Deep Learning-Powered Vessel Trajectory Prediction for Improving Smart Traffic Services in Maritime Internet of Things

The maritime Internet of Things (IoT) has recently emerged as a revolutionary communication paradigm where a large number of moving vessels are closely interconnected in intelligent maritime networks. However, the tremendous growth of vessel trajectories, collected from the combined satellite-terres...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 9; no. 5; pp. 3080 - 3094
Main Authors Liu, Ryan Wen, Liang, Maohan, Nie, Jiangtian, Lim, Wei Yang Bryan, Zhang, Yang, Guizani, Mohsen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The maritime Internet of Things (IoT) has recently emerged as a revolutionary communication paradigm where a large number of moving vessels are closely interconnected in intelligent maritime networks. However, the tremendous growth of vessel trajectories, collected from the combined satellite-terrestrial AIS (automatic identification system) base stations, could lead to unsatisfactory maritime safety and efficacy. To promote smart traffic services in maritime IoT, it is necessary to accurately and robustly predict the spatiotemporal vessel trajectories. It is beneficial for collision avoidance, maritime surveillance, and abnormal behavior detection, etc. Motivated by the strong learning capacity of deep neural networks, this work proposes an AIS data-driven trajectory prediction framework, whose main component is a long short term memory (LSTM) network. In particular, the vessel traffic conflict situation modeling, generated using the dynamic AIS data and social force concept, is embedded into the LSTM network to guarantee high-accuracy vessel trajectory prediction. In addition, a mixed loss function is reconstructed to make our prediction results more reliable and robust in different navigation environments. Several quantitative and qualitative experiments have been implemented on realistic AIS-based vessel trajectories. Our results have demonstrated that the proposed method could achieve satisfactory prediction performance in terms of accuracy and robustness.
AbstractList The maritime Internet of Things (IoT) has recently emerged as a revolutionary communication paradigm where a large number of moving vessels are closely interconnected in intelligent maritime networks. However, the tremendous growth of vessel trajectories, collected from the combined satellite-terrestrial AIS (automatic identification system) base stations, could lead to unsatisfactory maritime safety and efficacy. To promote smart traffic services in maritime IoT, it is necessary to accurately and robustly predict the spatiotemporal vessel trajectories. It is beneficial for collision avoidance, maritime surveillance, and abnormal behavior detection, etc. Motivated by the strong learning capacity of deep neural networks, this work proposes an AIS data-driven trajectory prediction framework, whose main component is a long short term memory (LSTM) network. In particular, the vessel traffic conflict situation modeling, generated using the dynamic AIS data and social force concept, is embedded into the LSTM network to guarantee high-accuracy vessel trajectory prediction. In addition, a mixed loss function is reconstructed to make our prediction results more reliable and robust in different navigation environments. Several quantitative and qualitative experiments have been implemented on realistic AIS-based vessel trajectories. Our results have demonstrated that the proposed method could achieve satisfactory prediction performance in terms of accuracy and robustness.
