DynaMo: Dynamic Community Detection by Incrementally Maximizing Modularity

Community detection is of great importance for online social network analysis. The volume, variety and velocity of data generated by today's online social networks are advancing the way researchers analyze those networks. For instance, real-world networks, such as Facebook, LinkedIn and Twitter...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 33; no. 5; pp. 1934 - 1945
Main Authors Zhuang, Di, Chang, J. Morris, Li, Mingchen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Community detection is of great importance for online social network analysis. The volume, variety and velocity of data generated by today's online social networks are advancing the way researchers analyze those networks. For instance, real-world networks, such as Facebook, LinkedIn and Twitter, are inherently growing rapidly and expanding aggressively over time. However, most of the studies so far have been focusing on detecting communities on the static networks. It is computationally expensive to directly employ a well-studied static algorithm repeatedly on the network snapshots of the dynamic networks. We propose DynaMo, a novel modularity-based dynamic community detection algorithm, aiming to detect communities of dynamic networks as effective as repeatedly applying static algorithms but in a more efficient way. DynaMo is an adaptive and incremental algorithm, which is designed for incrementally maximizing the modularity gain while updating the community structure of dynamic networks. In the experimental evaluation, a comprehensive comparison has been made among DynaMo, Louvain (static) and 5 other dynamic algorithms. Extensive experiments have been conducted on 6 real-world networks and 10,000 synthetic networks. Our results show that DynaMo outperforms all the other 5 dynamic algorithms in terms of the effectiveness, and is 2 to 5 times (by average) faster than Louvain algorithm.
AbstractList Community detection is of great importance for online social network analysis. The volume, variety and velocity of data generated by today's online social networks are advancing the way researchers analyze those networks. For instance, real-world networks, such as Facebook, LinkedIn and Twitter, are inherently growing rapidly and expanding aggressively over time. However, most of the studies so far have been focusing on detecting communities on the static networks. It is computationally expensive to directly employ a well-studied static algorithm repeatedly on the network snapshots of the dynamic networks. We propose DynaMo, a novel modularity-based dynamic community detection algorithm, aiming to detect communities of dynamic networks as effective as repeatedly applying static algorithms but in a more efficient way. DynaMo is an adaptive and incremental algorithm, which is designed for incrementally maximizing the modularity gain while updating the community structure of dynamic networks. In the experimental evaluation, a comprehensive comparison has been made among DynaMo, Louvain (static) and 5 other dynamic algorithms. Extensive experiments have been conducted on 6 real-world networks and 10,000 synthetic networks. Our results show that DynaMo outperforms all the other 5 dynamic algorithms in terms of the effectiveness, and is 2 to 5 times (by average) faster than Louvain algorithm.
Author Zhuang, Di
Chang, J. Morris
Li, Mingchen
Author_xml – sequence: 1
  givenname: Di
  orcidid: 0000-0003-4569-7123
  surname: Zhuang
  fullname: Zhuang, Di
  email: zhuangdi1990@gmail.com
  organization: Department of Electrical Engineering, University of South Florida, Tampa, FL, USA
– sequence: 2
  givenname: J. Morris
  orcidid: 0000-0002-0660-7191
  surname: Chang
  fullname: Chang, J. Morris
  email: morrisjchang@gmail.com
  organization: Department of Electrical Engineering, University of South Florida, Tampa, FL, USA
– sequence: 3
  givenname: Mingchen
  surname: Li
  fullname: Li, Mingchen
  email: mingchenli1992@gmail.com
  organization: Department of Electrical Engineering, University of South Florida, Tampa, FL, USA
BookMark eNp9kD1PwzAQhi1UJNrCD0AskZhT_NnYbKgtUGjFUubIcS7IVeIUx5EIv55ErRgYuOVueJ873TNBI1c7QOia4BkhWN3tXperGcVEzagShBN1hsZECBlTosionzEnMWc8uUCTptljjGUiyRi9LDunt_V9NPTKmmhRV1XrbOiiJQQwwdYuyrpo7YyHClzQZdlFW_1lK_tt3Ue0rfO21L4HLtF5ocsGrk59it4fV7vFc7x5e1ovHjaxoYqFGLIcFyAJLwQ1mGs8nysQMgGagwJgoAuT5yKnGc8Fy4DlQiquk74yw2XBpuj2uPfg688WmpDu69a7_mRKBVZUEcZEn0qOKePrpvFQpMYGPbwTvLZlSnA6iEsHcekgLj2J60nyhzx4W2nf_cvcHBkLAL95KRWWc8J-ADoWfDE
CODEN ITKEEH
CitedBy_id crossref_primary_10_1109_JIOT_2020_3039775
crossref_primary_10_1002_cpe_8135
crossref_primary_10_1021_acs_jctc_2c00454
crossref_primary_10_1109_TCSS_2022_3183949
crossref_primary_10_1109_TNSM_2023_3332509
crossref_primary_10_14778_3484224_3484230
crossref_primary_10_1007_s12530_022_09478_6
crossref_primary_10_1109_TETCI_2024_3451566
crossref_primary_10_1007_s10489_022_03418_2
crossref_primary_10_1109_TCYB_2021_3107679
crossref_primary_10_1007_s41109_021_00424_0
crossref_primary_10_1109_ACCESS_2020_3013018
crossref_primary_10_1109_TCSS_2022_3148411
crossref_primary_10_1109_TETCI_2024_3485677
crossref_primary_10_1007_s10668_025_05987_x
crossref_primary_10_1109_JIOT_2021_3086832
crossref_primary_10_1093_comnet_cnaa027
crossref_primary_10_1109_TKDE_2023_3348975
crossref_primary_10_1109_TNSE_2021_3067665
crossref_primary_10_1109_TETCI_2024_3386844
crossref_primary_10_1109_TNNLS_2022_3149285
crossref_primary_10_1109_TCSS_2021_3091638
crossref_primary_10_1145_3555806
crossref_primary_10_1016_j_future_2021_06_056
crossref_primary_10_1109_ACCESS_2020_2978522
crossref_primary_10_1109_TKDE_2023_3267550
Cites_doi 10.1109/TIFS.2018.2881657
10.1103/PhysRevE.72.027104
10.1073/pnas.0601602103
10.1017/9781108565691
10.1093/comnet/cnx016
10.1090/conm/588
10.1145/1397735.1397742
10.1007/s10994-016-5582-8
10.1371/journal.pone.0091431
10.1016/j.physa.2014.07.004
10.1145/1081870.1081893
10.1007/978-3-319-93034-3_35
10.1109/ASONAM.2014.6921672
10.1016/j.ins.2017.10.019
10.1145/2808797.2809375
10.1145/1993077.1993081
10.1109/ASONAM.2010.17
10.1103/PhysRevE.70.066111
10.1016/j.physa.2015.09.072
10.1145/1592665.1592675
10.1103/PhysRevE.74.036104
10.1109/MCOM.2017.1700481
10.1145/1298306.1298311
10.1007/s13278-016-0325-1
10.1109/TKDE.2017.2657752
10.1088/1742-5468/2008/10/P10008
10.1145/3172867
10.1109/DESEC.2017.8073832
10.1109/INFCOM.2011.5935045
10.1145/1514888.1514891
10.1016/j.eswa.2016.03.033
10.1145/3219819.3219890
10.1145/2808797.2808913
10.23919/ICIF.2018.8455696
10.1109/TKDE.2011.159
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2019.2951419
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1945
ExternalDocumentID 10_1109_TKDE_2019_2951419
8890861
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
1OL
5VS
9M8
AAYOK
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RIG
RNI
RZB
TAF
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-ebd0fe814f52c04a0669e587e2de9ee3eafcdd5d2b4d53be3d5894a7777bc48f3
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 06:46:36 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Tue Jul 01 03:14:41 EDT 2025
Wed Aug 27 02:44:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ebd0fe814f52c04a0669e587e2de9ee3eafcdd5d2b4d53be3d5894a7777bc48f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4569-7123
0000-0002-0660-7191
PQID 2509291335
PQPubID 85438
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2019_2951419
proquest_journals_2509291335
ieee_primary_8890861
crossref_primary_10_1109_TKDE_2019_2951419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref15
ref36
ref14
ref31
ref30
ref33
ref2
ref1
ref39
ref17
ref38
hao (ref10) 2018
ref19
ref18
bader (ref37) 2013
(ref11) 2019
ref24
ref23
ref26
chong (ref20) 2013
ref25
ref41
ref22
shang (ref16) 2012
ref21
ref28
ref27
newman (ref32) 2006; 103
ref29
(ref12) 2019
ref8
ref9
ref4
ref3
zhang (ref7) 2018
ref6
ref5
ref40
References_xml – year: 2019
  ident: ref11
– ident: ref5
  doi: 10.1109/TIFS.2018.2881657
– ident: ref34
  doi: 10.1103/PhysRevE.72.027104
– volume: 103
  start-page: 8577
  year: 2006
  ident: ref32
  article-title: Modularity and community structure in networks
  publication-title: Proc Natl Acad Sci United States America
  doi: 10.1073/pnas.0601602103
– ident: ref1
  doi: 10.1017/9781108565691
– ident: ref41
  doi: 10.1093/comnet/cnx016
– start-page: 10 654
  year: 2018
  ident: ref7
  article-title: Understanding regularized spectral clustering via graph conductance
  publication-title: Proc Int Conf Neural Inf Process
– year: 2013
  ident: ref37
  publication-title: Graph Partitioning and Graph Clustering
  doi: 10.1090/conm/588
– ident: ref39
  doi: 10.1145/1397735.1397742
– ident: ref21
  doi: 10.1007/s10994-016-5582-8
– ident: ref35
  doi: 10.1371/journal.pone.0091431
– ident: ref27
  doi: 10.1016/j.physa.2014.07.004
– ident: ref36
  doi: 10.1145/1081870.1081893
– ident: ref19
  doi: 10.1007/978-3-319-93034-3_35
– year: 2019
  ident: ref12
– ident: ref13
  doi: 10.1109/ASONAM.2014.6921672
– ident: ref6
  doi: 10.1016/j.ins.2017.10.019
– ident: ref28
  doi: 10.1145/2808797.2809375
– start-page: 750
  year: 2013
  ident: ref20
  article-title: An incremental batch technique for community detection
  publication-title: Proc 16th Int Conf Inf Fusion
– ident: ref23
  doi: 10.1145/1993077.1993081
– ident: ref25
  doi: 10.1109/ASONAM.2010.17
– start-page: 583
  year: 2018
  ident: ref10
  article-title: Detecting (k, r)-clique communities from social networks
  publication-title: Advanced Multimedia and Ubiquitous Engineering
– ident: ref33
  doi: 10.1103/PhysRevE.70.066111
– ident: ref18
  doi: 10.1016/j.physa.2015.09.072
– ident: ref38
  doi: 10.1145/1592665.1592675
– ident: ref9
  doi: 10.1103/PhysRevE.74.036104
– ident: ref2
  doi: 10.1109/MCOM.2017.1700481
– ident: ref40
  doi: 10.1145/1298306.1298311
– ident: ref30
  doi: 10.1007/s13278-016-0325-1
– ident: ref29
  doi: 10.1109/TKDE.2017.2657752
– ident: ref24
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: ref31
  doi: 10.1145/3172867
– ident: ref4
  doi: 10.1109/DESEC.2017.8073832
– ident: ref15
  doi: 10.1109/INFCOM.2011.5935045
– year: 2012
  ident: ref16
  article-title: A real-time detecting algorithm for tracking community structure of dynamic networks
  publication-title: Proc 6th Workshop Social Netw Mining Anal co-held KDD (SNA-KDD12)
– ident: ref22
  doi: 10.1145/1514888.1514891
– ident: ref17
  doi: 10.1016/j.eswa.2016.03.033
– ident: ref3
  doi: 10.1145/3219819.3219890
– ident: ref14
  doi: 10.1145/2808797.2808913
– ident: ref8
  doi: 10.23919/ICIF.2018.8455696
– ident: ref26
  doi: 10.1109/TKDE.2011.159
SSID ssj0008781
Score 2.5507
Snippet Community detection is of great importance for online social network analysis. The volume, variety and velocity of data generated by today's online social...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1934
SubjectTerms Adaptive algorithms
Algorithms
Clustering algorithms
Community detection
Detection algorithms
dynamic network analysis
Facebook
Generators
Heuristic algorithms
incremental approach
Machine learning algorithms
Maximization
Modularity
Network analysis
Optimization
Social networks
Title DynaMo: Dynamic Community Detection by Incrementally Maximizing Modularity
URI https://ieeexplore.ieee.org/document/8890861
https://www.proquest.com/docview/2509291335
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTu2hUCjq8qh86Ak1S7Cdh7lVXRCiCieQuEV-jCXUbRZBVmL59Ywd7woVVDWnHGzL8vjxffY3MwDftA8gu_SZcIXMJHKfacurzOXclDZXTlXBd7i5LM-v5cVNcbMG31e-MIgYxWc4Dr_xLd_N7DxclR3VtSIETlznHRG3wVdrtevWVUxISuyCOJGQVXrBPM7V0dWvyWkQcakxJzwhQ1CdF2dQTKryaieOx8vZBjTLjg2qkt_jeW_G9umvmI3_2_NN-JhwJvsxTIxPsIbdFmwscziwtKS34MOLgITbcDFZdLqZnbDJkKieJf-RfsEm2EfVVsfMgtGuMtwr6ul0wRr9ePvn9olaYM3MBV0rVfgM12enVz_Ps5RtIbN05PcZGpd7rI-lL7jNpSYsorCoK-QOFaJA7a1zheNGukIYJOPWSuqKPmNl7cUOrHezDr8Aw8qVnsxurCilF0K7kpid4N7q0lZcjCBfjn9rUyjykBFj2kZKkqs2mKwNJmuTyUZwuKpyN8Th-Ffh7WCCVcE0-iPYXxq5TSv1oSUISAiRmHqx-3atPXjPg44lihz3Yb2_n-MBAZHefI0z8Bkme9rv
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QAcWmhBLBTwgRMi26ztfJgbYlstbdPTVuot8sdYqliyqGQltr-eseNdVYAQOeUQR5af7Xljv5kBeKd9INmlz4QrZCaR-0xbXmUu56a0uXKqCrHDzWU5u5Jn18X1DnzYxsIgYhSf4Ti8xrt8t7SrcFR2XNeKGDj5Og_I7heTIVpru-_WVSxJSv4FeUVCVukOc5Kr4_n59CTIuNSYE6OQIa3OPSsUy6r8sRdHA3O6D82ma4Ou5Ot41Zuxvfsta-P_9v0J7CWmyT4NU-Mp7GB3APubKg4sLeoDeHwvJeEhnE3XnW6WH9l0KFXPUgRJv2ZT7KNuq2NmzWhfGU4W9WKxZo3-efPt5o7-wJqlC8pWavAMrk5P5p9nWaq3kFky-n2GxuUe64n0Bbe51MRGFBZ1hdyhQhSovXWucNxIVwiDBG-tpK7oMVbWXjyH3W7Z4QtgWLnSE_DGilJ6IbQrybcT3Ftd2oqLEeSb8W9tSkYeamIs2uiU5KoNkLUBsjZBNoL32ybfh0wc__r4MECw_TCN_giONiC3aa3-aIkEEkckX714-fdWb-HhbN5ctBdfLs9fwSMeVC1R8ngEu_3tCl8TLenNmzgbfwG6et44
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DynaMo%3A+Dynamic+Community+Detection+by+Incrementally+Maximizing+Modularity&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Zhuang%2C+Di&rft.au=Chang%2C+Morris+J.&rft.au=Li%2C+Mingchen&rft.date=2021-05-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTKDE.2019.2951419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2019_2951419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon