.1016/j.knosys.2020.106666
– ident: ref30
  doi: 10.1038/ncomms7864
– ident: ref23
  doi: 10.1111/j.1467-8659.2012.03110.x
– ident: ref26
  doi: 10.1109/FSKD.2010.5569740
– ident: ref18
  doi: 10.1111/cgf.13728
– ident: ref9
  doi: 10.5555/3001460.3001507
– ident: ref19
  doi: 10.1109/TVCG.2020.3030440
– ident: ref1
  doi: 10.2307/2346830
– ident: ref12
  doi: 10.1109/JBHI.2020.2975199
– start-page: 1
  year: 1990
  ident: ref3
  article-title: SPARSKIT: A basic toolkit for sparse matrix computations
– ident: ref7
  doi: 10.1609/aaai.v30i1.10179
– ident: ref36
  doi: 10.1103/PhysRevE.69.026113
– ident: ref17
  doi: 10.1109/TNNLS.2019.2920905
– start-page: 363
  volume-title: Luce/Perry (1949): A Method of Matrix Analysis of Group Structure
  year: 2019
  ident: ref35
– ident: ref16
  doi: 10.1109/TNNLS.2018.2829867
– ident: ref5
  doi: 10.1126/science.290.5500.2323
– ident: ref15
  doi: 10.1109/TNNLS.2018.2817538
– ident: ref28
  doi: 10.1073/pnas.35.11.652
– ident: ref32
  doi: 10.1109/TSP.2013.2295553
– ident: ref21
  doi: 10.1109/TVCG.2018.2865940
– ident: ref2
  doi: 10.1145/3274895.3274896
– ident: ref8
  doi: 10.1109/ICCSA.2019.000-1
– ident: ref6
  doi: 10.1145/2939672.2939754
– volume-title: Constrained Optimization and Lagrange Multiplier Methods
  year: 1982
  ident: ref29
– ident: ref4
  doi: 10.1016/B978-008044910-4.00481-8
– ident: ref24
  doi: 10.1109/DSC.2018.00122
– volume: 2
  year: 1991
  ident: ref27
  article-title: The Laplacian spectrum of graphs
  publication-title: Graph Theory Combinatorics Appl.
– ident: ref22
  doi: 10.1109/iV.2015.25
– ident: ref33
  doi: 10.1109/TKDE.2018.2832205
– ident: ref20
  doi: 10.1111/cgf.13184
– ident: ref31
  doi: 10.1093/ije/dyq191
– ident: ref11
  doi: 10.1109/TCYB.2020.3000799
– ident: ref13
  doi: 10.1109/ASONAM.2011.104
– ident: ref14
  doi: 10.1103/PhysRevLett.116.228301
– ident: ref25
  doi: 10.1504/IJBRA.2016.077122
– ident: ref37
  doi: 10.1016/0377-0427(87)90125-7
– ident: ref10
  doi: 10.1145/2623330.2623726
SSID ssj0000825558
Score 2.4087677
Snippet Numerous graph clustering methods have been proposed to explore aggregation structures across multiple graphs. In these methods, single-graph features are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 427
SubjectTerms Clustering
Correlation
Data clustering and aggregation
Graph representations
graph/network and tree data
Graphical representations
Graphs
Junctions
Laplace equations
Layout
Measurement
Nonhomogeneous media
Visualization
Title iMGC: Interactive Multiple Graph Clustering With Constrained Laplacian Rank
URI https://ieeexplore.ieee.org/document/9999132
https://www.proquest.com/docview/2787704330
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWAExzYEWWTD5wQaR07cQg3VNFWQDiwiN4iL2OpAhUE6YWvZ-ykFZsQt0SyJcuz-M14_IaQw9hKZhGJRInFcDXJGJoUWBEZyKWWiWJc-3xHcS0H98nFMB3OkePZWxgACMVn0Paf4S7fPpuJT5V1co9mBDrceVSz-q3WLJ_iQ500tOPksUTh8zxuLjFjlnfuBsUtBoOct1GB0R3HX46h0FflhzMOJ0xvhRTTtdWFJY_tSaXb5v0bbeN_F79KlhuoSc9q3VgjczBeJ0ufCAg3yOWo6HdPaUgLquD5aNFUGNK-p7Km3aeJp1LA0fRhVOG_x5O-rQRYeqV8RRfqF71R48dNct87v-sOoqa9QmTwjK8iAJ5pBU7wzGWxS7WwaeLASqFSA0adgNIIMIyQDj0i544zLbgWGQeZpkqJLbIwfh7DNqFKAjfaukSheedGIahEP2FY7ExykjrVImy626VpuMf9Wp_KEIOwvPQCKr2AykZALXI0m_JSE2_8NXjDb_hsYLPXLbI3FWnZmOZbyVF3Mk_bxnZ-n7VLFn1P-bo8Z48sVK8T2EfkUemDoHIfAvPT-Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4heig9QAtULNDWh54qsjh27JDeqlVhWzYcyiK4RX6MJQRaqpK99Nd37GRXFFDVWyLZkuUZf_Pw-BuAj7nX3JMnkhWewtWi5HSk0MvMYaWtLgwXNuY76jM9vii-X6mrFThYvoVBxFR8hsP4me7y_Z2bx1TZYRW9GUmA-4LsfqG611rLjEoMdlRqyClyTeIXVd5fY-a8OpyO63MKB4UYkgoTIOd_GaLUWeUJHCcbc7wB9WJ1XWnJzXDe2qH7_Yi48X-X_xrWe2eTfem04w2s4GwTXj2gINyC0-v6ZPSZpcSgSdjH6r7GkJ1EMms2up1HMgUazS6vW_qPHmVsLIGeTUys6SINYz_M7GYbLo6_TkfjrG-wkDmy8m2GKEprMEhRhjIPykqvioBeS6McOnOExpKL4aQOhIlCBMGtFFaWArVSxsi3sDq7m-EOMKNROOtDYeiAV86QW0lI4XgeXHGkghkAX-x243r28bjW2yZFIbxqooCaKKCmF9AAPi2n_OyoN_41eCtu-HJgv9cD2F-ItOkP530jCKTKSNzGd5-f9QFejqf1pJl8Ozvdg7XYYb4r1tmH1fbXHN-RH9La90n9_gBGxNdG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iMGC%3A+Interactive+Multiple+Graph+Clustering+With+Constrained+Laplacian+Rank&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Zhou%2C+Zhiguang&rft.au=Sun%2C+Ling&rft.au=Wang%2C+Haoxuan&rft.au=Yu%2C+Wanghao&rft.date=2023-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2291&rft.eissn=2168-2305&rft.volume=53&rft.issue=2&rft.spage=427&rft_id=info:doi/10.1109%2FTHMS.2022.3227181&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon