Deep Learning Based End-to-End Wireless Communication Systems Without Pilots

The recent development in machine learning, especially in deep neural networks (DNN), has enabled learning-based end-to-end communication systems, where DNNs are employed to substitute all modules at the transmitter and receiver. In this article, two end-to-end frameworks for frequency-selective cha...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive communications and networking Vol. 7; no. 3; pp. 702 - 714
Main Authors Ye, Hao, Li, Geoffrey Ye, Juang, Biing-Hwang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2332-7731
2332-7731
DOI10.1109/TCCN.2021.3061464

Cover

Abstract The recent development in machine learning, especially in deep neural networks (DNN), has enabled learning-based end-to-end communication systems, where DNNs are employed to substitute all modules at the transmitter and receiver. In this article, two end-to-end frameworks for frequency-selective channels and multi-input and multi-output (MIMO) channels are developed, where the wireless channel effects are modeled with an untrainable stochastic convolutional layer. The end-to-end framework is trained with mini-batches of input data and channel samples. Instead of using pilot information to implicitly or explicitly estimate the unknown channel parameters as in current communication systems, the transmitter DNN learns to transform the input data in a way that is robust to various channel conditions. The receiver consists of two DNN modules used for channel information extraction and data recovery, respectively. A bilinear production operation is employed to combine the features extracted from the channel information extraction module and the received signals. The combined features are further utilized in the data recovery module to recover the transmitted data. Compared with the conventional communication systems, performance improvement has been shown for frequency-selective channels and MIMO channels. Furthermore, the end-to-end system can automatically leverage the correlation in the channels and in the source data to improve the overall performance.
AbstractList The recent development in machine learning, especially in deep neural networks (DNN), has enabled learning-based end-to-end communication systems, where DNNs are employed to substitute all modules at the transmitter and receiver. In this article, two end-to-end frameworks for frequency-selective channels and multi-input and multi-output (MIMO) channels are developed, where the wireless channel effects are modeled with an untrainable stochastic convolutional layer. The end-to-end framework is trained with mini-batches of input data and channel samples. Instead of using pilot information to implicitly or explicitly estimate the unknown channel parameters as in current communication systems, the transmitter DNN learns to transform the input data in a way that is robust to various channel conditions. The receiver consists of two DNN modules used for channel information extraction and data recovery, respectively. A bilinear production operation is employed to combine the features extracted from the channel information extraction module and the received signals. The combined features are further utilized in the data recovery module to recover the transmitted data. Compared with the conventional communication systems, performance improvement has been shown for frequency-selective channels and MIMO channels. Furthermore, the end-to-end system can automatically leverage the correlation in the channels and in the source data to improve the overall performance.
Author Juang, Biing-Hwang
Ye, Hao
Li, Geoffrey Ye
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0003-1544-1768
  surname: Ye
  fullname: Ye, Hao
  email: yehao@gatech.edu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 2
  givenname: Geoffrey Ye
  orcidid: 0000-0002-7894-2415
  surname: Li
  fullname: Li, Geoffrey Ye
  email: geoffrey.li@imperial.ac.uk
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K
– sequence: 3
  givenname: Biing-Hwang
  orcidid: 0000-0002-5773-5679
  surname: Juang
  fullname: Juang, Biing-Hwang
  email: juang@ece.gatech.edu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
BookMark eNp9kE1LAzEQhoMoWGt_gHhZ8Lw1H5vdzVHX-gGLClY8hjSZ1ZTupibZQ_-9W1tEPHiagXmfmeE5QYed6wChM4KnhGBxOa-qxynFlEwZzkmWZwdoRBmjaVEwcvirP0aTEJYYY5LTPC-zEapvANZJDcp3tntPrlUAk8w6k0aXDiV5sx5WEEJSubbtO6tVtK5LXjYhQhuGcfxwfUye7crFcIqOGrUKMNnXMXq9nc2r-7R-unuorupUU8FiCgU1VJRMZ9rklFIBDS0E40rDwhheGkIz3hDNCecZaUrDFReLhotGM1aUio3RxW7v2rvPHkKUS9f7bjgpKS8wEYJjMqSKXUp7F4KHRmobv9-PXtmVJFhu7cmtPbm1J_f2BpL8Idfetspv_mXOd4wFgJ-8YDkuC8a-AF-ee34
CODEN ITCCG7
CitedBy_id crossref_primary_10_1109_TVT_2022_3164908
crossref_primary_10_1016_j_is_2023_102318
crossref_primary_10_1080_03772063_2022_2163930
crossref_primary_10_1109_TCSI_2024_3431470
crossref_primary_10_1109_ACCESS_2021_3074350
crossref_primary_10_3390_photonics11080781
crossref_primary_10_23919_ICN_2023_0026
crossref_primary_10_1109_COMST_2022_3223224
crossref_primary_10_1109_TCCN_2022_3228536
crossref_primary_10_1016_j_dsp_2022_103659
crossref_primary_10_1016_j_vehcom_2023_100626
crossref_primary_10_1109_TWC_2021_3101364
crossref_primary_10_1007_s12046_024_02659_w
crossref_primary_10_1007_s11276_024_03822_1
crossref_primary_10_1049_cmu2_12669
crossref_primary_10_1002_ett_4773
crossref_primary_10_1109_LWC_2024_3452486
crossref_primary_10_1109_MWC_001_2000516
crossref_primary_10_3390_jmse11081537
crossref_primary_10_3390_rs15153796
crossref_primary_10_1109_OJCOMS_2023_3265425
crossref_primary_10_1109_TWC_2023_3336973
crossref_primary_10_3390_s22103666
crossref_primary_10_1109_LCOMM_2023_3237719
crossref_primary_10_1109_JIOT_2023_3274209
crossref_primary_10_1109_TCCN_2024_3391309
crossref_primary_10_3390_electronics13050831
crossref_primary_10_1109_TWC_2023_3332617
crossref_primary_10_1109_OJCOMS_2022_3210648
crossref_primary_10_1109_TWC_2024_3470244
crossref_primary_10_3390_info14020098
crossref_primary_10_1109_JPROC_2024_3437730
crossref_primary_10_1109_TVT_2023_3294672
crossref_primary_10_1109_TCOMM_2023_3255251
crossref_primary_10_1109_OJCOMS_2024_3425314
crossref_primary_10_1109_TCOMM_2022_3180997
crossref_primary_10_1109_TWC_2023_3241841
crossref_primary_10_1007_s00521_023_09017_7
crossref_primary_10_1109_ACCESS_2023_3245330
crossref_primary_10_1109_TWC_2022_3227636
Cites_doi 10.1109/TSP.2018.2866382
10.1109/TPAMI.2015.2481418
10.5244/C.29.6
10.1109/CVPR.2018.00462
10.1109/TSP.2020.2976585
10.1109/GLOCOM.2017.8254811
10.1109/MWC.2019.1800601
10.1109/CISS.2017.7926071
10.1109/LWC.2018.2832128
10.1109/ACSSC.2003.1292216
10.1109/LWC.2017.2757490
10.1109/CVPR.2017.19
10.1109/LCOMM.2018.2877965
10.1109/TIT.1967.1054010
10.1109/ICASSP.2018.8461983
10.1109/TCOMM.2019.2924010
10.1109/MWC.2019.1800447
10.1109/LCOMM.2018.2868103
10.1109/ICCV.2001.937655
10.1109/ICCV.2015.170
10.1109/SPAWC.2018.8445920
10.1109/TWC.2020.2970707
10.1109/TCCN.2017.2758370
10.1109/SiPS.2017.8109997
10.1162/neco.1989.1.4.541
10.1109/JSAC.2019.2933891
10.1109/ALLERTON.2016.7852251
10.1109/TIP.2017.2713099
10.1109/ICCV.2017.481
10.1109/JSTSP.2017.2784180
10.1007/s11263-015-0816-y
10.1109/ICC40277.2020.9149030
10.1109/SPAWC.2017.8227772
10.1109/TCCN.2019.2919300
10.1109/GLOCOMW.2018.8644250
10.1109/COMST.2015.2475242
10.1109/CVPR.2012.6247952
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCCN.2021.3061464
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2332-7731
EndPage 714
ExternalDocumentID 10_1109_TCCN_2021_3061464
9360873
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1815637; 1731017
  funderid: 10.13039/100000001
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IES
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-e72d2983c4cd62229ef27935acebdd58d1245f1c515541f8d5a59bf59fc3378a3
IEDL.DBID RIE
ISSN 2332-7731
IngestDate Sun Jun 29 16:46:36 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Tue Jul 01 01:43:25 EDT 2025
Wed Aug 27 02:27:02 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-e72d2983c4cd62229ef27935acebdd58d1245f1c515541f8d5a59bf59fc3378a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1544-1768
0000-0002-7894-2415
0000-0002-5773-5679
PQID 2570199501
PQPubID 4437218
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TCCN_2021_3061464
proquest_journals_2570199501
crossref_primary_10_1109_TCCN_2021_3061464
ieee_primary_9360873
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive communications and networking
PublicationTitleAbbrev TCCN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref36
ref14
ref31
kim (ref10) 2018
ref11
ref32
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ulyanov (ref34) 2018
ref18
rappaport (ref37) 1996; 2
goodfellow (ref30) 2014
choi (ref35) 2018
sønderby (ref33) 2016
ref24
mao (ref29) 2016
ref45
o’shea (ref22) 2017
ref23
ref26
ref25
ref20
ref42
ref41
ref44
ref21
ref43
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref3
  doi: 10.1109/TSP.2018.2866382
– ident: ref26
  doi: 10.1109/TPAMI.2015.2481418
– ident: ref27
  doi: 10.5244/C.29.6
– start-page: 1
  year: 2018
  ident: ref10
  article-title: Communication algorithms via deep learning
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref45
  doi: 10.1109/CVPR.2018.00462
– ident: ref17
  doi: 10.1109/TSP.2020.2976585
– year: 2018
  ident: ref35
  publication-title: NECST Neural joint source-channel coding
– ident: ref12
  doi: 10.1109/GLOCOM.2017.8254811
– ident: ref19
  doi: 10.1109/MWC.2019.1800601
– year: 2016
  ident: ref29
  publication-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
– ident: ref11
  doi: 10.1109/CISS.2017.7926071
– year: 2016
  ident: ref33
  publication-title: Amortised map inference for image super-resolution
– volume: 2
  year: 1996
  ident: ref37
  publication-title: Wireless Communications Principles and Practice
– ident: ref14
  doi: 10.1109/LWC.2018.2832128
– year: 2017
  ident: ref22
  publication-title: Deep Learning Based MIMO Communications
– ident: ref40
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref15
  doi: 10.1109/LWC.2017.2757490
– ident: ref32
  doi: 10.1109/CVPR.2017.19
– ident: ref18
  doi: 10.1109/LCOMM.2018.2877965
– ident: ref41
  doi: 10.1109/TIT.1967.1054010
– ident: ref7
  doi: 10.1109/ICASSP.2018.8461983
– ident: ref1
  doi: 10.1109/TCOMM.2019.2924010
– ident: ref20
  doi: 10.1109/MWC.2019.1800447
– ident: ref24
  doi: 10.1109/LCOMM.2018.2868103
– ident: ref44
  doi: 10.1109/ICCV.2001.937655
– ident: ref39
  doi: 10.1109/ICCV.2015.170
– ident: ref21
  doi: 10.1109/SPAWC.2018.8445920
– ident: ref6
  doi: 10.1109/TWC.2020.2970707
– ident: ref2
  doi: 10.1109/TCCN.2017.2758370
– ident: ref13
  doi: 10.1109/SiPS.2017.8109997
– ident: ref38
  doi: 10.1162/neco.1989.1.4.541
– ident: ref23
  doi: 10.1109/JSAC.2019.2933891
– ident: ref9
  doi: 10.1109/ALLERTON.2016.7852251
– ident: ref28
  doi: 10.1109/TIP.2017.2713099
– ident: ref31
  doi: 10.1109/ICCV.2017.481
– ident: ref4
  doi: 10.1109/JSTSP.2017.2784180
– ident: ref43
  doi: 10.1007/s11263-015-0816-y
– ident: ref8
  doi: 10.1109/ICC40277.2020.9149030
– ident: ref16
  doi: 10.1109/SPAWC.2017.8227772
– start-page: 9446
  year: 2018
  ident: ref34
  article-title: Deep image prior
  publication-title: Proc IEEE Conf Comput Vis and Pattern Recog
– start-page: 2672
  year: 2014
  ident: ref30
  article-title: Generative adversarial networks
  publication-title: Proc Conf Neural Inf Process Syst (NIPS)
– ident: ref36
  doi: 10.1109/TCCN.2019.2919300
– ident: ref5
  doi: 10.1109/GLOCOMW.2018.8644250
– ident: ref42
  doi: 10.1109/COMST.2015.2475242
– ident: ref25
  doi: 10.1109/CVPR.2012.6247952
SSID ssj0001626684
Score 2.4765105
Snippet The recent development in machine learning, especially in deep neural networks (DNN), has enabled learning-based end-to-end communication systems, where DNNs...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 702
SubjectTerms Artificial neural networks
Channel estimation
Channels
Communication
Communication systems
Data recovery
Deep learning
Feature extraction
Information retrieval
joint source channel coding
Machine learning
MIMO communication
Modules
Parameter estimation
pilot-free end-to-end communications
Receivers
Transmitters
Wireless communication
Wireless communication systems
Wireless communications
Title Deep Learning Based End-to-End Wireless Communication Systems Without Pilots
URI https://ieeexplore.ieee.org/document/9360873
https://www.proquest.com/docview/2570199501
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwRhQK8sCEcMnLsT1CKaoQrRio1C2KX4CoGgTpwq_HTtxCASGmRIodWffw3dl33wGcJHmgc0M5NiaKcSKIwJwahlnORZozEwXM1Q4Phml_lNyMybgBZ4taGK11lXymO-61ustXhZy5o7JzHqcBo_EKrFgxq2u1Ps9TrGeessRfXIYBP7_vdoc2AIzCTuzCnjRZMj1VL5UfG3BlVa43YDBfT51M8tyZlaIj379BNf53wZuw7t1LdFHLwxY09HQb1r6ADu7A7ZXWL8jjqj6gS2vGFOpNFS4LbB_I5cNO7P6HlmpHkIc2t5_Lx2JWorunSVG-7cLounff7WPfUwFLa9hLrGmkIs5imUiVul7e2kRWRUkutVCKMGXtPTGhdJ1fktAwRXLChSHcyDimLI_3oDktpnofkLb6HhIZUoegb71AkRpNZRhRxYTSlLUgmJM7kx5w3PW9mGRV4BHwzHEocxzKPIdacLqY8lKjbfw1eMdRfDHQE7sF7TlPM6-Pb5nr1eeK0YPw4PdZh7Dq_l1nj7WhWb7O9JF1N0pxXMnZB31Y0Z8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnBCuGRzbB-hgAq0FYcicYviDRBVgyC98PXYiVtWIU6JFFuxZjx-Y3vmDcBBkgc6N5RjY6IYJ4IIzKlhmOVcpDkzUcBc7nC3l7Zvk6s7cjcFR5NcGK11FXymm-61ustXhRy5o7JjHqcBo_E0zFrcT0idrfVxomJ985Ql_uoyDPhxv9Xq2S1gFDZjt_FJky_gU1VT-bEEV7hysQTd8YjqcJKn5qgUTfn2jazxv0NehkXvYKKTekaswJQersLCJ9rBNeicaf2MPLPqPTq1QKbQ-VDhssD2gVxE7MCugOhL9gjy5Ob2c_lQjEp08zgoytd1uL0477fa2FdVwNJCe4k1jVTEWSwTqVJXzVubyBopyaUWShGmLOITE0pX-yUJDVMkJ1wYwo2MY8ryeANmhsVQbwLS1uJDIkPqOPStHyhSo6kMI6qYUJqyBgRjcWfSU467yheDrNp6BDxzGsqchjKvoQYcTro813wbfzVecxKfNPTCbsDOWKeZt8jXzFXrc-noQbj1e699mGv3u52sc9m73oZ59586lmwHZsqXkd61zkcp9qo59w6iKtTs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+End-to-End+Wireless+Communication+Systems+Without+Pilots&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Ye%2C+Hao&rft.au=Li%2C+Geoffrey+Ye&rft.au=Juang%2C+Biing-Hwang&rft.date=2021-09-01&rft.issn=2332-7731&rft.eissn=2332-7731&rft.volume=7&rft.issue=3&rft.spage=702&rft.epage=714&rft_id=info:doi/10.1109%2FTCCN.2021.3061464&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCCN_2021_3061464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon