Deep Learning Based End-to-End Wireless Communication Systems Without Pilots
The recent development in machine learning, especially in deep neural networks (DNN), has enabled learning-based end-to-end communication systems, where DNNs are employed to substitute all modules at the transmitter and receiver. In this article, two end-to-end frameworks for frequency-selective cha...
Saved in:
Published in | IEEE transactions on cognitive communications and networking Vol. 7; no. 3; pp. 702 - 714 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2332-7731 2332-7731 |
DOI | 10.1109/TCCN.2021.3061464 |
Cover
Abstract | The recent development in machine learning, especially in deep neural networks (DNN), has enabled learning-based end-to-end communication systems, where DNNs are employed to substitute all modules at the transmitter and receiver. In this article, two end-to-end frameworks for frequency-selective channels and multi-input and multi-output (MIMO) channels are developed, where the wireless channel effects are modeled with an untrainable stochastic convolutional layer. The end-to-end framework is trained with mini-batches of input data and channel samples. Instead of using pilot information to implicitly or explicitly estimate the unknown channel parameters as in current communication systems, the transmitter DNN learns to transform the input data in a way that is robust to various channel conditions. The receiver consists of two DNN modules used for channel information extraction and data recovery, respectively. A bilinear production operation is employed to combine the features extracted from the channel information extraction module and the received signals. The combined features are further utilized in the data recovery module to recover the transmitted data. Compared with the conventional communication systems, performance improvement has been shown for frequency-selective channels and MIMO channels. Furthermore, the end-to-end system can automatically leverage the correlation in the channels and in the source data to improve the overall performance. |
---|---|
AbstractList | The recent development in machine learning, especially in deep neural networks (DNN), has enabled learning-based end-to-end communication systems, where DNNs are employed to substitute all modules at the transmitter and receiver. In this article, two end-to-end frameworks for frequency-selective channels and multi-input and multi-output (MIMO) channels are developed, where the wireless channel effects are modeled with an untrainable stochastic convolutional layer. The end-to-end framework is trained with mini-batches of input data and channel samples. Instead of using pilot information to implicitly or explicitly estimate the unknown channel parameters as in current communication systems, the transmitter DNN learns to transform the input data in a way that is robust to various channel conditions. The receiver consists of two DNN modules used for channel information extraction and data recovery, respectively. A bilinear production operation is employed to combine the features extracted from the channel information extraction module and the received signals. The combined features are further utilized in the data recovery module to recover the transmitted data. Compared with the conventional communication systems, performance improvement has been shown for frequency-selective channels and MIMO channels. Furthermore, the end-to-end system can automatically leverage the correlation in the channels and in the source data to improve the overall performance. |
Author | Juang, Biing-Hwang Ye, Hao Li, Geoffrey Ye |
Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0003-1544-1768 surname: Ye fullname: Ye, Hao email: yehao@gatech.edu organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 2 givenname: Geoffrey Ye orcidid: 0000-0002-7894-2415 surname: Li fullname: Li, Geoffrey Ye email: geoffrey.li@imperial.ac.uk organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K – sequence: 3 givenname: Biing-Hwang orcidid: 0000-0002-5773-5679 surname: Juang fullname: Juang, Biing-Hwang email: juang@ece.gatech.edu organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA |
BookMark | eNp9kE1LAzEQhoMoWGt_gHhZ8Lw1H5vdzVHX-gGLClY8hjSZ1ZTupibZQ_-9W1tEPHiagXmfmeE5QYed6wChM4KnhGBxOa-qxynFlEwZzkmWZwdoRBmjaVEwcvirP0aTEJYYY5LTPC-zEapvANZJDcp3tntPrlUAk8w6k0aXDiV5sx5WEEJSubbtO6tVtK5LXjYhQhuGcfxwfUye7crFcIqOGrUKMNnXMXq9nc2r-7R-unuorupUU8FiCgU1VJRMZ9rklFIBDS0E40rDwhheGkIz3hDNCecZaUrDFReLhotGM1aUio3RxW7v2rvPHkKUS9f7bjgpKS8wEYJjMqSKXUp7F4KHRmobv9-PXtmVJFhu7cmtPbm1J_f2BpL8Idfetspv_mXOd4wFgJ-8YDkuC8a-AF-ee34 |
CODEN | ITCCG7 |
CitedBy_id | crossref_primary_10_1109_TVT_2022_3164908 crossref_primary_10_1016_j_is_2023_102318 crossref_primary_10_1080_03772063_2022_2163930 crossref_primary_10_1109_TCSI_2024_3431470 crossref_primary_10_1109_ACCESS_2021_3074350 crossref_primary_10_3390_photonics11080781 crossref_primary_10_23919_ICN_2023_0026 crossref_primary_10_1109_COMST_2022_3223224 crossref_primary_10_1109_TCCN_2022_3228536 crossref_primary_10_1016_j_dsp_2022_103659 crossref_primary_10_1016_j_vehcom_2023_100626 crossref_primary_10_1109_TWC_2021_3101364 crossref_primary_10_1007_s12046_024_02659_w crossref_primary_10_1007_s11276_024_03822_1 crossref_primary_10_1049_cmu2_12669 crossref_primary_10_1002_ett_4773 crossref_primary_10_1109_LWC_2024_3452486 crossref_primary_10_1109_MWC_001_2000516 crossref_primary_10_3390_jmse11081537 crossref_primary_10_3390_rs15153796 crossref_primary_10_1109_OJCOMS_2023_3265425 crossref_primary_10_1109_TWC_2023_3336973 crossref_primary_10_3390_s22103666 crossref_primary_10_1109_LCOMM_2023_3237719 crossref_primary_10_1109_JIOT_2023_3274209 crossref_primary_10_1109_TCCN_2024_3391309 crossref_primary_10_3390_electronics13050831 crossref_primary_10_1109_TWC_2023_3332617 crossref_primary_10_1109_OJCOMS_2022_3210648 crossref_primary_10_1109_TWC_2024_3470244 crossref_primary_10_3390_info14020098 crossref_primary_10_1109_JPROC_2024_3437730 crossref_primary_10_1109_TVT_2023_3294672 crossref_primary_10_1109_TCOMM_2023_3255251 crossref_primary_10_1109_OJCOMS_2024_3425314 crossref_primary_10_1109_TCOMM_2022_3180997 crossref_primary_10_1109_TWC_2023_3241841 crossref_primary_10_1007_s00521_023_09017_7 crossref_primary_10_1109_ACCESS_2023_3245330 crossref_primary_10_1109_TWC_2022_3227636 |
Cites_doi | 10.1109/TSP.2018.2866382 10.1109/TPAMI.2015.2481418 10.5244/C.29.6 10.1109/CVPR.2018.00462 10.1109/TSP.2020.2976585 10.1109/GLOCOM.2017.8254811 10.1109/MWC.2019.1800601 10.1109/CISS.2017.7926071 10.1109/LWC.2018.2832128 10.1109/ACSSC.2003.1292216 10.1109/LWC.2017.2757490 10.1109/CVPR.2017.19 10.1109/LCOMM.2018.2877965 10.1109/TIT.1967.1054010 10.1109/ICASSP.2018.8461983 10.1109/TCOMM.2019.2924010 10.1109/MWC.2019.1800447 10.1109/LCOMM.2018.2868103 10.1109/ICCV.2001.937655 10.1109/ICCV.2015.170 10.1109/SPAWC.2018.8445920 10.1109/TWC.2020.2970707 10.1109/TCCN.2017.2758370 10.1109/SiPS.2017.8109997 10.1162/neco.1989.1.4.541 10.1109/JSAC.2019.2933891 10.1109/ALLERTON.2016.7852251 10.1109/TIP.2017.2713099 10.1109/ICCV.2017.481 10.1109/JSTSP.2017.2784180 10.1007/s11263-015-0816-y 10.1109/ICC40277.2020.9149030 10.1109/SPAWC.2017.8227772 10.1109/TCCN.2019.2919300 10.1109/GLOCOMW.2018.8644250 10.1109/COMST.2015.2475242 10.1109/CVPR.2012.6247952 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCCN.2021.3061464 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2332-7731 |
EndPage | 714 |
ExternalDocumentID | 10_1109_TCCN_2021_3061464 9360873 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1815637; 1731017 funderid: 10.13039/100000001 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c293t-e72d2983c4cd62229ef27935acebdd58d1245f1c515541f8d5a59bf59fc3378a3 |
IEDL.DBID | RIE |
ISSN | 2332-7731 |
IngestDate | Sun Jun 29 16:46:36 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Tue Jul 01 01:43:25 EDT 2025 Wed Aug 27 02:27:02 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-e72d2983c4cd62229ef27935acebdd58d1245f1c515541f8d5a59bf59fc3378a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1544-1768 0000-0002-7894-2415 0000-0002-5773-5679 |
PQID | 2570199501 |
PQPubID | 4437218 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TCCN_2021_3061464 proquest_journals_2570199501 crossref_primary_10_1109_TCCN_2021_3061464 ieee_primary_9360873 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cognitive communications and networking |
PublicationTitleAbbrev | TCCN |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref36 ref14 ref31 kim (ref10) 2018 ref11 ref32 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ulyanov (ref34) 2018 ref18 rappaport (ref37) 1996; 2 goodfellow (ref30) 2014 choi (ref35) 2018 sønderby (ref33) 2016 ref24 mao (ref29) 2016 ref45 o’shea (ref22) 2017 ref23 ref26 ref25 ref20 ref42 ref41 ref44 ref21 ref43 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref3 doi: 10.1109/TSP.2018.2866382 – ident: ref26 doi: 10.1109/TPAMI.2015.2481418 – ident: ref27 doi: 10.5244/C.29.6 – start-page: 1 year: 2018 ident: ref10 article-title: Communication algorithms via deep learning publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref45 doi: 10.1109/CVPR.2018.00462 – ident: ref17 doi: 10.1109/TSP.2020.2976585 – year: 2018 ident: ref35 publication-title: NECST Neural joint source-channel coding – ident: ref12 doi: 10.1109/GLOCOM.2017.8254811 – ident: ref19 doi: 10.1109/MWC.2019.1800601 – year: 2016 ident: ref29 publication-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections – ident: ref11 doi: 10.1109/CISS.2017.7926071 – year: 2016 ident: ref33 publication-title: Amortised map inference for image super-resolution – volume: 2 year: 1996 ident: ref37 publication-title: Wireless Communications Principles and Practice – ident: ref14 doi: 10.1109/LWC.2018.2832128 – year: 2017 ident: ref22 publication-title: Deep Learning Based MIMO Communications – ident: ref40 doi: 10.1109/ACSSC.2003.1292216 – ident: ref15 doi: 10.1109/LWC.2017.2757490 – ident: ref32 doi: 10.1109/CVPR.2017.19 – ident: ref18 doi: 10.1109/LCOMM.2018.2877965 – ident: ref41 doi: 10.1109/TIT.1967.1054010 – ident: ref7 doi: 10.1109/ICASSP.2018.8461983 – ident: ref1 doi: 10.1109/TCOMM.2019.2924010 – ident: ref20 doi: 10.1109/MWC.2019.1800447 – ident: ref24 doi: 10.1109/LCOMM.2018.2868103 – ident: ref44 doi: 10.1109/ICCV.2001.937655 – ident: ref39 doi: 10.1109/ICCV.2015.170 – ident: ref21 doi: 10.1109/SPAWC.2018.8445920 – ident: ref6 doi: 10.1109/TWC.2020.2970707 – ident: ref2 doi: 10.1109/TCCN.2017.2758370 – ident: ref13 doi: 10.1109/SiPS.2017.8109997 – ident: ref38 doi: 10.1162/neco.1989.1.4.541 – ident: ref23 doi: 10.1109/JSAC.2019.2933891 – ident: ref9 doi: 10.1109/ALLERTON.2016.7852251 – ident: ref28 doi: 10.1109/TIP.2017.2713099 – ident: ref31 doi: 10.1109/ICCV.2017.481 – ident: ref4 doi: 10.1109/JSTSP.2017.2784180 – ident: ref43 doi: 10.1007/s11263-015-0816-y – ident: ref8 doi: 10.1109/ICC40277.2020.9149030 – ident: ref16 doi: 10.1109/SPAWC.2017.8227772 – start-page: 9446 year: 2018 ident: ref34 article-title: Deep image prior publication-title: Proc IEEE Conf Comput Vis and Pattern Recog – start-page: 2672 year: 2014 ident: ref30 article-title: Generative adversarial networks publication-title: Proc Conf Neural Inf Process Syst (NIPS) – ident: ref36 doi: 10.1109/TCCN.2019.2919300 – ident: ref5 doi: 10.1109/GLOCOMW.2018.8644250 – ident: ref42 doi: 10.1109/COMST.2015.2475242 – ident: ref25 doi: 10.1109/CVPR.2012.6247952 |
SSID | ssj0001626684 |
Score | 2.4765105 |
Snippet | The recent development in machine learning, especially in deep neural networks (DNN), has enabled learning-based end-to-end communication systems, where DNNs... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 702 |
SubjectTerms | Artificial neural networks Channel estimation Channels Communication Communication systems Data recovery Deep learning Feature extraction Information retrieval joint source channel coding Machine learning MIMO communication Modules Parameter estimation pilot-free end-to-end communications Receivers Transmitters Wireless communication Wireless communication systems Wireless communications |
Title | Deep Learning Based End-to-End Wireless Communication Systems Without Pilots |
URI | https://ieeexplore.ieee.org/document/9360873 https://www.proquest.com/docview/2570199501 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwRhQK8sCEcMnLsT1CKaoQrRio1C2KX4CoGgTpwq_HTtxCASGmRIodWffw3dl33wGcJHmgc0M5NiaKcSKIwJwahlnORZozEwXM1Q4Phml_lNyMybgBZ4taGK11lXymO-61ustXhZy5o7JzHqcBo_EKrFgxq2u1Ps9TrGeessRfXIYBP7_vdoc2AIzCTuzCnjRZMj1VL5UfG3BlVa43YDBfT51M8tyZlaIj379BNf53wZuw7t1LdFHLwxY09HQb1r6ADu7A7ZXWL8jjqj6gS2vGFOpNFS4LbB_I5cNO7P6HlmpHkIc2t5_Lx2JWorunSVG-7cLounff7WPfUwFLa9hLrGmkIs5imUiVul7e2kRWRUkutVCKMGXtPTGhdJ1fktAwRXLChSHcyDimLI_3oDktpnofkLb6HhIZUoegb71AkRpNZRhRxYTSlLUgmJM7kx5w3PW9mGRV4BHwzHEocxzKPIdacLqY8lKjbfw1eMdRfDHQE7sF7TlPM6-Pb5nr1eeK0YPw4PdZh7Dq_l1nj7WhWb7O9JF1N0pxXMnZB31Y0Z8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnBCuGRzbB-hgAq0FYcicYviDRBVgyC98PXYiVtWIU6JFFuxZjx-Y3vmDcBBkgc6N5RjY6IYJ4IIzKlhmOVcpDkzUcBc7nC3l7Zvk6s7cjcFR5NcGK11FXymm-61ustXhRy5o7JjHqcBo_E0zFrcT0idrfVxomJ985Ql_uoyDPhxv9Xq2S1gFDZjt_FJky_gU1VT-bEEV7hysQTd8YjqcJKn5qgUTfn2jazxv0NehkXvYKKTekaswJQersLCJ9rBNeicaf2MPLPqPTq1QKbQ-VDhssD2gVxE7MCugOhL9gjy5Ob2c_lQjEp08zgoytd1uL0477fa2FdVwNJCe4k1jVTEWSwTqVJXzVubyBopyaUWShGmLOITE0pX-yUJDVMkJ1wYwo2MY8ryeANmhsVQbwLS1uJDIkPqOPStHyhSo6kMI6qYUJqyBgRjcWfSU467yheDrNp6BDxzGsqchjKvoQYcTro813wbfzVecxKfNPTCbsDOWKeZt8jXzFXrc-noQbj1e699mGv3u52sc9m73oZ59586lmwHZsqXkd61zkcp9qo59w6iKtTs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+End-to-End+Wireless+Communication+Systems+Without+Pilots&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Ye%2C+Hao&rft.au=Li%2C+Geoffrey+Ye&rft.au=Juang%2C+Biing-Hwang&rft.date=2021-09-01&rft.issn=2332-7731&rft.eissn=2332-7731&rft.volume=7&rft.issue=3&rft.spage=702&rft.epage=714&rft_id=info:doi/10.1109%2FTCCN.2021.3061464&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCCN_2021_3061464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon |