DynaMo: Dynamic Community Detection by Incrementally Maximizing Modularity
Community detection is of great importance for online social network analysis. The volume, variety and velocity of data generated by today's online social networks are advancing the way researchers analyze those networks. For instance, real-world networks, such as Facebook, LinkedIn and Twitter...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 33; no. 5; pp. 1934 - 1945 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Community detection is of great importance for online social network analysis. The volume, variety and velocity of data generated by today's online social networks are advancing the way researchers analyze those networks. For instance, real-world networks, such as Facebook, LinkedIn and Twitter, are inherently growing rapidly and expanding aggressively over time. However, most of the studies so far have been focusing on detecting communities on the static networks. It is computationally expensive to directly employ a well-studied static algorithm repeatedly on the network snapshots of the dynamic networks. We propose DynaMo, a novel modularity-based dynamic community detection algorithm, aiming to detect communities of dynamic networks as effective as repeatedly applying static algorithms but in a more efficient way. DynaMo is an adaptive and incremental algorithm, which is designed for incrementally maximizing the modularity gain while updating the community structure of dynamic networks. In the experimental evaluation, a comprehensive comparison has been made among DynaMo, Louvain (static) and 5 other dynamic algorithms. Extensive experiments have been conducted on 6 real-world networks and 10,000 synthetic networks. Our results show that DynaMo outperforms all the other 5 dynamic algorithms in terms of the effectiveness, and is 2 to 5 times (by average) faster than Louvain algorithm. |
---|---|
AbstractList | Community detection is of great importance for online social network analysis. The volume, variety and velocity of data generated by today's online social networks are advancing the way researchers analyze those networks. For instance, real-world networks, such as Facebook, LinkedIn and Twitter, are inherently growing rapidly and expanding aggressively over time. However, most of the studies so far have been focusing on detecting communities on the static networks. It is computationally expensive to directly employ a well-studied static algorithm repeatedly on the network snapshots of the dynamic networks. We propose DynaMo, a novel modularity-based dynamic community detection algorithm, aiming to detect communities of dynamic networks as effective as repeatedly applying static algorithms but in a more efficient way. DynaMo is an adaptive and incremental algorithm, which is designed for incrementally maximizing the modularity gain while updating the community structure of dynamic networks. In the experimental evaluation, a comprehensive comparison has been made among DynaMo, Louvain (static) and 5 other dynamic algorithms. Extensive experiments have been conducted on 6 real-world networks and 10,000 synthetic networks. Our results show that DynaMo outperforms all the other 5 dynamic algorithms in terms of the effectiveness, and is 2 to 5 times (by average) faster than Louvain algorithm. |
Author | Zhuang, Di Chang, J. Morris Li, Mingchen |
Author_xml | – sequence: 1 givenname: Di orcidid: 0000-0003-4569-7123 surname: Zhuang fullname: Zhuang, Di email: zhuangdi1990@gmail.com organization: Department of Electrical Engineering, University of South Florida, Tampa, FL, USA – sequence: 2 givenname: J. Morris orcidid: 0000-0002-0660-7191 surname: Chang fullname: Chang, J. Morris email: morrisjchang@gmail.com organization: Department of Electrical Engineering, University of South Florida, Tampa, FL, USA – sequence: 3 givenname: Mingchen surname: Li fullname: Li, Mingchen email: mingchenli1992@gmail.com organization: Department of Electrical Engineering, University of South Florida, Tampa, FL, USA |
BookMark | eNp9kD1PwzAQhi1UJNrCD0AskZhT_NnYbKgtUGjFUubIcS7IVeIUx5EIv55ErRgYuOVueJ873TNBI1c7QOia4BkhWN3tXperGcVEzagShBN1hsZECBlTosionzEnMWc8uUCTptljjGUiyRi9LDunt_V9NPTKmmhRV1XrbOiiJQQwwdYuyrpo7YyHClzQZdlFW_1lK_tt3Ue0rfO21L4HLtF5ocsGrk59it4fV7vFc7x5e1ovHjaxoYqFGLIcFyAJLwQ1mGs8nysQMgGagwJgoAuT5yKnGc8Fy4DlQiquk74yw2XBpuj2uPfg688WmpDu69a7_mRKBVZUEcZEn0qOKePrpvFQpMYGPbwTvLZlSnA6iEsHcekgLj2J60nyhzx4W2nf_cvcHBkLAL95KRWWc8J-ADoWfDE |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_1109_JIOT_2020_3039775 crossref_primary_10_1002_cpe_8135 crossref_primary_10_1021_acs_jctc_2c00454 crossref_primary_10_1109_TCSS_2022_3183949 crossref_primary_10_1109_TNSM_2023_3332509 crossref_primary_10_14778_3484224_3484230 crossref_primary_10_1007_s12530_022_09478_6 crossref_primary_10_1109_TETCI_2024_3451566 crossref_primary_10_1007_s10489_022_03418_2 crossref_primary_10_1109_TCYB_2021_3107679 crossref_primary_10_1007_s41109_021_00424_0 crossref_primary_10_1109_ACCESS_2020_3013018 crossref_primary_10_1109_TCSS_2022_3148411 crossref_primary_10_1109_TETCI_2024_3485677 crossref_primary_10_1007_s10668_025_05987_x crossref_primary_10_1109_JIOT_2021_3086832 crossref_primary_10_1093_comnet_cnaa027 crossref_primary_10_1109_TKDE_2023_3348975 crossref_primary_10_1109_TNSE_2021_3067665 crossref_primary_10_1109_TETCI_2024_3386844 crossref_primary_10_1109_TNNLS_2022_3149285 crossref_primary_10_1109_TCSS_2021_3091638 crossref_primary_10_1145_3555806 crossref_primary_10_1016_j_future_2021_06_056 crossref_primary_10_1109_ACCESS_2020_2978522 crossref_primary_10_1109_TKDE_2023_3267550 |
Cites_doi | 10.1109/TIFS.2018.2881657 10.1103/PhysRevE.72.027104 10.1073/pnas.0601602103 10.1017/9781108565691 10.1093/comnet/cnx016 10.1090/conm/588 10.1145/1397735.1397742 10.1007/s10994-016-5582-8 10.1371/journal.pone.0091431 10.1016/j.physa.2014.07.004 10.1145/1081870.1081893 10.1007/978-3-319-93034-3_35 10.1109/ASONAM.2014.6921672 10.1016/j.ins.2017.10.019 10.1145/2808797.2809375 10.1145/1993077.1993081 10.1109/ASONAM.2010.17 10.1103/PhysRevE.70.066111 10.1016/j.physa.2015.09.072 10.1145/1592665.1592675 10.1103/PhysRevE.74.036104 10.1109/MCOM.2017.1700481 10.1145/1298306.1298311 10.1007/s13278-016-0325-1 10.1109/TKDE.2017.2657752 10.1088/1742-5468/2008/10/P10008 10.1145/3172867 10.1109/DESEC.2017.8073832 10.1109/INFCOM.2011.5935045 10.1145/1514888.1514891 10.1016/j.eswa.2016.03.033 10.1145/3219819.3219890 10.1145/2808797.2808913 10.23919/ICIF.2018.8455696 10.1109/TKDE.2011.159 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TKDE.2019.2951419 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2191 |
EndPage | 1945 |
ExternalDocumentID | 10_1109_TKDE_2019_2951419 8890861 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB 1OL 5VS 9M8 AAYOK AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L H~9 ICLAB IFJZH RIG RNI RZB TAF VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-ebd0fe814f52c04a0669e587e2de9ee3eafcdd5d2b4d53be3d5894a7777bc48f3 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Mon Jun 30 06:46:36 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Tue Jul 01 03:14:41 EDT 2025 Wed Aug 27 02:44:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-ebd0fe814f52c04a0669e587e2de9ee3eafcdd5d2b4d53be3d5894a7777bc48f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4569-7123 0000-0002-0660-7191 |
PQID | 2509291335 |
PQPubID | 85438 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2019_2951419 proquest_journals_2509291335 ieee_primary_8890861 crossref_primary_10_1109_TKDE_2019_2951419 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref15 ref36 ref14 ref31 ref30 ref33 ref2 ref1 ref39 ref17 ref38 hao (ref10) 2018 ref19 ref18 bader (ref37) 2013 (ref11) 2019 ref24 ref23 ref26 chong (ref20) 2013 ref25 ref41 ref22 shang (ref16) 2012 ref21 ref28 ref27 newman (ref32) 2006; 103 ref29 (ref12) 2019 ref8 ref9 ref4 ref3 zhang (ref7) 2018 ref6 ref5 ref40 |
References_xml | – year: 2019 ident: ref11 – ident: ref5 doi: 10.1109/TIFS.2018.2881657 – ident: ref34 doi: 10.1103/PhysRevE.72.027104 – volume: 103 start-page: 8577 year: 2006 ident: ref32 article-title: Modularity and community structure in networks publication-title: Proc Natl Acad Sci United States America doi: 10.1073/pnas.0601602103 – ident: ref1 doi: 10.1017/9781108565691 – ident: ref41 doi: 10.1093/comnet/cnx016 – start-page: 10 654 year: 2018 ident: ref7 article-title: Understanding regularized spectral clustering via graph conductance publication-title: Proc Int Conf Neural Inf Process – year: 2013 ident: ref37 publication-title: Graph Partitioning and Graph Clustering doi: 10.1090/conm/588 – ident: ref39 doi: 10.1145/1397735.1397742 – ident: ref21 doi: 10.1007/s10994-016-5582-8 – ident: ref35 doi: 10.1371/journal.pone.0091431 – ident: ref27 doi: 10.1016/j.physa.2014.07.004 – ident: ref36 doi: 10.1145/1081870.1081893 – ident: ref19 doi: 10.1007/978-3-319-93034-3_35 – year: 2019 ident: ref12 – ident: ref13 doi: 10.1109/ASONAM.2014.6921672 – ident: ref6 doi: 10.1016/j.ins.2017.10.019 – ident: ref28 doi: 10.1145/2808797.2809375 – start-page: 750 year: 2013 ident: ref20 article-title: An incremental batch technique for community detection publication-title: Proc 16th Int Conf Inf Fusion – ident: ref23 doi: 10.1145/1993077.1993081 – ident: ref25 doi: 10.1109/ASONAM.2010.17 – start-page: 583 year: 2018 ident: ref10 article-title: Detecting (k, r)-clique communities from social networks publication-title: Advanced Multimedia and Ubiquitous Engineering – ident: ref33 doi: 10.1103/PhysRevE.70.066111 – ident: ref18 doi: 10.1016/j.physa.2015.09.072 – ident: ref38 doi: 10.1145/1592665.1592675 – ident: ref9 doi: 10.1103/PhysRevE.74.036104 – ident: ref2 doi: 10.1109/MCOM.2017.1700481 – ident: ref40 doi: 10.1145/1298306.1298311 – ident: ref30 doi: 10.1007/s13278-016-0325-1 – ident: ref29 doi: 10.1109/TKDE.2017.2657752 – ident: ref24 doi: 10.1088/1742-5468/2008/10/P10008 – ident: ref31 doi: 10.1145/3172867 – ident: ref4 doi: 10.1109/DESEC.2017.8073832 – ident: ref15 doi: 10.1109/INFCOM.2011.5935045 – year: 2012 ident: ref16 article-title: A real-time detecting algorithm for tracking community structure of dynamic networks publication-title: Proc 6th Workshop Social Netw Mining Anal co-held KDD (SNA-KDD12) – ident: ref22 doi: 10.1145/1514888.1514891 – ident: ref17 doi: 10.1016/j.eswa.2016.03.033 – ident: ref3 doi: 10.1145/3219819.3219890 – ident: ref14 doi: 10.1145/2808797.2808913 – ident: ref8 doi: 10.23919/ICIF.2018.8455696 – ident: ref26 doi: 10.1109/TKDE.2011.159 |
SSID | ssj0008781 |
Score | 2.5507 |
Snippet | Community detection is of great importance for online social network analysis. The volume, variety and velocity of data generated by today's online social... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1934 |
SubjectTerms | Adaptive algorithms Algorithms Clustering algorithms Community detection Detection algorithms dynamic network analysis Generators Heuristic algorithms incremental approach Machine learning algorithms Maximization Modularity Network analysis Optimization Social networks |
Title | DynaMo: Dynamic Community Detection by Incrementally Maximizing Modularity |
URI | https://ieeexplore.ieee.org/document/8890861 https://www.proquest.com/docview/2509291335 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RTu2hUCjq8qh86Ak1S7Cdh7lVXRCiCieQuEV-jCXUbRZBVmL59Ywd7woVVDWnHGzL8vjxffY3MwDftA8gu_SZcIXMJHKfacurzOXclDZXTlXBd7i5LM-v5cVNcbMG31e-MIgYxWc4Dr_xLd_N7DxclR3VtSIETlznHRG3wVdrtevWVUxISuyCOJGQVXrBPM7V0dWvyWkQcakxJzwhQ1CdF2dQTKryaieOx8vZBjTLjg2qkt_jeW_G9umvmI3_2_NN-JhwJvsxTIxPsIbdFmwscziwtKS34MOLgITbcDFZdLqZnbDJkKieJf-RfsEm2EfVVsfMgtGuMtwr6ul0wRr9ePvn9olaYM3MBV0rVfgM12enVz_Ps5RtIbN05PcZGpd7rI-lL7jNpSYsorCoK-QOFaJA7a1zheNGukIYJOPWSuqKPmNl7cUOrHezDr8Aw8qVnsxurCilF0K7kpid4N7q0lZcjCBfjn9rUyjykBFj2kZKkqs2mKwNJmuTyUZwuKpyN8Th-Ffh7WCCVcE0-iPYXxq5TSv1oSUISAiRmHqx-3atPXjPg44lihz3Yb2_n-MBAZHefI0z8Bkme9rv |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QAcWmhBLBTwgRMi26ztfJgbYlstbdPTVuot8sdYqliyqGQltr-eseNdVYAQOeUQR5af7Xljv5kBeKd9INmlz4QrZCaR-0xbXmUu56a0uXKqCrHDzWU5u5Jn18X1DnzYxsIgYhSf4Ti8xrt8t7SrcFR2XNeKGDj5Og_I7heTIVpru-_WVSxJSv4FeUVCVukOc5Kr4_n59CTIuNSYE6OQIa3OPSsUy6r8sRdHA3O6D82ma4Ou5Ot41Zuxvfsta-P_9v0J7CWmyT4NU-Mp7GB3APubKg4sLeoDeHwvJeEhnE3XnW6WH9l0KFXPUgRJv2ZT7KNuq2NmzWhfGU4W9WKxZo3-efPt5o7-wJqlC8pWavAMrk5P5p9nWaq3kFky-n2GxuUe64n0Bbe51MRGFBZ1hdyhQhSovXWucNxIVwiDBG-tpK7oMVbWXjyH3W7Z4QtgWLnSE_DGilJ6IbQrybcT3Ftd2oqLEeSb8W9tSkYeamIs2uiU5KoNkLUBsjZBNoL32ybfh0wc__r4MECw_TCN_giONiC3aa3-aIkEEkckX714-fdWb-HhbN5ctBdfLs9fwSMeVC1R8ngEu_3tCl8TLenNmzgbfwG6et44 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DynaMo%3A+Dynamic+Community+Detection+by+Incrementally+Maximizing+Modularity&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Zhuang%2C+Di&rft.au=Chang%2C+Morris+J.&rft.au=Li%2C+Mingchen&rft.date=2021-05-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTKDE.2019.2951419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2019_2951419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |