iMGC: Interactive Multiple Graph Clustering With Constrained Laplacian Rank
Numerous graph clustering methods have been proposed to explore aggregation structures across multiple graphs. In these methods, single-graph features are merely considered or multigraph features are simply weighted, which are insufficient for the construction of reasonable multiple graph clustering...
Saved in:
Published in | IEEE transactions on human-machine systems Vol. 53; no. 2; pp. 427 - 437 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2291 2168-2305 |
DOI | 10.1109/THMS.2022.3227181 |
Cover
Abstract | Numerous graph clustering methods have been proposed to explore aggregation structures across multiple graphs. In these methods, single-graph features are merely considered or multigraph features are simply weighted, which are insufficient for the construction of reasonable multiple graph clustering features, since the association information between pairwise graphs is ignored and the varied local correlations might influence the clustering preference. Thus, we propose an interactive multiple graph clustering model, iMGC, in this article, to achieve reasonable multiple graph clustering features, which cannot only express multiple relationships, but also preserve associations of nodes across multiple graphs. First, a unified graph matrix is constructed with the combination of structural differences quantified by graph representation learning, which is further optimized by minimizing the difference of structural characteristics between it and each single graph matrix. Thus, multiple relationships are well integrated and expressed, while the varied local correlations within different graphs are also balanced in the unified graph matrix. Then, a constrained Laplacian rank is applied on the unified graph matrix to generate the unified clustering result directly, which is able to preserve association features across multiple graphs. Furthermore, we provide a set of visualization and interaction interfaces, enabling users to intuitively optimize and evaluate the multiple graph clustering features, and interactively explore the multiple graphs. Case studies and quantitative comparisons based on real-world datasets have demonstrated the effectiveness of iMGC in the clustering performance from various perspectives and exploration of multiple graphs. |
---|---|
AbstractList | Numerous graph clustering methods have been proposed to explore aggregation structures across multiple graphs. In these methods, single-graph features are merely considered or multigraph features are simply weighted, which are insufficient for the construction of reasonable multiple graph clustering features, since the association information between pairwise graphs is ignored and the varied local correlations might influence the clustering preference. Thus, we propose an interactive multiple graph clustering model, iMGC, in this article, to achieve reasonable multiple graph clustering features, which cannot only express multiple relationships, but also preserve associations of nodes across multiple graphs. First, a unified graph matrix is constructed with the combination of structural differences quantified by graph representation learning, which is further optimized by minimizing the difference of structural characteristics between it and each single graph matrix. Thus, multiple relationships are well integrated and expressed, while the varied local correlations within different graphs are also balanced in the unified graph matrix. Then, a constrained Laplacian rank is applied on the unified graph matrix to generate the unified clustering result directly, which is able to preserve association features across multiple graphs. Furthermore, we provide a set of visualization and interaction interfaces, enabling users to intuitively optimize and evaluate the multiple graph clustering features, and interactively explore the multiple graphs. Case studies and quantitative comparisons based on real-world datasets have demonstrated the effectiveness of iMGC in the clustering performance from various perspectives and exploration of multiple graphs. |
Author | Chen, Wei Sun, Ling Wang, Haoxuan Zhou, Zhiguang Wang, Yigang Yu, Wanghao Liu, Yuhua Zhang, Xiang |
Author_xml | – sequence: 1 givenname: Zhiguang orcidid: 0000-0003-2968-7830 surname: Zhou fullname: Zhou, Zhiguang email: zhgzhou1983@163.com organization: Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Ling surname: Sun fullname: Sun, Ling email: 1055389464@qq.com organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China – sequence: 3 givenname: Haoxuan surname: Wang fullname: Wang, Haoxuan email: 1337368578@qq.com organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China – sequence: 4 givenname: Wanghao surname: Yu fullname: Yu, Wanghao email: 1968480927@qq.com organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China – sequence: 5 givenname: Yuhua surname: Liu fullname: Liu, Yuhua email: liuyuhua@hdu.edu.cn organization: Hangzhou Dianzi University, Hangzhou, China – sequence: 6 givenname: Xiang surname: Zhang fullname: Zhang, Xiang email: zxiang@zufe.edu.cn organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China – sequence: 7 givenname: Yigang orcidid: 0000-0002-4131-2719 surname: Wang fullname: Wang, Yigang email: yigang.wang@hdu.edu.cn organization: Hangzhou Dianzi University, Hangzhou, China – sequence: 8 givenname: Wei orcidid: 0000-0002-8365-4741 surname: Chen fullname: Chen, Wei email: chenwei@cad.zju.edu.cn organization: State Key Lab of CAD & CG, Zhejiang University, Hangzhou, China |
BookMark | eNp9UMFOwzAMjRBIjLEPQFwqcd5InKVpuaEKtolNSDDEMUo7BzJKWtIUib-n1QYHDryLbfk9P_mdkENXOSTkjNEJYzS9XM9XjxOgABMOIFnCDsgAWJyMgVNx-NNDyo7JqGm2tEMCQohkQO7sapZdRQsX0Osi2E-MVm0ZbF1iNPO6fo2ysm26pXUv0bMN3Vy5JnhtHW6ipa5LXVjtogft3k7JkdFlg6N9HZKn25t1Nh8v72eL7Ho5LiDlYYwIMtdoOEgjmRE534ipwU3MtSiw0AnqnMppwWOTMgZggOYcci4BYyG05kNysbtb--qjxSaobdV611kqkImUdMo57Vhsxyp81TQejaq9fdf-SzGq-thUH5vqY1P72DqN_KMpbNDBVq7_uPxXeb5TWkT8dUo7MA78G3b-fAg |
CODEN | ITHSA6 |
CitedBy_id | crossref_primary_10_3390_en16031166 crossref_primary_10_1007_s12650_024_00971_5 crossref_primary_10_1109_THMS_2024_3483848 crossref_primary_10_1007_s12650_024_00955_5 crossref_primary_10_1007_s12650_024_00956_4 crossref_primary_10_1007_s12650_024_00990_2 |
Cites_doi | 10.1016/j.knosys.2020.106666 10.1038/ncomms7864 10.1111/j.1467-8659.2012.03110.x 10.1109/FSKD.2010.5569740 10.1111/cgf.13728 10.5555/3001460.3001507 10.1109/TVCG.2020.3030440 10.2307/2346830 10.1109/JBHI.2020.2975199 10.1609/aaai.v30i1.10179 10.1103/PhysRevE.69.026113 10.1109/TNNLS.2019.2920905 10.1109/TNNLS.2018.2829867 10.1126/science.290.5500.2323 10.1109/TNNLS.2018.2817538 10.1073/pnas.35.11.652 10.1109/TSP.2013.2295553 10.1109/TVCG.2018.2865940 10.1145/3274895.3274896 10.1109/ICCSA.2019.000-1 10.1145/2939672.2939754 10.1016/B978-008044910-4.00481-8 10.1109/DSC.2018.00122 10.1109/iV.2015.25 10.1109/TKDE.2018.2832205 10.1111/cgf.13184 10.1093/ije/dyq191 10.1109/TCYB.2020.3000799 10.1109/ASONAM.2011.104 10.1103/PhysRevLett.116.228301 10.1504/IJBRA.2016.077122 10.1016/0377-0427(87)90125-7 10.1145/2623330.2623726 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/THMS.2022.3227181 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-2305 |
EndPage | 437 |
ExternalDocumentID | 10_1109_THMS_2022_3227181 9999132 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Statistical Science Research grantid: 2022LY099 – fundername: Zhejiang Provincial Science and Technology Program in China grantid: 2021C03137 – fundername: Zhejiang Statistical Science Research Project – fundername: Public Welfare Plan Research Project of Zhejiang Provincial Science and Technology Department grantid: LTGG23H260003 – fundername: National Natural Science Foundation of China grantid: 62277013; 62177040; 62132017 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-ee27baef327f71f5b3d54fed63a5ceca8eab074c36f91122f20b32b372e655aa3 |
IEDL.DBID | RIE |
ISSN | 2168-2291 |
IngestDate | Mon Jun 30 07:16:36 EDT 2025 Tue Jul 01 03:00:59 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 Wed Aug 27 01:53:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-ee27baef327f71f5b3d54fed63a5ceca8eab074c36f91122f20b32b372e655aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4131-2719 0000-0003-2968-7830 0000-0002-8365-4741 |
PQID | 2787704330 |
PQPubID | 85416 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_THMS_2022_3227181 crossref_citationtrail_10_1109_THMS_2022_3227181 proquest_journals_2787704330 ieee_primary_9999132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-April 2023-4-00 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-April |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on human-machine systems |
PublicationTitleAbbrev | THMS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Dhne (ref35) 2019 Saad (ref3) 1990 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 Bertsekas (ref29) 1982 Mohar (ref27) 1991; 2 ref8 ref7 ref9 ref4 ref6 ref5 |
References_xml | – ident: ref34 doi: 10.1016/j.knosys.2020.106666 – ident: ref30 doi: 10.1038/ncomms7864 – ident: ref23 doi: 10.1111/j.1467-8659.2012.03110.x – ident: ref26 doi: 10.1109/FSKD.2010.5569740 – ident: ref18 doi: 10.1111/cgf.13728 – ident: ref9 doi: 10.5555/3001460.3001507 – ident: ref19 doi: 10.1109/TVCG.2020.3030440 – ident: ref1 doi: 10.2307/2346830 – ident: ref12 doi: 10.1109/JBHI.2020.2975199 – start-page: 1 year: 1990 ident: ref3 article-title: SPARSKIT: A basic toolkit for sparse matrix computations – ident: ref7 doi: 10.1609/aaai.v30i1.10179 – ident: ref36 doi: 10.1103/PhysRevE.69.026113 – ident: ref17 doi: 10.1109/TNNLS.2019.2920905 – start-page: 363 volume-title: Luce/Perry (1949): A Method of Matrix Analysis of Group Structure year: 2019 ident: ref35 – ident: ref16 doi: 10.1109/TNNLS.2018.2829867 – ident: ref5 doi: 10.1126/science.290.5500.2323 – ident: ref15 doi: 10.1109/TNNLS.2018.2817538 – ident: ref28 doi: 10.1073/pnas.35.11.652 – ident: ref32 doi: 10.1109/TSP.2013.2295553 – ident: ref21 doi: 10.1109/TVCG.2018.2865940 – ident: ref2 doi: 10.1145/3274895.3274896 – ident: ref8 doi: 10.1109/ICCSA.2019.000-1 – ident: ref6 doi: 10.1145/2939672.2939754 – volume-title: Constrained Optimization and Lagrange Multiplier Methods year: 1982 ident: ref29 – ident: ref4 doi: 10.1016/B978-008044910-4.00481-8 – ident: ref24 doi: 10.1109/DSC.2018.00122 – volume: 2 year: 1991 ident: ref27 article-title: The Laplacian spectrum of graphs publication-title: Graph Theory Combinatorics Appl. – ident: ref22 doi: 10.1109/iV.2015.25 – ident: ref33 doi: 10.1109/TKDE.2018.2832205 – ident: ref20 doi: 10.1111/cgf.13184 – ident: ref31 doi: 10.1093/ije/dyq191 – ident: ref11 doi: 10.1109/TCYB.2020.3000799 – ident: ref13 doi: 10.1109/ASONAM.2011.104 – ident: ref14 doi: 10.1103/PhysRevLett.116.228301 – ident: ref25 doi: 10.1504/IJBRA.2016.077122 – ident: ref37 doi: 10.1016/0377-0427(87)90125-7 – ident: ref10 doi: 10.1145/2623330.2623726 |
SSID | ssj0000825558 |
Score | 2.4087677 |
Snippet | Numerous graph clustering methods have been proposed to explore aggregation structures across multiple graphs. In these methods, single-graph features are... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 427 |
SubjectTerms | Clustering Correlation Data clustering and aggregation Graph representations graph/network and tree data Graphical representations Graphs Junctions Laplace equations Layout Measurement Nonhomogeneous media Visualization |
Title | iMGC: Interactive Multiple Graph Clustering With Constrained Laplacian Rank |
URI | https://ieeexplore.ieee.org/document/9999132 https://www.proquest.com/docview/2787704330 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWAExzYEWWTD5wQaR07cQg3VNFWQDiwiN4iL2OpAhUE6YWvZ-ykFZsQt0SyJcuz-M14_IaQw9hKZhGJRInFcDXJGJoUWBEZyKWWiWJc-3xHcS0H98nFMB3OkePZWxgACMVn0Paf4S7fPpuJT5V1co9mBDrceVSz-q3WLJ_iQ500tOPksUTh8zxuLjFjlnfuBsUtBoOct1GB0R3HX46h0FflhzMOJ0xvhRTTtdWFJY_tSaXb5v0bbeN_F79KlhuoSc9q3VgjczBeJ0ufCAg3yOWo6HdPaUgLquD5aNFUGNK-p7Km3aeJp1LA0fRhVOG_x5O-rQRYeqV8RRfqF71R48dNct87v-sOoqa9QmTwjK8iAJ5pBU7wzGWxS7WwaeLASqFSA0adgNIIMIyQDj0i544zLbgWGQeZpkqJLbIwfh7DNqFKAjfaukSheedGIahEP2FY7ExykjrVImy626VpuMf9Wp_KEIOwvPQCKr2AykZALXI0m_JSE2_8NXjDb_hsYLPXLbI3FWnZmOZbyVF3Mk_bxnZ-n7VLFn1P-bo8Z48sVK8T2EfkUemDoHIfAvPT-Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4heig9QAtULNDWh54qsjh27JDeqlVhWzYcyiK4RX6MJQRaqpK99Nd37GRXFFDVWyLZkuUZf_Pw-BuAj7nX3JMnkhWewtWi5HSk0MvMYaWtLgwXNuY76jM9vii-X6mrFThYvoVBxFR8hsP4me7y_Z2bx1TZYRW9GUmA-4LsfqG611rLjEoMdlRqyClyTeIXVd5fY-a8OpyO63MKB4UYkgoTIOd_GaLUWeUJHCcbc7wB9WJ1XWnJzXDe2qH7_Yi48X-X_xrWe2eTfem04w2s4GwTXj2gINyC0-v6ZPSZpcSgSdjH6r7GkJ1EMms2up1HMgUazS6vW_qPHmVsLIGeTUys6SINYz_M7GYbLo6_TkfjrG-wkDmy8m2GKEprMEhRhjIPykqvioBeS6McOnOExpKL4aQOhIlCBMGtFFaWArVSxsi3sDq7m-EOMKNROOtDYeiAV86QW0lI4XgeXHGkghkAX-x243r28bjW2yZFIbxqooCaKKCmF9AAPi2n_OyoN_41eCtu-HJgv9cD2F-ItOkP530jCKTKSNzGd5-f9QFejqf1pJl8Ozvdg7XYYb4r1tmH1fbXHN-RH9La90n9_gBGxNdG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iMGC%3A+Interactive+Multiple+Graph+Clustering+With+Constrained+Laplacian+Rank&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Zhou%2C+Zhiguang&rft.au=Sun%2C+Ling&rft.au=Wang%2C+Haoxuan&rft.au=Yu%2C+Wanghao&rft.date=2023-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2291&rft.eissn=2168-2305&rft.volume=53&rft.issue=2&rft.spage=427&rft_id=info:doi/10.1109%2FTHMS.2022.3227181&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon |