Deep Learning-Powered Vessel Trajectory Prediction for Improving Smart Traffic Services in Maritime Internet of Things
The maritime Internet of Things (IoT) has recently emerged as a revolutionary communication paradigm where a large number of moving vessels are closely interconnected in intelligent maritime networks. However, the tremendous growth of vessel trajectories, collected from the combined satellite-terres...
Saved in:
Published in | IEEE transactions on network science and engineering Vol. 9; no. 5; pp. 3080 - 3094 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The maritime Internet of Things (IoT) has recently emerged as a revolutionary communication paradigm where a large number of moving vessels are closely interconnected in intelligent maritime networks. However, the tremendous growth of vessel trajectories, collected from the combined satellite-terrestrial AIS (automatic identification system) base stations, could lead to unsatisfactory maritime safety and efficacy. To promote smart traffic services in maritime IoT, it is necessary to accurately and robustly predict the spatiotemporal vessel trajectories. It is beneficial for collision avoidance, maritime surveillance, and abnormal behavior detection, etc. Motivated by the strong learning capacity of deep neural networks, this work proposes an AIS data-driven trajectory prediction framework, whose main component is a long short term memory (LSTM) network. In particular, the vessel traffic conflict situation modeling, generated using the dynamic AIS data and social force concept, is embedded into the LSTM network to guarantee high-accuracy vessel trajectory prediction. In addition, a mixed loss function is reconstructed to make our prediction results more reliable and robust in different navigation environments. Several quantitative and qualitative experiments have been implemented on realistic AIS-based vessel trajectories. Our results have demonstrated that the proposed method could achieve satisfactory prediction performance in terms of accuracy and robustness. |
---|---|
AbstractList | The maritime Internet of Things (IoT) has recently emerged as a revolutionary communication paradigm where a large number of moving vessels are closely interconnected in intelligent maritime networks. However, the tremendous growth of vessel trajectories, collected from the combined satellite-terrestrial AIS (automatic identification system) base stations, could lead to unsatisfactory maritime safety and efficacy. To promote smart traffic services in maritime IoT, it is necessary to accurately and robustly predict the spatiotemporal vessel trajectories. It is beneficial for collision avoidance, maritime surveillance, and abnormal behavior detection, etc. Motivated by the strong learning capacity of deep neural networks, this work proposes an AIS data-driven trajectory prediction framework, whose main component is a long short term memory (LSTM) network. In particular, the vessel traffic conflict situation modeling, generated using the dynamic AIS data and social force concept, is embedded into the LSTM network to guarantee high-accuracy vessel trajectory prediction. In addition, a mixed loss function is reconstructed to make our prediction results more reliable and robust in different navigation environments. Several quantitative and qualitative experiments have been implemented on realistic AIS-based vessel trajectories. Our results have demonstrated that the proposed method could achieve satisfactory prediction performance in terms of accuracy and robustness. |
Author | Zhang, Yang Nie, Jiangtian Guizani, Mohsen Liu, Ryan Wen Lim, Wei Yang Bryan Liang, Maohan |
Author_xml | – sequence: 1 givenname: Ryan Wen orcidid: 0000-0002-1591-5583 surname: Liu fullname: Liu, Ryan Wen email: wenliu@whut.edu.cn organization: School of Navigation, Wuhan University of Technology, Wuhan, China – sequence: 2 givenname: Maohan orcidid: 0000-0001-7470-3313 surname: Liang fullname: Liang, Maohan email: mhliang@whut.edu.cn organization: School of Navigation, Wuhan University of Technology, Wuhan, China – sequence: 3 givenname: Jiangtian orcidid: 0000-0003-1414-0621 surname: Nie fullname: Nie, Jiangtian email: jnie001@e.ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 4 givenname: Wei Yang Bryan orcidid: 0000-0003-2150-5561 surname: Lim fullname: Lim, Wei Yang Bryan email: limw0201@e.ntu.edu.sg organization: Alibaba Group and Alibaba-NTU Joint Research Institute (JRI), Nanyang Technological University (NTU), Singapore – sequence: 5 givenname: Yang orcidid: 0000-0001-9229-7689 surname: Zhang fullname: Zhang, Yang email: yangzhang@nuaa.edu.cn organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 6 givenname: Mohsen orcidid: 0000-0002-8972-8094 surname: Guizani fullname: Guizani, Mohsen email: mguizani@ieee.org organization: Machine Learning Department, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, UAE |
BookMark | eNp9kMtKAzEUhoMoeH0AcRNwPTU5mVuW4rVQL9Aq7oZM5kRT2qQmseLbO0PFhQtXOYT_O5dvn2w775CQY85GnDN5NrufXo2AAYwEz1kBcovsgRB5JkC-bA81VFleymqXHMU4Z4xxqEshxB5ZXyKu6ARVcNa9Zo_-EwN29BljxAWdBTVHnXz4oo_9t9XJekeND3S8XAW_7hE6XaqQhqQxVtMphrXVGKl19E4Fm-wS6dglDA4T9YbO3nooHpIdoxYRj37eA_J0fTW7uM0mDzfji_NJpkGKlGHblqih7qDQrKhzqFtTaImgWqk4QyXLTne11EYr7HhZmZyDYbrQWCBXrTggp5u-_bbvHxhTM_cfwfUjG6g4sJIBq_sU36R08DEGNM0q2P6sr4azZjDcDIabwXDzY7hnqj-MtkkNflJQdvEvebIhLSL-TpJllddFIb4BAxmNWw |
CODEN | ITNSD5 |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_116316 crossref_primary_10_3390_info15080507 crossref_primary_10_1109_ACCESS_2022_3213691 crossref_primary_10_3390_jmse10030444 crossref_primary_10_1016_j_oceaneng_2025_120938 crossref_primary_10_1016_j_apenergy_2024_124720 crossref_primary_10_1016_j_future_2023_01_008 crossref_primary_10_1016_j_oceaneng_2024_119034 crossref_primary_10_1109_ACCESS_2022_3171330 crossref_primary_10_1109_TITS_2022_3219998 crossref_primary_10_3390_math10183316 crossref_primary_10_1007_s40747_022_00834_2 crossref_primary_10_1016_j_ress_2024_110489 crossref_primary_10_3390_jmse10060770 crossref_primary_10_1109_ACCESS_2022_3172308 crossref_primary_10_1109_OJVT_2024_3443675 crossref_primary_10_3390_jmse12050769 crossref_primary_10_1016_j_future_2024_07_034 crossref_primary_10_1016_j_engappai_2023_107742 crossref_primary_10_1016_j_ocecoaman_2022_106428 crossref_primary_10_1016_j_tre_2024_103770 crossref_primary_10_1016_j_oceaneng_2024_117232 crossref_primary_10_1186_s13638_023_02274_z crossref_primary_10_1016_j_engappai_2023_107625 crossref_primary_10_1016_j_oceaneng_2023_115192 crossref_primary_10_1109_TITS_2024_3492060 crossref_primary_10_1155_2022_3048611 crossref_primary_10_3390_jsan12040058 crossref_primary_10_1109_ACCESS_2022_3186090 crossref_primary_10_1016_j_ocecoaman_2024_107480 crossref_primary_10_1016_j_jnlssr_2024_10_001 crossref_primary_10_1016_j_ress_2024_110463 crossref_primary_10_3390_electronics14030431 crossref_primary_10_1016_j_oceaneng_2023_114595 crossref_primary_10_1016_j_oceaneng_2024_116694 crossref_primary_10_1109_TNSE_2024_3486539 crossref_primary_10_1016_j_comcom_2023_11_005 crossref_primary_10_1016_j_compeleceng_2024_109611 crossref_primary_10_1145_3603711 crossref_primary_10_1109_TITS_2022_3199160 crossref_primary_10_1016_j_compeleceng_2024_109612 crossref_primary_10_1007_s44196_024_00539_z crossref_primary_10_3390_jmse12081351 crossref_primary_10_1016_j_oceaneng_2025_120443 crossref_primary_10_1016_j_oceaneng_2023_114905 crossref_primary_10_3390_s22207713 crossref_primary_10_1109_ACCESS_2024_3349957 crossref_primary_10_1016_j_isci_2023_106383 crossref_primary_10_1016_j_oceaneng_2023_114248 crossref_primary_10_1155_2022_6533223 crossref_primary_10_1109_TNSE_2023_3308572 crossref_primary_10_1109_TITS_2022_3226493 crossref_primary_10_1109_JSEN_2024_3466516 crossref_primary_10_1109_JIOT_2024_3448505 crossref_primary_10_1016_j_ress_2023_109877 crossref_primary_10_1016_j_engappai_2024_107936 crossref_primary_10_1109_TNSE_2023_3320123 crossref_primary_10_1016_j_engappai_2025_110391 crossref_primary_10_3390_jmse11091731 crossref_primary_10_1109_ACCESS_2022_3172341 crossref_primary_10_1109_TGCN_2022_3158004 crossref_primary_10_1109_ACCESS_2022_3150830 crossref_primary_10_1016_j_oceaneng_2024_119511 crossref_primary_10_1155_2022_4659853 crossref_primary_10_1016_j_tra_2025_104427 crossref_primary_10_3390_jmse11081484 crossref_primary_10_1109_ACCESS_2022_3168993 crossref_primary_10_1109_OJVT_2024_3369691 crossref_primary_10_1016_j_eswa_2024_125550 crossref_primary_10_1109_JSYST_2022_3185015 crossref_primary_10_3390_app13084907 crossref_primary_10_1109_TAI_2022_3168246 crossref_primary_10_1016_j_oceaneng_2023_116524 crossref_primary_10_1109_TII_2022_3165886 crossref_primary_10_1109_TNSE_2024_3417371 crossref_primary_10_1016_j_tre_2024_103570 crossref_primary_10_1186_s13638_023_02233_8 crossref_primary_10_1109_ACCESS_2022_3154363 crossref_primary_10_3390_jmse11071295 crossref_primary_10_1049_itr2_12243 crossref_primary_10_1109_TMC_2024_3403890 crossref_primary_10_1016_j_engappai_2025_110311 crossref_primary_10_1155_2022_5032375 crossref_primary_10_3390_app13042556 crossref_primary_10_1016_j_trc_2024_104670 crossref_primary_10_1109_TVT_2024_3423348 crossref_primary_10_1016_j_future_2023_04_034 crossref_primary_10_1155_2022_6519909 crossref_primary_10_1016_j_oceaneng_2024_117987 crossref_primary_10_1016_j_oceaneng_2023_115886 crossref_primary_10_1016_j_oceaneng_2024_117105 crossref_primary_10_1109_JSTARS_2022_3174239 crossref_primary_10_1016_j_oceaneng_2025_120518 crossref_primary_10_1109_TMC_2024_3390941 crossref_primary_10_1016_j_oceaneng_2025_120368 crossref_primary_10_1016_j_compeleceng_2024_109499 crossref_primary_10_1016_j_tre_2023_103152 crossref_primary_10_3390_info14040212 crossref_primary_10_1016_j_measen_2024_101271 crossref_primary_10_1177_14750902231226162 crossref_primary_10_3390_s24082443 crossref_primary_10_1109_ACCESS_2022_3168302 crossref_primary_10_3390_app12084073 crossref_primary_10_1155_2022_4625001 crossref_primary_10_1109_ACCESS_2022_3199372 crossref_primary_10_1109_JSTARS_2024_3470903 crossref_primary_10_1007_s10586_024_04341_6 crossref_primary_10_3390_jmse12112031 crossref_primary_10_1016_j_oceaneng_2025_120902 crossref_primary_10_1109_TITS_2023_3338293 crossref_primary_10_3390_app14104057 crossref_primary_10_1016_j_apor_2023_103592 crossref_primary_10_1016_j_ress_2023_109554 |
Cites_doi | 10.1007/s10707-020-00408-9 10.1109/TITS.2020.2981118 10.1109/MCOM.2019.1800155 10.1109/TCYB.2017.2705345 10.1080/19475683.2020.1840434 10.1016/j.oceaneng.2019.03.052 10.1109/TVCG.2015.2467112 10.1109/MWC.001.1900516 10.1017/S0373463315000764 10.1109/JIOT.2019.2948075 10.1109/TII.2018.2832853 10.1007/978-3-030-66888-4_2 10.1109/TITS.2012.2187282 10.1109/COMST.2020.3015694 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00058 10.1016/j.oceaneng.2020.107478 10.23919/ICIF.2018.8455607 10.23919/ICIF.2017.8009762 10.1109/TSMC.2019.2906381 10.1109/ITSC.2017.8317943 10.1109/JIOT.2020.2988634 10.1016/j.ress.2021.107772 10.1109/TITS.2019.2908191 10.1109/MITS.2021.3049404 10.1109/CVPR.2016.110 10.1016/j.adhoc.2021.102476 10.1109/JIOT.2020.3021141 10.1109/JIOT.2019.2958662 10.1049/itr2.12033 10.1007/978-3-319-73603-7_9 10.1016/j.oceaneng.2021.109380 10.1016/j.oceaneng.2020.107187 10.1103/PhysRevE.51.4282 10.1109/MWC.001.1900322 10.1109/MWC.001.2000409 10.1109/JIOT.2020.3011726 10.23919/JCC.2020.09.009 10.1016/j.oceaneng.2017.04.017 10.1109/LRA.2020.2969925 10.1177/0278364920917446 10.1109/JIOT.2021.3056091 10.1109/TITS.2014.2331758 10.1038/s41928-019-0355-6 10.1109/TAES.2003.1261132 10.1109/CVPR42600.2020.00683 10.1109/TNSE.2019.2913669 10.1080/20464177.2019.1665258 10.1109/TAES.2021.3096873 10.1109/TITS.2020.3040268 10.1109/ICASSP.2019.8683444 10.1109/JIOT.2020.2989398 10.1016/j.oceaneng.2021.108803 10.1109/LRA.2020.3004324 10.1016/j.oceaneng.2019.04.024 10.1109/TENCON.2015.7372918 10.1109/MNET.011.2000020 10.1109/TPAMI.2020.3038217 10.1016/j.patcog.2021.108136 10.1109/TNNLS.2020.2975837 10.1109/MNET.011.2000195 10.1017/S0373463320000442 10.1109/TNSE.2021.3065019 10.1007/978-3-030-11015-4_18 10.1109/JIOT.2018.2868439 10.1016/j.ress.2021.107766 10.1016/j.oceaneng.2021.108956 10.1109/TIM.2011.2147670 10.1016/j.oceaneng.2021.109533 10.1145/3210284.3219775 10.1109/JIOT.2020.3028743 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TNSE.2022.3140529 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2334-329X |
EndPage | 3094 |
ExternalDocumentID | 10_1109_TNSE_2022_3140529 9674855 |
Genre | orig-research |
GrantInformation_xml | – fundername: Nanyang Technological University; Nanyang Technological University, Singapore funderid: 10.13039/501100001475 – fundername: Alibaba Group through Alibaba Innovative Research – fundername: National Research Foundation Singapore; National Research Foundation, Singapore grantid: AISG2-RP-2020-019 funderid: 10.13039/501100001381 – fundername: National Natural Science Foundation of China grantid: 62071343; 51609195 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-ebb6ec28d25c058428bf5c9e2ab9a10ea96dcd89cfcaed167f412f0c5ce5e1ab3 |
IEDL.DBID | RIE |
ISSN | 2327-4697 |
IngestDate | Mon Jun 30 10:05:02 EDT 2025 Thu Apr 24 23:13:02 EDT 2025 Tue Jul 01 03:10:44 EDT 2025 Wed Aug 27 02:29:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-ebb6ec28d25c058428bf5c9e2ab9a10ea96dcd89cfcaed167f412f0c5ce5e1ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1591-5583 0000-0002-8972-8094 0000-0003-2150-5561 0000-0003-1414-0621 0000-0001-7470-3313 0000-0001-9229-7689 |
PQID | 2712060208 |
PQPubID | 2040409 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2712060208 ieee_primary_9674855 crossref_primary_10_1109_TNSE_2022_3140529 crossref_citationtrail_10_1109_TNSE_2022_3140529 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on network science and engineering |
PublicationTitleAbbrev | TNSE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref9 ref4 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 Fang (ref7) 2021 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 Kingma (ref66) 2015 ref22 ref21 ref65 ref28 ref27 ref29 Dang (ref3) 2020; 3 ref60 ref62 ref61 |
References_xml | – ident: ref15 doi: 10.1007/s10707-020-00408-9 – ident: ref52 doi: 10.1109/TITS.2020.2981118 – ident: ref64 doi: 10.1109/MCOM.2019.1800155 – ident: ref50 doi: 10.1109/TCYB.2017.2705345 – ident: ref48 doi: 10.1080/19475683.2020.1840434 – ident: ref34 doi: 10.1016/j.oceaneng.2019.03.052 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2015 ident: ref66 article-title: ADAM: A method for stochastic optimization – ident: ref17 doi: 10.1109/TVCG.2015.2467112 – ident: ref2 doi: 10.1109/MWC.001.1900516 – ident: ref70 doi: 10.1017/S0373463315000764 – ident: ref68 doi: 10.1109/JIOT.2019.2948075 – ident: ref33 doi: 10.1109/TII.2018.2832853 – ident: ref60 doi: 10.1007/978-3-030-66888-4_2 – ident: ref45 doi: 10.1109/TITS.2012.2187282 – ident: ref1 doi: 10.1109/COMST.2020.3015694 – ident: ref18 doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00058 – ident: ref58 doi: 10.1016/j.oceaneng.2020.107478 – ident: ref39 doi: 10.23919/ICIF.2018.8455607 – ident: ref41 doi: 10.23919/ICIF.2017.8009762 – ident: ref63 doi: 10.1109/TSMC.2019.2906381 – ident: ref67 doi: 10.1109/ITSC.2017.8317943 – ident: ref28 doi: 10.1109/JIOT.2020.2988634 – ident: ref35 doi: 10.1016/j.ress.2021.107772 – ident: ref24 doi: 10.1109/TITS.2019.2908191 – ident: ref22 doi: 10.1109/MITS.2021.3049404 – ident: ref51 doi: 10.1109/CVPR.2016.110 – ident: ref59 doi: 10.1016/j.adhoc.2021.102476 – ident: ref56 doi: 10.1109/JIOT.2020.3021141 – ident: ref30 doi: 10.1109/JIOT.2019.2958662 – ident: ref53 doi: 10.1049/itr2.12033 – ident: ref69 doi: 10.1007/978-3-319-73603-7_9 – ident: ref6 doi: 10.1016/j.oceaneng.2021.109380 – ident: ref71 doi: 10.1016/j.oceaneng.2020.107187 – ident: ref65 doi: 10.1103/PhysRevE.51.4282 – ident: ref26 doi: 10.1109/MWC.001.1900322 – ident: ref4 doi: 10.1109/MWC.001.2000409 – ident: ref12 doi: 10.1109/JIOT.2020.3011726 – ident: ref5 doi: 10.23919/JCC.2020.09.009 – ident: ref46 doi: 10.1016/j.oceaneng.2017.04.017 – ident: ref36 doi: 10.1109/LRA.2020.2969925 – ident: ref21 doi: 10.1177/0278364920917446 – ident: ref25 doi: 10.1109/JIOT.2021.3056091 – ident: ref42 doi: 10.1109/TITS.2014.2331758 – volume: 3 start-page: 20 issue: 1 year: 2020 ident: ref3 article-title: What should 6G be publication-title: Nat. Electron. doi: 10.1038/s41928-019-0355-6 – ident: ref37 doi: 10.1109/TAES.2003.1261132 – ident: ref55 doi: 10.1109/CVPR42600.2020.00683 – ident: ref49 doi: 10.1109/TNSE.2019.2913669 – year: 2021 ident: ref7 article-title: Noma-based hybrid satellite-UAV-terrestrial networks for beyond 5G maritime Internet of Things – ident: ref10 doi: 10.1080/20464177.2019.1665258 – ident: ref9 doi: 10.1109/TAES.2021.3096873 – ident: ref47 doi: 10.1109/TITS.2020.3040268 – ident: ref40 doi: 10.1109/ICASSP.2019.8683444 – ident: ref14 doi: 10.1109/JIOT.2020.2989398 – ident: ref16 doi: 10.1016/j.oceaneng.2021.108803 – ident: ref61 doi: 10.1109/LRA.2020.3004324 – ident: ref38 doi: 10.1016/j.oceaneng.2019.04.024 – ident: ref32 doi: 10.1109/TENCON.2015.7372918 – ident: ref29 doi: 10.1109/MNET.011.2000020 – ident: ref54 doi: 10.1109/TPAMI.2020.3038217 – ident: ref57 doi: 10.1016/j.patcog.2021.108136 – ident: ref23 doi: 10.1109/TNNLS.2020.2975837 – ident: ref27 doi: 10.1109/MNET.011.2000195 – ident: ref43 doi: 10.1017/S0373463320000442 – ident: ref20 doi: 10.1109/TNSE.2021.3065019 – ident: ref62 doi: 10.1007/978-3-030-11015-4_18 – ident: ref31 doi: 10.1109/JIOT.2018.2868439 – ident: ref72 doi: 10.1016/j.ress.2021.107766 – ident: ref19 doi: 10.1016/j.oceaneng.2021.108956 – ident: ref44 doi: 10.1109/TIM.2011.2147670 – ident: ref8 doi: 10.1016/j.oceaneng.2021.109533 – ident: ref11 doi: 10.1145/3210284.3219775 – ident: ref13 doi: 10.1109/JIOT.2020.3028743 |
SSID | ssj0001286333 |
Score | 2.58464 |
Snippet | The maritime Internet of Things (IoT) has recently emerged as a revolutionary communication paradigm where a large number of moving vessels are closely... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3080 |
SubjectTerms | 6G mobile communication Artificial intelligence Artificial neural networks automatic identification system Collision avoidance Deep learning Hidden Markov models Internet of Things Machine learning Maritime Internt of Things Navigation Predictive models Sea vessels Traffic conflicts Traffic models Trajectory trajectory prediction vessel traffic services |
Title | Deep Learning-Powered Vessel Trajectory Prediction for Improving Smart Traffic Services in Maritime Internet of Things |
URI | https://ieeexplore.ieee.org/document/9674855 https://www.proquest.com/docview/2712060208 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH6oJz24i-NGDp7EziTpMs1RXBBhRHBhbiXLq6izoR1Bf715bWdwQ7z1kITA95q8Ld8HsO-cNxpJ3Q25UUFktQhS48LACZJG4tZGbXqc3LlMzm-ji27cnYHD6VsYRCybz7BJn2Ut3w3tmFJlLUXKGHE8C7M-cKvean3Kp6RJGIZ14VJw1bq5vD71AaCUPi6NqKD15eoptVR-HMDlrXK2BJ3JfqpmkqfmuDBN-_6NqvG_G16Gxdq9ZEeVPazADA5WYeET6eAavJ4gjljNq3ofXJFMGjp2RyTiPebvrscykf_Grp6piEPAMe_Zsmn6gV33vb3RSKKfYJPThj0MWEcTR1IfWZVoxIINc1ZJg67D7dnpzfF5UKsvBNa7AEWAxiRoZepkbLl3U2Rq8tgqlNooLThqlTjrUmVzq9GJpJ1HQubcxhZjFNqEGzA3GA5wE1jo17Jco_cefEAWceOnJ0pHgvsVnAgbwCfAZLamJieFjF5WhihcZYRlRlhmNZYNOJhOGVW8HH8NXiNspgNrWBqwM0E_q__cl0y2vekmJF269fusbZintas-sx2YK57HuOsdk8LslRb5AbMv4zY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxRBEK4gHtQDPpC4iNoHvZjM0t3z2OmDByOQRdgNCYvhNvajxqiwS2BWg7_Fv-J_s2oeG3zEG4m3OXT3ZHq-7qrqqv4-gOchEGg0VzeUzkSJtyrKXYijoFgaSXqfDPhy8micDY-St8fp8RJ8X9yFQcS6-Az7_Fjn8sPMz_mobNOwMkbalVDu4eVXCtAuXu1u0d98ofXO9uTNMGo1BCJPhqyK0LkMvc6DTr0kY6tzV6beoLbOWCXRmiz4kBtfeotBZYMyUbqUPvWYorIupnFvwE3yM1Ld3A67coKTZ3Ect6lSJc3mZHy4TSGn1hQJJ5xC-8XY1eotf2z5tR3buQs_uhloylc-9-eV6_tvv5FD_q9TdA9WWgdavG4Qfx-WcPoA7lyhVVyFL1uIZ6Jljv0QHbAQHAbxjmnSTwRZ5091quJSHJxzmoqhKch3F4sDFnF4SiuKWzLBhuj2U_FxKkaWWaBOUTRHqViJWSka8dOHcHQtH74Gy9PZFB-BiGksLy2Sf0QhZyIddc-MTZSkEYKKeyA7IBS-JV9nDZCTog7CpCkYOwVjp2ix04OXiy5nDfPIvxqvMhYWDVsY9GCjQ1vR7k0XhR7Q4sxYnHX9772ewa3hZLRf7O-O9x7DbX5PU1W3AcvV-RyfkBtWuaf1ahDw_rqx9RO9QkVx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Powered+Vessel+Trajectory+Prediction+for+Improving+Smart+Traffic+Services+in+Maritime+Internet+of+Things&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Liu%2C+Ryan+Wen&rft.au=Liang%2C+Maohan&rft.au=Nie%2C+Jiangtian&rft.au=Lim%2C+Wei+Yang+Bryan&rft.date=2022-09-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=9&rft.issue=5&rft.spage=3080&rft.epage=3094&rft_id=info:doi/10.1109%2FTNSE.2022.3140529&rft.externalDocID=9674855 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |