Deep Learning Approach for Detecting Work-Related Stress Using Multimodal Signals
Work-related stress causes serious negative physiological and socioeconomic effects on employees. Detecting stress levels in a timely manner is important for appropriate stress management; therefore, this study proposes a deep learning (DL) approach that accurately detects work-related stress by usi...
Saved in:
Published in | IEEE sensors journal Vol. 22; no. 12; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2022.3170915 |
Cover
Loading…
Abstract | Work-related stress causes serious negative physiological and socioeconomic effects on employees. Detecting stress levels in a timely manner is important for appropriate stress management; therefore, this study proposes a deep learning (DL) approach that accurately detects work-related stress by using multimodal signals. We designed a protocol that simulates stressful situations and recruited 24 subjects for the experiments. Then, we collected electrocardiogram (ECG), respiration (RESP), and video data. The datasets were pre-processed and 10-s ECG and RESP signals and a sequence of facial features were fed into our deep neural network. Sixty-eight facial landmarks' coordinates were extracted, and facial textures were extracted from a pre-trained network based on facial expression recognition. Each signal was processed by each of its network branch, and data were fused at two different levels: 1) feature-level and 2) decision-level. The feature-level fusion that used RESP and facial landmarks' coordinates showed average accuracy of 73.3%, AUC of 0.822, and F1 score of 0.700 in two-level stress classification, and the feature-level fusion that used ECG, RESP, and the coordinates showed average accuracy of 54.4%, AUC of 0.727, and F1 score of 0.508 in three-level stress classification. When analyzing the weights in the decision-level fusion, we found that the importance of each information item varied according to the stress classification problem. When comparing t-stochastic neighbor embedding results, we observed that overlapped samples of different classes caused performance degradation in both classifications. Our findings suggest that the proposed DL approach fusing multimodal and heterogeneous signals can enhance stress detection. |
---|---|
AbstractList | Work-related stress causes serious negative physiological and socioeconomic effects on employees. Detecting stress levels in a timely manner is important for appropriate stress management; therefore, this study proposes a deep learning (DL) approach that accurately detects work-related stress by using multimodal signals. We designed a protocol that simulates stressful situations and recruited 24 subjects for the experiments. Then, we collected electrocardiogram (ECG), respiration (RESP), and video data. The datasets were pre-processed and 10-s ECG and RESP signals and a sequence of facial features were fed into our deep neural network. Sixty-eight facial landmarks’ coordinates were extracted, and facial textures were extracted from a pre-trained network based on facial expression recognition. Each signal was processed by each of its network branch, and data were fused at two different levels: 1) feature-level and 2) decision-level. The feature-level fusion that used RESP and facial landmarks’ coordinates showed average accuracy of 73.3%, AUC of 0.822, and F1 score of 0.700 in two-level stress classification, and the feature-level fusion that used ECG, RESP, and the coordinates showed average accuracy of 54.4%, AUC of 0.727, and F1 score of 0.508 in three-level stress classification. When analyzing the weights in the decision-level fusion, we found that the importance of each information item varied according to the stress classification problem. When comparing t-stochastic neighbor embedding results, we observed that overlapped samples of different classes caused performance degradation in both classifications. Our findings suggest that the proposed DL approach fusing multimodal and heterogeneous signals can enhance stress detection. |
Author | Park, Sung-Min Kim, Namho Seo, Wonju Park, Cheolsoo |
Author_xml | – sequence: 1 givenname: Wonju surname: Seo fullname: Seo, Wonju organization: Department of Convergence IT Engineering, Pohang University of Science and Technology, Republic of Korea – sequence: 2 givenname: Namho surname: Kim fullname: Kim, Namho organization: Department of Convergence IT Engineering, Pohang University of Science and Technology, Republic of Korea – sequence: 3 givenname: Cheolsoo surname: Park fullname: Park, Cheolsoo organization: School of Computer and Information Engineering, Kwangwoon University, Republic of Korea – sequence: 4 givenname: Sung-Min surname: Park fullname: Park, Sung-Min organization: Department of Convergence IT Engineering, Pohang University of Science and Technology, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology, Republic of Korea; and Institute of Convergence Science, Yonsei University, Republic of Korea |
BookMark | eNp9UMtOwzAQtFCRaAsfgLhE4pziR-K1j1VbXiogaBHcIjfZlJQ0CbZ74O9J1IoDB06z2p2ZHc2A9Kq6QkLOGR0xRvXV_WL2OOKU85FgQDWLj0ifxbEKGUSq182ChpGA9xMycG5DKdMQQ588TxGbYI7GVkW1DsZNY2uTfgR5bYMpekx9t36r7Wf4gqXxmAULb9G54NV1l4dd6YttnZkyWBTrypTulBznLeDZAYdkeT1bTm7D-dPN3WQ8D1OuhQ-RZ4A0y4XIQKBSUphIglS4YkprlBlwk8tMxqCQtksjZZ6lWgGscmNADMnl3rYN_LVD55NNvbNdgIS3PqAEpbxlsT0rtbVzFvOkscXW2O-E0aQrLumKS7rikkNxrQb-aNLCG1_UlbemKP9VXuyVBSL-ftIgI4il-AGE0H1k |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3508271 crossref_primary_10_1371_journal_pone_0305864 crossref_primary_10_1109_TAFFC_2023_3312762 crossref_primary_10_34133_icomputing_0090 crossref_primary_10_1016_j_compbiomed_2024_109217 crossref_primary_10_1109_TAFFC_2023_3290177 crossref_primary_10_1016_j_compeleceng_2024_109551 crossref_primary_10_1109_JSEN_2024_3394846 crossref_primary_10_1007_s42979_024_02730_7 crossref_primary_10_1109_JSEN_2024_3506984 crossref_primary_10_1016_j_neunet_2024_106760 crossref_primary_10_3390_s23073565 crossref_primary_10_1109_TCE_2024_3366988 |
Cites_doi | 10.1109/CVPRW50498.2020.00154 10.1016/j.bspc.2016.06.020 10.1177/0018720820913173 10.1109/JSEN.2020.3026717 10.1145/2993148.2993165 10.1109/ACCESS.2016.2548980 10.3390/s19133021 10.1155/2011/617210 10.1016/j.jbi.2019.103139 10.1016/j.procs.2017.09.090 10.1093/occmed/kqr196 10.1109/IWBIS.2018.8471709 10.1007/s12668-013-0089-2 10.1109/ICCE.2017.7889247 10.4103/0975-7406.155764 10.1037/t02889-000 10.1109/ACCESS.2019.2907076 10.1037/t06496-000 10.1109/JPROC.2015.2460697 10.1109/TBME.2017.2764507 10.1016/j.inffus.2019.06.019 10.1093/bib/bbx044 10.1109/ICIP.2014.7026203 10.1007/s00779-007-0173-0 10.1109/TITS.2005.848368 10.1016/j.eswa.2021.114693 10.1016/j.jbi.2020.103427 10.1023/A:1023237014909 10.1038/s41746-018-0074-9 10.1109/JBHI.2018.2883751 10.1089/tmj.2017.0250 10.1109/ACII.2013.105 10.1016/j.jbi.2015.11.007 10.3390/s20195552 10.1109/ACII.2017.8273639 10.1007/s10919-013-0159-8 10.1037/bul0000096 10.1038/nature14539 10.1016/j.neucom.2018.03.068 10.1007/s00420-008-0347-8 10.3390/s19204408 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2022.3170915 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1 |
ExternalDocumentID | 10_1109_JSEN_2022_3170915 9764756 |
Genre | orig-research |
GrantInformation_xml | – fundername: NRF grant funded by the Korea government MSIT grantid: No. 2020R1A2C2005385 – fundername: Basic Science Research Program through the NRF funded by the Ministry of Education grantid: 2020R1A6A1A03047902 – fundername: National R and D Program through the NRF funded by Ministry of Science and ICT grantid: 2020M3H4A1A02084830 – fundername: National Research Foundation of Korea NRF grant funded by the Korea government MSIT grantid: NRF-2017R1A5A1015596 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-e2d7e0df33d73e8863a46768eb1899e6d72af6d6578e0eb1a66fdc9877bfaa73 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:07:11 EDT 2025 Thu Apr 24 22:54:30 EDT 2025 Tue Jul 01 04:26:51 EDT 2025 Fri Jul 18 03:48:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-e2d7e0df33d73e8863a46768eb1899e6d72af6d6578e0eb1a66fdc9877bfaa73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8359-8110 0000-0001-8042-007X |
PQID | 2676783002 |
PQPubID | 75733 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2676783002 ieee_primary_9764756 crossref_primary_10_1109_JSEN_2022_3170915 crossref_citationtrail_10_1109_JSEN_2022_3170915 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-15 |
PublicationDateYYYYMMDD | 2022-06-15 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Sobin (ref15) 1999; 28 ref35 ref12 ref34 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 Hajera (ref5) 2018; 21 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref41 ref22 ref44 ref21 King (ref39) 2009; 10 ref28 ref27 ref29 ref8 ref7 Parshad (ref42) 2004; 53 ref9 ref4 ref3 ref6 Varvogli (ref43) 2011; 5 ref40 |
References_xml | – ident: ref32 doi: 10.1109/CVPRW50498.2020.00154 – ident: ref34 doi: 10.1016/j.bspc.2016.06.020 – ident: ref8 doi: 10.1177/0018720820913173 – ident: ref27 doi: 10.1109/JSEN.2020.3026717 – ident: ref14 doi: 10.1145/2993148.2993165 – ident: ref44 doi: 10.1109/ACCESS.2016.2548980 – ident: ref23 doi: 10.3390/s19133021 – ident: ref36 doi: 10.1155/2011/617210 – volume: 5 start-page: 74 issue: 2 year: 2011 ident: ref43 article-title: Stress management techniques: Evidence-based procedures that reduce stress and promote health publication-title: Health Sci. J. – ident: ref7 doi: 10.1016/j.jbi.2019.103139 – ident: ref18 doi: 10.1016/j.procs.2017.09.090 – ident: ref45 doi: 10.1093/occmed/kqr196 – ident: ref33 doi: 10.1109/IWBIS.2018.8471709 – ident: ref1 doi: 10.1007/s12668-013-0089-2 – ident: ref6 doi: 10.1109/ICCE.2017.7889247 – ident: ref2 doi: 10.4103/0975-7406.155764 – ident: ref9 doi: 10.1037/t02889-000 – ident: ref21 doi: 10.1109/ACCESS.2019.2907076 – ident: ref10 doi: 10.1037/t06496-000 – ident: ref26 doi: 10.1109/JPROC.2015.2460697 – ident: ref17 doi: 10.1109/TBME.2017.2764507 – ident: ref41 doi: 10.1016/j.inffus.2019.06.019 – ident: ref25 doi: 10.1093/bib/bbx044 – ident: ref31 doi: 10.1109/ICIP.2014.7026203 – ident: ref35 doi: 10.1007/s00779-007-0173-0 – ident: ref13 doi: 10.1109/TITS.2005.848368 – ident: ref37 doi: 10.1016/j.eswa.2021.114693 – ident: ref11 doi: 10.1016/j.jbi.2020.103427 – volume: 28 start-page: 347 issue: 4 year: 1999 ident: ref15 article-title: Emotion in speech: The acoustic attributes of fear, anger, sadness, and joy publication-title: J. Psycholinguistic Res. doi: 10.1023/A:1023237014909 – ident: ref3 doi: 10.1038/s41746-018-0074-9 – volume: 10 start-page: 1755 year: 2009 ident: ref39 article-title: Dlib-ml: A machine learning toolkit publication-title: J. Mach. Learn. Res. – ident: ref12 doi: 10.1109/JBHI.2018.2883751 – ident: ref20 doi: 10.1089/tmj.2017.0250 – ident: ref30 doi: 10.1109/ACII.2013.105 – ident: ref28 doi: 10.1016/j.jbi.2015.11.007 – ident: ref29 doi: 10.3390/s20195552 – ident: ref19 doi: 10.1109/ACII.2017.8273639 – ident: ref38 doi: 10.1007/s10919-013-0159-8 – volume: 53 start-page: 191 issue: 3 year: 2004 ident: ref42 article-title: Role of yoga in stress management publication-title: West Indian Med. J. – ident: ref16 doi: 10.1037/bul0000096 – ident: ref24 doi: 10.1038/nature14539 – ident: ref40 doi: 10.1016/j.neucom.2018.03.068 – ident: ref4 doi: 10.1007/s00420-008-0347-8 – volume: 21 start-page: 1 issue: 2 year: 2018 ident: ref5 article-title: A comparative analysis of psychological stress detection methods publication-title: IJCEM – ident: ref22 doi: 10.3390/s19204408 |
SSID | ssj0019757 |
Score | 2.4548135 |
Snippet | Work-related stress causes serious negative physiological and socioeconomic effects on employees. Detecting stress levels in a timely manner is important for... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Biomedical monitoring Brain modeling Classification data fusion Decision analysis Deep learning deep learning approach Electrocardiography Face recognition Feature extraction Human factors Machine learning mental stress detection Monitoring multimodality Occupational stress Performance degradation Physiological effects Signal processing Stress Texture recognition Video data Work-related stress |
Title | Deep Learning Approach for Detecting Work-Related Stress Using Multimodal Signals |
URI | https://ieeexplore.ieee.org/document/9764756 https://www.proquest.com/docview/2676783002 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ui3rwLVar5OBJTI272WT3WHwggoJUobcl2cyqqK1oe9Bf7yRNiy_E2xKS3SWT5JvJzHwDsJuhdbnMKu5E6rjM0XBDMM29C0zWzhhhfe7wxaU6u5Hn3aw7BfuTXBhEDMFn2PKPwZfv-tXQX5UdEHRKnalpmCbDbZSrNfEYFDqwetIGFlymuhs9mIeiODjvnFySJZgkZKBqwsfsCwaFoio_TuIAL6eLcDH-sVFUyUNrOLCt6v0bZ-N__3wJFqKeydqjhbEMU9hbgflP7IMrMBsLoN-9rcLVMeIzi2Srt6wdmcYZqbTsGL2jwTf7m3UewufQsU7IMmEh5oCFPN6nvqNPdu5vPSfzGlyfnlwfnfFYbYFXBPkDjonTKFydpk6nmOcqNXSIqpwOc7LJUDmdmFo5RVscBTUapWpXFbnWtjZGp-sw0-v3cAOYMbbwlRJ0IWrphCkcVtJKUi1qq4w1DRDj6S-ryETuC2I8lsEiEUXpJVZ6iZVRYg3Ymwx5HtFw_NV51Utg0jFOfgOaYxmXcaO-loknrMtTwoXN30dtwZx_t48OO8yaMDN4GeI26SEDuxMW4Acim9oa |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1RONAe-K4IhdYHTggHZ9dr7x5RAaWUREIJUm4rez0LFZCgNjmUX8_YcSIKCPW2stay5bH9ZjwzbwD2M7Qul1nFnUgdlzkabgimuXeBydoZI6zPHe50VftKng-ywQIcznNhEDEEn2HTfwZfvhtVE_9UdkTQKXWmPsAS4X7WmmZrzX0GhQ68nnSEBZepHkQfZksUR-e90y7ZgklCJqomhMz-QaFQVuXVXRwA5mwVOrOpTeNKbpuTsW1Wjy9YG_937muwEjVNdjzdGuuwgMMN-PSMf3ADlmMJ9Ju_m3B5gvjAIt3qNTuOXOOMlFp2gt7V4Jv92zoPAXToWC_kmbAQdcBCJu_9yNGQvV_XnpV5C_pnp_3vbR7rLfCKQH_MMXEahavT1OkU81ylhq5RldN1TlYZKqcTUyun6JCjoEajVO2qItfa1sbo9DMsDkdD3AZmjC18rQRdiFo6YQqHlbSSlIvaKmNNA8Rs-csqcpH7khh3ZbBJRFF6iZVeYmWUWAMO5l0epkQc7_286SUw_zEufgN2ZzIu41H9Uyaesi5PCRl23u71DZbb_c5FefGj-_MLfPTj-FixVrYLi-PfE9wjrWRsv4bN-ASsm91j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Approach+for+Detecting+Work-Related+Stress+Using+Multimodal+Signals&rft.jtitle=IEEE+sensors+journal&rft.au=Seo%2C+Wonju&rft.au=Kim%2C+Namho&rft.au=Park%2C+Cheolsoo&rft.au=Sung-Min%2C+Park&rft.date=2022-06-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=12&rft.spage=11892&rft_id=info:doi/10.1109%2FJSEN.2022.3170915&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |