Deep Learning Approach for Detecting Work-Related Stress Using Multimodal Signals

Work-related stress causes serious negative physiological and socioeconomic effects on employees. Detecting stress levels in a timely manner is important for appropriate stress management; therefore, this study proposes a deep learning (DL) approach that accurately detects work-related stress by usi...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 22; no. 12; p. 1
Main Authors Seo, Wonju, Kim, Namho, Park, Cheolsoo, Park, Sung-Min
Format Journal Article
LanguageEnglish
Published New York IEEE 15.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2022.3170915

Cover

Loading…
Abstract Work-related stress causes serious negative physiological and socioeconomic effects on employees. Detecting stress levels in a timely manner is important for appropriate stress management; therefore, this study proposes a deep learning (DL) approach that accurately detects work-related stress by using multimodal signals. We designed a protocol that simulates stressful situations and recruited 24 subjects for the experiments. Then, we collected electrocardiogram (ECG), respiration (RESP), and video data. The datasets were pre-processed and 10-s ECG and RESP signals and a sequence of facial features were fed into our deep neural network. Sixty-eight facial landmarks' coordinates were extracted, and facial textures were extracted from a pre-trained network based on facial expression recognition. Each signal was processed by each of its network branch, and data were fused at two different levels: 1) feature-level and 2) decision-level. The feature-level fusion that used RESP and facial landmarks' coordinates showed average accuracy of 73.3%, AUC of 0.822, and F1 score of 0.700 in two-level stress classification, and the feature-level fusion that used ECG, RESP, and the coordinates showed average accuracy of 54.4%, AUC of 0.727, and F1 score of 0.508 in three-level stress classification. When analyzing the weights in the decision-level fusion, we found that the importance of each information item varied according to the stress classification problem. When comparing t-stochastic neighbor embedding results, we observed that overlapped samples of different classes caused performance degradation in both classifications. Our findings suggest that the proposed DL approach fusing multimodal and heterogeneous signals can enhance stress detection.
AbstractList Work-related stress causes serious negative physiological and socioeconomic effects on employees. Detecting stress levels in a timely manner is important for appropriate stress management; therefore, this study proposes a deep learning (DL) approach that accurately detects work-related stress by using multimodal signals. We designed a protocol that simulates stressful situations and recruited 24 subjects for the experiments. Then, we collected electrocardiogram (ECG), respiration (RESP), and video data. The datasets were pre-processed and 10-s ECG and RESP signals and a sequence of facial features were fed into our deep neural network. Sixty-eight facial landmarks’ coordinates were extracted, and facial textures were extracted from a pre-trained network based on facial expression recognition. Each signal was processed by each of its network branch, and data were fused at two different levels: 1) feature-level and 2) decision-level. The feature-level fusion that used RESP and facial landmarks’ coordinates showed average accuracy of 73.3%, AUC of 0.822, and F1 score of 0.700 in two-level stress classification, and the feature-level fusion that used ECG, RESP, and the coordinates showed average accuracy of 54.4%, AUC of 0.727, and F1 score of 0.508 in three-level stress classification. When analyzing the weights in the decision-level fusion, we found that the importance of each information item varied according to the stress classification problem. When comparing t-stochastic neighbor embedding results, we observed that overlapped samples of different classes caused performance degradation in both classifications. Our findings suggest that the proposed DL approach fusing multimodal and heterogeneous signals can enhance stress detection.
Author Park, Sung-Min
Kim, Namho
Seo, Wonju
Park, Cheolsoo
Author_xml – sequence: 1
  givenname: Wonju
  surname: Seo
  fullname: Seo, Wonju
  organization: Department of Convergence IT Engineering, Pohang University of Science and Technology, Republic of Korea
– sequence: 2
  givenname: Namho
  surname: Kim
  fullname: Kim, Namho
  organization: Department of Convergence IT Engineering, Pohang University of Science and Technology, Republic of Korea
– sequence: 3
  givenname: Cheolsoo
  surname: Park
  fullname: Park, Cheolsoo
  organization: School of Computer and Information Engineering, Kwangwoon University, Republic of Korea
– sequence: 4
  givenname: Sung-Min
  surname: Park
  fullname: Park, Sung-Min
  organization: Department of Convergence IT Engineering, Pohang University of Science and Technology, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology, Republic of Korea; and Institute of Convergence Science, Yonsei University, Republic of Korea
BookMark eNp9UMtOwzAQtFCRaAsfgLhE4pziR-K1j1VbXiogaBHcIjfZlJQ0CbZ74O9J1IoDB06z2p2ZHc2A9Kq6QkLOGR0xRvXV_WL2OOKU85FgQDWLj0ifxbEKGUSq182ChpGA9xMycG5DKdMQQ588TxGbYI7GVkW1DsZNY2uTfgR5bYMpekx9t36r7Wf4gqXxmAULb9G54NV1l4dd6YttnZkyWBTrypTulBznLeDZAYdkeT1bTm7D-dPN3WQ8D1OuhQ-RZ4A0y4XIQKBSUphIglS4YkprlBlwk8tMxqCQtksjZZ6lWgGscmNADMnl3rYN_LVD55NNvbNdgIS3PqAEpbxlsT0rtbVzFvOkscXW2O-E0aQrLumKS7rikkNxrQb-aNLCG1_UlbemKP9VXuyVBSL-ftIgI4il-AGE0H1k
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3508271
crossref_primary_10_1371_journal_pone_0305864
crossref_primary_10_1109_TAFFC_2023_3312762
crossref_primary_10_34133_icomputing_0090
crossref_primary_10_1016_j_compbiomed_2024_109217
crossref_primary_10_1109_TAFFC_2023_3290177
crossref_primary_10_1016_j_compeleceng_2024_109551
crossref_primary_10_1109_JSEN_2024_3394846
crossref_primary_10_1007_s42979_024_02730_7
crossref_primary_10_1109_JSEN_2024_3506984
crossref_primary_10_1016_j_neunet_2024_106760
crossref_primary_10_3390_s23073565
crossref_primary_10_1109_TCE_2024_3366988
Cites_doi 10.1109/CVPRW50498.2020.00154
10.1016/j.bspc.2016.06.020
10.1177/0018720820913173
10.1109/JSEN.2020.3026717
10.1145/2993148.2993165
10.1109/ACCESS.2016.2548980
10.3390/s19133021
10.1155/2011/617210
10.1016/j.jbi.2019.103139
10.1016/j.procs.2017.09.090
10.1093/occmed/kqr196
10.1109/IWBIS.2018.8471709
10.1007/s12668-013-0089-2
10.1109/ICCE.2017.7889247
10.4103/0975-7406.155764
10.1037/t02889-000
10.1109/ACCESS.2019.2907076
10.1037/t06496-000
10.1109/JPROC.2015.2460697
10.1109/TBME.2017.2764507
10.1016/j.inffus.2019.06.019
10.1093/bib/bbx044
10.1109/ICIP.2014.7026203
10.1007/s00779-007-0173-0
10.1109/TITS.2005.848368
10.1016/j.eswa.2021.114693
10.1016/j.jbi.2020.103427
10.1023/A:1023237014909
10.1038/s41746-018-0074-9
10.1109/JBHI.2018.2883751
10.1089/tmj.2017.0250
10.1109/ACII.2013.105
10.1016/j.jbi.2015.11.007
10.3390/s20195552
10.1109/ACII.2017.8273639
10.1007/s10919-013-0159-8
10.1037/bul0000096
10.1038/nature14539
10.1016/j.neucom.2018.03.068
10.1007/s00420-008-0347-8
10.3390/s19204408
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2022.3170915
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2022_3170915
9764756
Genre orig-research
GrantInformation_xml – fundername: NRF grant funded by the Korea government MSIT
  grantid: No. 2020R1A2C2005385
– fundername: Basic Science Research Program through the NRF funded by the Ministry of Education
  grantid: 2020R1A6A1A03047902
– fundername: National R and D Program through the NRF funded by Ministry of Science and ICT
  grantid: 2020M3H4A1A02084830
– fundername: National Research Foundation of Korea NRF grant funded by the Korea government MSIT
  grantid: NRF-2017R1A5A1015596
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-e2d7e0df33d73e8863a46768eb1899e6d72af6d6578e0eb1a66fdc9877bfaa73
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:07:11 EDT 2025
Thu Apr 24 22:54:30 EDT 2025
Tue Jul 01 04:26:51 EDT 2025
Fri Jul 18 03:48:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-e2d7e0df33d73e8863a46768eb1899e6d72af6d6578e0eb1a66fdc9877bfaa73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8359-8110
0000-0001-8042-007X
PQID 2676783002
PQPubID 75733
PageCount 1
ParticipantIDs proquest_journals_2676783002
ieee_primary_9764756
crossref_primary_10_1109_JSEN_2022_3170915
crossref_citationtrail_10_1109_JSEN_2022_3170915
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-15
PublicationDateYYYYMMDD 2022-06-15
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Sobin (ref15) 1999; 28
ref35
ref12
ref34
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
Hajera (ref5) 2018; 21
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref41
ref22
ref44
ref21
King (ref39) 2009; 10
ref28
ref27
ref29
ref8
ref7
Parshad (ref42) 2004; 53
ref9
ref4
ref3
ref6
Varvogli (ref43) 2011; 5
ref40
References_xml – ident: ref32
  doi: 10.1109/CVPRW50498.2020.00154
– ident: ref34
  doi: 10.1016/j.bspc.2016.06.020
– ident: ref8
  doi: 10.1177/0018720820913173
– ident: ref27
  doi: 10.1109/JSEN.2020.3026717
– ident: ref14
  doi: 10.1145/2993148.2993165
– ident: ref44
  doi: 10.1109/ACCESS.2016.2548980
– ident: ref23
  doi: 10.3390/s19133021
– ident: ref36
  doi: 10.1155/2011/617210
– volume: 5
  start-page: 74
  issue: 2
  year: 2011
  ident: ref43
  article-title: Stress management techniques: Evidence-based procedures that reduce stress and promote health
  publication-title: Health Sci. J.
– ident: ref7
  doi: 10.1016/j.jbi.2019.103139
– ident: ref18
  doi: 10.1016/j.procs.2017.09.090
– ident: ref45
  doi: 10.1093/occmed/kqr196
– ident: ref33
  doi: 10.1109/IWBIS.2018.8471709
– ident: ref1
  doi: 10.1007/s12668-013-0089-2
– ident: ref6
  doi: 10.1109/ICCE.2017.7889247
– ident: ref2
  doi: 10.4103/0975-7406.155764
– ident: ref9
  doi: 10.1037/t02889-000
– ident: ref21
  doi: 10.1109/ACCESS.2019.2907076
– ident: ref10
  doi: 10.1037/t06496-000
– ident: ref26
  doi: 10.1109/JPROC.2015.2460697
– ident: ref17
  doi: 10.1109/TBME.2017.2764507
– ident: ref41
  doi: 10.1016/j.inffus.2019.06.019
– ident: ref25
  doi: 10.1093/bib/bbx044
– ident: ref31
  doi: 10.1109/ICIP.2014.7026203
– ident: ref35
  doi: 10.1007/s00779-007-0173-0
– ident: ref13
  doi: 10.1109/TITS.2005.848368
– ident: ref37
  doi: 10.1016/j.eswa.2021.114693
– ident: ref11
  doi: 10.1016/j.jbi.2020.103427
– volume: 28
  start-page: 347
  issue: 4
  year: 1999
  ident: ref15
  article-title: Emotion in speech: The acoustic attributes of fear, anger, sadness, and joy
  publication-title: J. Psycholinguistic Res.
  doi: 10.1023/A:1023237014909
– ident: ref3
  doi: 10.1038/s41746-018-0074-9
– volume: 10
  start-page: 1755
  year: 2009
  ident: ref39
  article-title: Dlib-ml: A machine learning toolkit
  publication-title: J. Mach. Learn. Res.
– ident: ref12
  doi: 10.1109/JBHI.2018.2883751
– ident: ref20
  doi: 10.1089/tmj.2017.0250
– ident: ref30
  doi: 10.1109/ACII.2013.105
– ident: ref28
  doi: 10.1016/j.jbi.2015.11.007
– ident: ref29
  doi: 10.3390/s20195552
– ident: ref19
  doi: 10.1109/ACII.2017.8273639
– ident: ref38
  doi: 10.1007/s10919-013-0159-8
– volume: 53
  start-page: 191
  issue: 3
  year: 2004
  ident: ref42
  article-title: Role of yoga in stress management
  publication-title: West Indian Med. J.
– ident: ref16
  doi: 10.1037/bul0000096
– ident: ref24
  doi: 10.1038/nature14539
– ident: ref40
  doi: 10.1016/j.neucom.2018.03.068
– ident: ref4
  doi: 10.1007/s00420-008-0347-8
– volume: 21
  start-page: 1
  issue: 2
  year: 2018
  ident: ref5
  article-title: A comparative analysis of psychological stress detection methods
  publication-title: IJCEM
– ident: ref22
  doi: 10.3390/s19204408
SSID ssj0019757
Score 2.4548135
Snippet Work-related stress causes serious negative physiological and socioeconomic effects on employees. Detecting stress levels in a timely manner is important for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Biomedical monitoring
Brain modeling
Classification
data fusion
Decision analysis
Deep learning
deep learning approach
Electrocardiography
Face recognition
Feature extraction
Human factors
Machine learning
mental stress detection
Monitoring
multimodality
Occupational stress
Performance degradation
Physiological effects
Signal processing
Stress
Texture recognition
Video data
Work-related stress
Title Deep Learning Approach for Detecting Work-Related Stress Using Multimodal Signals
URI https://ieeexplore.ieee.org/document/9764756
https://www.proquest.com/docview/2676783002
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ui3rwLVar5OBJTI272WT3WHwggoJUobcl2cyqqK1oe9Bf7yRNiy_E2xKS3SWT5JvJzHwDsJuhdbnMKu5E6rjM0XBDMM29C0zWzhhhfe7wxaU6u5Hn3aw7BfuTXBhEDMFn2PKPwZfv-tXQX5UdEHRKnalpmCbDbZSrNfEYFDqwetIGFlymuhs9mIeiODjvnFySJZgkZKBqwsfsCwaFoio_TuIAL6eLcDH-sVFUyUNrOLCt6v0bZ-N__3wJFqKeydqjhbEMU9hbgflP7IMrMBsLoN-9rcLVMeIzi2Srt6wdmcYZqbTsGL2jwTf7m3UewufQsU7IMmEh5oCFPN6nvqNPdu5vPSfzGlyfnlwfnfFYbYFXBPkDjonTKFydpk6nmOcqNXSIqpwOc7LJUDmdmFo5RVscBTUapWpXFbnWtjZGp-sw0-v3cAOYMbbwlRJ0IWrphCkcVtJKUi1qq4w1DRDj6S-ryETuC2I8lsEiEUXpJVZ6iZVRYg3Ymwx5HtFw_NV51Utg0jFOfgOaYxmXcaO-loknrMtTwoXN30dtwZx_t48OO8yaMDN4GeI26SEDuxMW4Acim9oa
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1RONAe-K4IhdYHTggHZ9dr7x5RAaWUREIJUm4rez0LFZCgNjmUX8_YcSIKCPW2stay5bH9ZjwzbwD2M7Qul1nFnUgdlzkabgimuXeBydoZI6zPHe50VftKng-ywQIcznNhEDEEn2HTfwZfvhtVE_9UdkTQKXWmPsAS4X7WmmZrzX0GhQ68nnSEBZepHkQfZksUR-e90y7ZgklCJqomhMz-QaFQVuXVXRwA5mwVOrOpTeNKbpuTsW1Wjy9YG_937muwEjVNdjzdGuuwgMMN-PSMf3ADlmMJ9Ju_m3B5gvjAIt3qNTuOXOOMlFp2gt7V4Jv92zoPAXToWC_kmbAQdcBCJu_9yNGQvV_XnpV5C_pnp_3vbR7rLfCKQH_MMXEahavT1OkU81ylhq5RldN1TlYZKqcTUyun6JCjoEajVO2qItfa1sbo9DMsDkdD3AZmjC18rQRdiFo6YQqHlbSSlIvaKmNNA8Rs-csqcpH7khh3ZbBJRFF6iZVeYmWUWAMO5l0epkQc7_286SUw_zEufgN2ZzIu41H9Uyaesi5PCRl23u71DZbb_c5FefGj-_MLfPTj-FixVrYLi-PfE9wjrWRsv4bN-ASsm91j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Approach+for+Detecting+Work-Related+Stress+Using+Multimodal+Signals&rft.jtitle=IEEE+sensors+journal&rft.au=Seo%2C+Wonju&rft.au=Kim%2C+Namho&rft.au=Park%2C+Cheolsoo&rft.au=Sung-Min%2C+Park&rft.date=2022-06-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=12&rft.spage=11892&rft_id=info:doi/10.1109%2FJSEN.2022.3170915&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon