Global Finite-Time Controller Design for HOSM Dynamics Subject to Upper-Triangular Structure
In this paper, a novel saturation-based control method is proposed for high-order sliding mode (HOSM) dynamics with upper-triangular nonlinearities. Firstly, a new HOSM dynamics with upper-triangular nonlinearities is constructed based on the traditional HOSM dynamics, so as to reduce the uncertaint...
Saved in:
Published in | IEEE transactions on circuits and systems. I, Regular papers Vol. 69; no. 9; pp. 3701 - 3714 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a novel saturation-based control method is proposed for high-order sliding mode (HOSM) dynamics with upper-triangular nonlinearities. Firstly, a new HOSM dynamics with upper-triangular nonlinearities is constructed based on the traditional HOSM dynamics, so as to reduce the uncertainties in the control input channel. Then, a HOSM controller is established by means of the adding a power integrator method such that the new HOSM dynamics is locally stabilized. Finally, the saturation-based controller is constructed by a combination of the saturation technique and the local HOSM controller to guarantee that the sliding variables can converge into a domain of attraction in a finite time and retain inside it thereafter. The rigorous stability analysis is made by the Lyapunov theory. A simulation example is also given to demonstrate the effectiveness of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2022.3175427 |