Author Zhang, Yang
Nie, Jiangtian
Guizani, Mohsen
Liu, Ryan Wen
Lim, Wei Yang Bryan
Liang, Maohan
Author_xml – sequence: 1
  givenname: Ryan Wen
  orcidid: 0000-0002-1591-5583
  surname: Liu
  fullname: Liu, Ryan Wen
  email: wenliu@whut.edu.cn
  organization: School of Navigation, Wuhan University of Technology, Wuhan, China
– sequence: 2
  givenname: Maohan
  orcidid: 0000-0001-7470-3313
  surname: Liang
  fullname: Liang, Maohan
  email: mhliang@whut.edu.cn
  organization: School of Navigation, Wuhan University of Technology, Wuhan, China
– sequence: 3
  givenname: Jiangtian
  orcidid: 0000-0003-1414-0621
  surname: Nie
  fullname: Nie, Jiangtian
  email: jnie001@e.ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Wei Yang Bryan
  orcidid: 0000-0003-2150-5561
  surname: Lim
  fullname: Lim, Wei Yang Bryan
  email: limw0201@e.ntu.edu.sg
  organization: Alibaba Group and Alibaba-NTU Joint Research Institute (JRI), Nanyang Technological University (NTU), Singapore
– sequence: 5
  givenname: Yang
  orcidid: 0000-0001-9229-7689
  surname: Zhang
  fullname: Zhang, Yang
  email: yangzhang@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 6
  givenname: Mohsen
  orcidid: 0000-0002-8972-8094
  surname: Guizani
  fullname: Guizani, Mohsen
  email: mguizani@ieee.org
  organization: Machine Learning Department, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, UAE
BookMark eNp9kMtKAzEUhoMoeH0AcRNwPTU5mVuW4rVQL9Aq7oZM5kRT2qQmseLbO0PFhQtXOYT_O5dvn2w775CQY85GnDN5NrufXo2AAYwEz1kBcovsgRB5JkC-bA81VFleymqXHMU4Z4xxqEshxB5ZXyKu6ARVcNa9Zo_-EwN29BljxAWdBTVHnXz4oo_9t9XJekeND3S8XAW_7hE6XaqQhqQxVtMphrXVGKl19E4Fm-wS6dglDA4T9YbO3nooHpIdoxYRj37eA_J0fTW7uM0mDzfji_NJpkGKlGHblqih7qDQrKhzqFtTaImgWqk4QyXLTne11EYr7HhZmZyDYbrQWCBXrTggp5u-_bbvHxhTM_cfwfUjG6g4sJIBq_sU36R08DEGNM0q2P6sr4azZjDcDIabwXDzY7hnqj-MtkkNflJQdvEvebIhLSL-TpJllddFIb4BAxmNWw
CODEN ITNSD5
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_116316
crossref_primary_10_3390_info15080507
crossref_primary_10_1109_ACCESS_2022_3213691
crossref_primary_10_3390_jmse10030444
crossref_primary_10_1016_j_oceaneng_2025_120938
crossref_primary_10_1016_j_apenergy_2024_124720
crossref_primary_10_1016_j_future_2023_01_008
crossref_primary_10_1016_j_oceaneng_2024_119034
crossref_primary_10_1109_ACCESS_2022_3171330
crossref_primary_10_1109_TITS_2022_3219998
crossref_primary_10_3390_math10183316
crossref_primary_10_1007_s40747_022_00834_2
crossref_primary_10_1016_j_ress_2024_110489
crossref_primary_10_3390_jmse10060770
crossref_primary_10_1109_ACCESS_2022_3172308
crossref_primary_10_1109_OJVT_2024_3443675
crossref_primary_10_3390_jmse12050769
crossref_primary_10_1016_j_future_2024_07_034
crossref_primary_10_1016_j_engappai_2023_107742
crossref_primary_10_1016_j_ocecoaman_2022_106428
crossref_primary_10_1016_j_tre_2024_103770
crossref_primary_10_1016_j_oceaneng_2024_117232
crossref_primary_10_1186_s13638_023_02274_z
crossref_primary_10_1016_j_engappai_2023_107625
crossref_primary_10_1016_j_oceaneng_2023_115192
crossref_primary_10_1109_TITS_2024_3492060
crossref_primary_10_1155_2022_3048611
crossref_primary_10_3390_jsan12040058
crossref_primary_10_1109_ACCESS_2022_3186090
crossref_primary_10_1016_j_ocecoaman_2024_107480
crossref_primary_10_1016_j_jnlssr_2024_10_001
crossref_primary_10_1016_j_ress_2024_110463
crossref_primary_10_3390_electronics14030431
crossref_primary_10_1016_j_oceaneng_2023_114595
crossref_primary_10_1016_j_oceaneng_2024_116694
crossref_primary_10_1109_TNSE_2024_3486539
crossref_primary_10_1016_j_comcom_2023_11_005
crossref_primary_10_1016_j_compeleceng_2024_109611
crossref_primary_10_1145_3603711
crossref_primary_10_1109_TITS_2022_3199160
crossref_primary_10_1016_j_compeleceng_2024_109612
crossref_primary_10_1007_s44196_024_00539_z
crossref_primary_10_3390_jmse12081351
crossref_primary_10_1016_j_oceaneng_2025_120443
crossref_primary_10_1016_j_oceaneng_2023_114905
crossref_primary_10_3390_s22207713
crossref_primary_10_1109_ACCESS_2024_3349957
crossref_primary_10_1016_j_isci_2023_106383
crossref_primary_10_1016_j_oceaneng_2023_114248
crossref_primary_10_1155_2022_6533223
crossref_primary_10_1109_TNSE_2023_3308572
crossref_primary_10_1109_TITS_2022_3226493
crossref_primary_10_1109_JSEN_2024_3466516
crossref_primary_10_1109_JIOT_2024_3448505
crossref_primary_10_1016_j_ress_2023_109877
crossref_primary_10_1016_j_engappai_2024_107936
crossref_primary_10_1109_TNSE_2023_3320123
crossref_primary_10_1016_j_engappai_2025_110391
crossref_primary_10_3390_jmse11091731
crossref_primary_10_1109_ACCESS_2022_3172341
crossref_primary_10_1109_TGCN_2022_3158004
crossref_primary_10_1109_ACCESS_2022_3150830
crossref_primary_10_1016_j_oceaneng_2024_119511
crossref_primary_10_1155_2022_4659853
crossref_primary_10_1016_j_tra_2025_104427
crossref_primary_10_3390_jmse11081484
crossref_primary_10_1109_ACCESS_2022_3168993
crossref_primary_10_1109_OJVT_2024_3369691
crossref_primary_10_1016_j_eswa_2024_125550
crossref_primary_10_1109_JSYST_2022_3185015
crossref_primary_10_3390_app13084907
crossref_primary_10_1109_TAI_2022_3168246
crossref_primary_10_1016_j_oceaneng_2023_116524
crossref_primary_10_1109_TII_2022_3165886
crossref_primary_10_1109_TNSE_2024_3417371
crossref_primary_10_1016_j_tre_2024_103570
crossref_primary_10_1186_s13638_023_02233_8
crossref_primary_10_1109_ACCESS_2022_3154363
crossref_primary_10_3390_jmse11071295
crossref_primary_10_1049_itr2_12243
crossref_primary_10_1109_TMC_2024_3403890
crossref_primary_10_1016_j_engappai_2025_110311
crossref_primary_10_1155_2022_5032375
crossref_primary_10_3390_app13042556
crossref_primary_10_1016_j_trc_2024_104670
crossref_primary_10_1109_TVT_2024_3423348
crossref_primary_10_1016_j_future_2023_04_034
crossref_primary_10_1155_2022_6519909
crossref_primary_10_1016_j_oceaneng_2024_117987
crossref_primary_10_1016_j_oceaneng_2023_115886
crossref_primary_10_1016_j_oceaneng_2024_117105
crossref_primary_10_1109_JSTARS_2022_3174239
crossref_primary_10_1016_j_oceaneng_2025_120518
crossref_primary_10_1109_TMC_2024_3390941
crossref_primary_10_1016_j_oceaneng_2025_120368
crossref_primary_10_1016_j_compeleceng_2024_109499
crossref_primary_10_1016_j_tre_2023_103152
crossref_primary_10_3390_info14040212
crossref_primary_10_1016_j_measen_2024_101271
crossref_primary_10_1177_14750902231226162
crossref_primary_10_3390_s24082443
crossref_primary_10_1109_ACCESS_2022_3168302
crossref_primary_10_3390_app12084073
crossref_primary_10_1155_2022_4625001
crossref_primary_10_1109_ACCESS_2022_3199372
crossref_primary_10_1109_JSTARS_2024_3470903
crossref_primary_10_1007_s10586_024_04341_6
crossref_primary_10_3390_jmse12112031
crossref_primary_10_1016_j_oceaneng_2025_120902
crossref_primary_10_1109_TITS_2023_3338293
crossref_primary_10_3390_app14104057
crossref_primary_10_1016_j_apor_2023_103592
crossref_primary_10_1016_j_ress_2023_109554
Cites_doi 10.1007/s10707-020-00408-9
10.1109/TITS.2020.2981118
10.1109/MCOM.2019.1800155
10.1109/TCYB.2017.2705345
10.1080/19475683.2020.1840434
10.1016/j.oceaneng.2019.03.052
10.1109/TVCG.2015.2467112
10.1109/MWC.001.1900516
10.1017/S0373463315000764
10.1109/JIOT.2019.2948075
10.1109/TII.2018.2832853
10.1007/978-3-030-66888-4_2
10.1109/TITS.2012.2187282
10.1109/COMST.2020.3015694
10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00058
10.1016/j.oceaneng.2020.107478
10.23919/ICIF.2018.8455607
10.23919/ICIF.2017.8009762
10.1109/TSMC.2019.2906381
10.1109/ITSC.2017.8317943
10.1109/JIOT.2020.2988634
10.1016/j.ress.2021.107772
10.1109/TITS.2019.2908191
10.1109/MITS.2021.3049404
10.1109/CVPR.2016.110
10.1016/j.adhoc.2021.102476
10.1109/JIOT.2020.3021141
10.1109/JIOT.2019.2958662
10.1049/itr2.12033
10.1007/978-3-319-73603-7_9
10.1016/j.oceaneng.2021.109380
10.1016/j.oceaneng.2020.107187
10.1103/PhysRevE.51.4282
10.1109/MWC.001.1900322
10.1109/MWC.001.2000409
10.1109/JIOT.2020.3011726
10.23919/JCC.2020.09.009
10.1016/j.oceaneng.2017.04.017
10.1109/LRA.2020.2969925
10.1177/0278364920917446
10.1109/JIOT.2021.3056091
10.1109/TITS.2014.2331758
10.1038/s41928-019-0355-6
10.1109/TAES.2003.1261132
10.1109/CVPR42600.2020.00683
10.1109/TNSE.2019.2913669
10.1080/20464177.2019.1665258
10.1109/TAES.2021.3096873
10.1109/TITS.2020.3040268
10.1109/ICASSP.2019.8683444
10.1109/JIOT.2020.2989398
10.1016/j.oceaneng.2021.108803
10.1109/LRA.2020.3004324
10.1016/j.oceaneng.2019.04.024
10.1109/TENCON.2015.7372918
10.1109/MNET.011.2000020
10.1109/TPAMI.2020.3038217
10.1016/j.patcog.2021.108136
10.1109/TNNLS.2020.2975837
10.1109/MNET.011.2000195
10.1017/S0373463320000442
10.1109/TNSE.2021.3065019
10.1007/978-3-030-11015-4_18
10.1109/JIOT.2018.2868439
10.1016/j.ress.2021.107766
10.1016/j.oceaneng.2021.108956
10.1109/TIM.2011.2147670
10.1016/j.oceaneng.2021.109533
10.1145/3210284.3219775
10.1109/JIOT.2020.3028743
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2022.3140529
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 3094
ExternalDocumentID 10_1109_TNSE_2022_3140529
9674855
Genre orig-research
GrantInformation_xml – fundername: Nanyang Technological University; Nanyang Technological University, Singapore
  funderid: 10.13039/501100001475
– fundername: Alibaba Group through Alibaba Innovative Research
– fundername: National Research Foundation Singapore; National Research Foundation, Singapore
  grantid: AISG2-RP-2020-019
  funderid: 10.13039/501100001381
– fundername: National Natural Science Foundation of China
  grantid: 62071343; 51609195
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-ebb6ec28d25c058428bf5c9e2ab9a10ea96dcd89cfcaed167f412f0c5ce5e1ab3
IEDL.DBID RIE
ISSN 2327-4697
IngestDate Mon Jun 30 10:05:02 EDT 2025
Thu Apr 24 23:13:02 EDT 2025
Tue Jul 01 03:10:44 EDT 2025
Wed Aug 27 02:29:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ebb6ec28d25c058428bf5c9e2ab9a10ea96dcd89cfcaed167f412f0c5ce5e1ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1591-5583
0000-0002-8972-8094
0000-0003-2150-5561
0000-0003-1414-0621
0000-0001-7470-3313
0000-0001-9229-7689
PQID 2712060208
PQPubID 2040409
PageCount 15
ParticipantIDs proquest_journals_2712060208
ieee_primary_9674855
crossref_primary_10_1109_TNSE_2022_3140529
crossref_citationtrail_10_1109_TNSE_2022_3140529
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref9
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
Fang (ref7) 2021
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
Kingma (ref66) 2015
ref22
ref21
ref65
ref28
ref27
ref29
Dang (ref3) 2020; 3
ref60
ref62
ref61
References_xml – ident: ref15
  doi: 10.1007/s10707-020-00408-9
– ident: ref52
  doi: 10.1109/TITS.2020.2981118
– ident: ref64
  doi: 10.1109/MCOM.2019.1800155
– ident: ref50
  doi: 10.1109/TCYB.2017.2705345
– ident: ref48
  doi: 10.1080/19475683.2020.1840434
– ident: ref34
  doi: 10.1016/j.oceaneng.2019.03.052
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2015
  ident: ref66
  article-title: ADAM: A method for stochastic optimization
– ident: ref17
  doi: 10.1109/TVCG.2015.2467112
– ident: ref2
  doi: 10.1109/MWC.001.1900516
– ident: ref70
  doi: 10.1017/S0373463315000764
– ident: ref68
  doi: 10.1109/JIOT.2019.2948075
– ident: ref33
  doi: 10.1109/TII.2018.2832853
– ident: ref60
  doi: 10.1007/978-3-030-66888-4_2
– ident: ref45
  doi: 10.1109/TITS.2012.2187282
– ident: ref1
  doi: 10.1109/COMST.2020.3015694
– ident: ref18
  doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00058
– ident: ref58
  doi: 10.1016/j.oceaneng.2020.107478
– ident: ref39
  doi: 10.23919/ICIF.2018.8455607
– ident: ref41
  doi: 10.23919/ICIF.2017.8009762
– ident: ref63
  doi: 10.1109/TSMC.2019.2906381
– ident: ref67
  doi: 10.1109/ITSC.2017.8317943
– ident: ref28
  doi: 10.1109/JIOT.2020.2988634
– ident: ref35
  doi: 10.1016/j.ress.2021.107772
– ident: ref24
  doi: 10.1109/TITS.2019.2908191
– ident: ref22
  doi: 10.1109/MITS.2021.3049404
– ident: ref51
  doi: 10.1109/CVPR.2016.110
– ident: ref59
  doi: 10.1016/j.adhoc.2021.102476
– ident: ref56
  doi: 10.1109/JIOT.2020.3021141
– ident: ref30
  doi: 10.1109/JIOT.2019.2958662
– ident: ref53
  doi: 10.1049/itr2.12033
– ident: ref69
  doi: 10.1007/978-3-319-73603-7_9
– ident: ref6
  doi: 10.1016/j.oceaneng.2021.109380
– ident: ref71
  doi: 10.1016/j.oceaneng.2020.107187
– ident: ref65
  doi: 10.1103/PhysRevE.51.4282
– ident: ref26
  doi: 10.1109/MWC.001.1900322
– ident: ref4
  doi: 10.1109/MWC.001.2000409
– ident: ref12
  doi: 10.1109/JIOT.2020.3011726
– ident: ref5
  doi: 10.23919/JCC.2020.09.009
– ident: ref46
  doi: 10.1016/j.oceaneng.2017.04.017
– ident: ref36
  doi: 10.1109/LRA.2020.2969925
– ident: ref21
  doi: 10.1177/0278364920917446
– ident: ref25
  doi: 10.1109/JIOT.2021.3056091
– ident: ref42
  doi: 10.1109/TITS.2014.2331758
– volume: 3
  start-page: 20
  issue: 1
  year: 2020
  ident: ref3
  article-title: What should 6G be
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0355-6
– ident: ref37
  doi: 10.1109/TAES.2003.1261132
– ident: ref55
  doi: 10.1109/CVPR42600.2020.00683
– ident: ref49
  doi: 10.1109/TNSE.2019.2913669
– year: 2021
  ident: ref7
  article-title: Noma-based hybrid satellite-UAV-terrestrial networks for beyond 5G maritime Internet of Things
– ident: ref10
  doi: 10.1080/20464177.2019.1665258
– ident: ref9
  doi: 10.1109/TAES.2021.3096873
– ident: ref47
  doi: 10.1109/TITS.2020.3040268
– ident: ref40
  doi: 10.1109/ICASSP.2019.8683444
– ident: ref14
  doi: 10.1109/JIOT.2020.2989398
– ident: ref16
  doi: 10.1016/j.oceaneng.2021.108803
– ident: ref61
  doi: 10.1109/LRA.2020.3004324
– ident: ref38
  doi: 10.1016/j.oceaneng.2019.04.024
– ident: ref32
  doi: 10.1109/TENCON.2015.7372918
– ident: ref29
  doi: 10.1109/MNET.011.2000020
– ident: ref54
  doi: 10.1109/TPAMI.2020.3038217
– ident: ref57
  doi: 10.1016/j.patcog.2021.108136
– ident: ref23
  doi: 10.1109/TNNLS.2020.2975837
– ident: ref27
  doi: 10.1109/MNET.011.2000195
– ident: ref43
  doi: 10.1017/S0373463320000442
– ident: ref20
  doi: 10.1109/TNSE.2021.3065019
– ident: ref62
  doi: 10.1007/978-3-030-11015-4_18
– ident: ref31
  doi: 10.1109/JIOT.2018.2868439
– ident: ref72
  doi: 10.1016/j.ress.2021.107766
– ident: ref19
  doi: 10.1016/j.oceaneng.2021.108956
– ident: ref44
  doi: 10.1109/TIM.2011.2147670
– ident: ref8
  doi: 10.1016/j.oceaneng.2021.109533
– ident: ref11
  doi: 10.1145/3210284.3219775
– ident: ref13
  doi: 10.1109/JIOT.2020.3028743
SSID ssj0001286333
Score 2.58464
Snippet The maritime Internet of Things (IoT) has recently emerged as a revolutionary communication paradigm where a large number of moving vessels are closely...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3080
SubjectTerms 6G mobile communication
Artificial intelligence
Artificial neural networks
automatic identification system
Collision avoidance
Deep learning
Hidden Markov models
Internet of Things
Machine learning
Maritime Internt of Things
Navigation
Predictive models
Sea vessels
Traffic conflicts
Traffic models
Trajectory
trajectory prediction
vessel traffic services
Title Deep Learning-Powered Vessel Trajectory Prediction for Improving Smart Traffic Services in Maritime Internet of Things
URI https://ieeexplore.ieee.org/document/9674855
https://www.proquest.com/docview/2712060208
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH6oJz24i-NGDp7EziTpMs1RXBBhRHBhbiXLq6izoR1Bf715bWdwQ7z1kITA95q8Ld8HsO-cNxpJ3Q25UUFktQhS48LACZJG4tZGbXqc3LlMzm-ji27cnYHD6VsYRCybz7BJn2Ut3w3tmFJlLUXKGHE8C7M-cKvean3Kp6RJGIZ14VJw1bq5vD71AaCUPi6NqKD15eoptVR-HMDlrXK2BJ3JfqpmkqfmuDBN-_6NqvG_G16Gxdq9ZEeVPazADA5WYeET6eAavJ4gjljNq3ofXJFMGjp2RyTiPebvrscykf_Grp6piEPAMe_Zsmn6gV33vb3RSKKfYJPThj0MWEcTR1IfWZVoxIINc1ZJg67D7dnpzfF5UKsvBNa7AEWAxiRoZepkbLl3U2Rq8tgqlNooLThqlTjrUmVzq9GJpJ1HQubcxhZjFNqEGzA3GA5wE1jo17Jco_cefEAWceOnJ0pHgvsVnAgbwCfAZLamJieFjF5WhihcZYRlRlhmNZYNOJhOGVW8HH8NXiNspgNrWBqwM0E_q__cl0y2vekmJF269fusbZintas-sx2YK57HuOsdk8LslRb5AbMv4zY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxRBEK4gHtQDPpC4iNoHvZjM0t3z2OmDByOQRdgNCYvhNvajxqiwS2BWg7_Fv-J_s2oeG3zEG4m3OXT3ZHq-7qrqqv4-gOchEGg0VzeUzkSJtyrKXYijoFgaSXqfDPhy8micDY-St8fp8RJ8X9yFQcS6-Az7_Fjn8sPMz_mobNOwMkbalVDu4eVXCtAuXu1u0d98ofXO9uTNMGo1BCJPhqyK0LkMvc6DTr0kY6tzV6beoLbOWCXRmiz4kBtfeotBZYMyUbqUPvWYorIupnFvwE3yM1Ld3A67coKTZ3Ect6lSJc3mZHy4TSGn1hQJJ5xC-8XY1eotf2z5tR3buQs_uhloylc-9-eV6_tvv5FD_q9TdA9WWgdavG4Qfx-WcPoA7lyhVVyFL1uIZ6Jljv0QHbAQHAbxjmnSTwRZ5091quJSHJxzmoqhKch3F4sDFnF4SiuKWzLBhuj2U_FxKkaWWaBOUTRHqViJWSka8dOHcHQtH74Gy9PZFB-BiGksLy2Sf0QhZyIddc-MTZSkEYKKeyA7IBS-JV9nDZCTog7CpCkYOwVjp2ix04OXiy5nDfPIvxqvMhYWDVsY9GCjQ1vR7k0XhR7Q4sxYnHX9772ewa3hZLRf7O-O9x7DbX5PU1W3AcvV-RyfkBtWuaf1ahDw_rqx9RO9QkVx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Powered+Vessel+Trajectory+Prediction+for+Improving+Smart+Traffic+Services+in+Maritime+Internet+of+Things&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Liu%2C+Ryan+Wen&rft.au=Liang%2C+Maohan&rft.au=Nie%2C+Jiangtian&rft.au=Lim%2C+Wei+Yang+Bryan&rft.date=2022-09-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=9&rft.issue=5&rft.spage=3080&rft.epage=3094&rft_id=info:doi/10.1109%2FTNSE.2022.3140529&rft.externalDocID=9674855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon