Continual Learning of Micro-Doppler Signature-Based Human Activity Classification

Human activity classification based on micro-Doppler signatures measured by radar recently has been successfully applied in diverse applications due to the improvement of machine learning methods, e.g., deep convolutional neural networks (DCNNs). Despite the success, those methods encounter a common...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 19; pp. 1 - 5
Main Authors Lee, Donggyu, Park, Hyeongmin, Moon, Taesup, Kim, Youngwook
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human activity classification based on micro-Doppler signatures measured by radar recently has been successfully applied in diverse applications due to the improvement of machine learning methods, e.g., deep convolutional neural networks (DCNNs). Despite the success, those methods encounter a common practical problem when all the radar data are not readily available before training a model but sequentially arrive as the learning continues, e.g., during surveillance or search-and-rescue operations. That is, when DCNN is naively utilized in such settings, it is well-known that catastrophic forgetting of past learned tasks occurs; hence, more robust continual learning methods should be developed. To that end, we apply several state-of-the-art methods for two practical continual learning scenarios in activity classification, i.e., when the data for a subject and an activity class arrive incrementally, respectively, and compare the competitiveness of those methods. To the best of our knowledge, this is the first comparative study of continual learning methods for the classification based on micro-Doppler signatures-we find that exemplar memory-based methods particularly become very effective for both scenarios, not only for the performance but also for the memory usage.
AbstractList Human activity classification based on micro-Doppler signatures measured by radar recently has been successfully applied in diverse applications due to the improvement of machine learning methods, e.g., deep convolutional neural networks (DCNNs). Despite the success, those methods encounter a common practical problem when all the radar data are not readily available before training a model but sequentially arrive as the learning continues, e.g., during surveillance or search-and-rescue operations. That is, when DCNN is naively utilized in such settings, it is well-known that catastrophic forgetting of past learned tasks occurs; hence, more robust continual learning methods should be developed. To that end, we apply several state-of-the-art methods for two practical continual learning scenarios in activity classification, i.e., when the data for a subject and an activity class arrive incrementally, respectively, and compare the competitiveness of those methods. To the best of our knowledge, this is the first comparative study of continual learning methods for the classification based on micro-Doppler signatures-we find that exemplar memory-based methods particularly become very effective for both scenarios, not only for the performance but also for the memory usage.
Author Park, Hyeongmin
Moon, Taesup
Lee, Donggyu
Kim, Youngwook
Author_xml – sequence: 1
  givenname: Donggyu
  orcidid: 0000-0001-6833-9922
  surname: Lee
  fullname: Lee, Donggyu
  organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
– sequence: 2
  givenname: Hyeongmin
  surname: Park
  fullname: Park, Hyeongmin
  organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
– sequence: 3
  givenname: Taesup
  orcidid: 0000-0002-9257-6503
  surname: Moon
  fullname: Moon, Taesup
  email: tsmoon@skku.edu
  organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
– sequence: 4
  givenname: Youngwook
  orcidid: 0000-0002-4067-6254
  surname: Kim
  fullname: Kim, Youngwook
  organization: Department of Electrical and Computer Engineering, California State University at Fresno, Fresno, CA, USA
BookMark eNp9kEFLwzAYhoMouE1_gHgpeO5M0iRNjnPqJlREp-AtpDUZGV1ak1TYv7d1w4MHT993eJ_v5XvG4Ng1TgNwgeAUISiui8XLaoohhtMMEgYRPQIjRClPIc3R8bATmlLB30_BOIQNhJhwno_A87xx0bpO1UmhlXfWrZPGJI-28k1627RtrX2ysmunYud1eqOC_kiW3Va5ZFZF-2XjLpnXKgRrbKWibdwZODGqDvr8MCfg7f7udb5Mi6fFw3xWpBUWWUw1zJSoWEYI4kwZpZjOkdGEMGoEI0iI3ODSkFKXGDJICS-rEpcoF8IY2oMTcLW_2_rms9Mhyk3TeddXSswQRBxzjvsU2qf6f0Lw2sjW263yO4mgHMzJwZwczMmDuZ7J_zCVjT-_Ra9s_S95uSet1vq3SWRIcAqzbxNHfXY
CODEN IGRSBY
CitedBy_id crossref_primary_10_3390_rs13214264
crossref_primary_10_1109_TIM_2022_3154832
crossref_primary_10_1109_JSEN_2022_3141213
crossref_primary_10_3390_electronics13214257
crossref_primary_10_1109_TBIOM_2024_3428577
crossref_primary_10_3390_eng6030044
Cites_doi 10.1016/s0079-7421(08)60536-8
10.3390/s16121990
10.1109/MSP.2018.2890128
10.1109/TGRS.2009.2012849
10.1007/978-3-030-01219-9_9
10.1109/RADAR.2016.7485147
10.1073/pnas.1611835114
10.3390/s20041226
10.1109/RADAR.2015.7131232
10.1109/LGRS.2019.2919770
10.1109/JSTARS.2019.2925416
10.1109/LGRS.2015.2491329
10.1049/iet-rsn.2013.0165
10.1016/j.neunet.2019.01.012
10.1049/iet-rsn.2015.0119
10.1109/CVPR.2017.587
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2020.3046015
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2020_3046015
9319850
Genre orig-research
GrantInformation_xml – fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP) grant
– fundername: Korean Government
  grantid: 2016-0-00563; 2019-0-00421; 2019-0-01396; IITP-2020-2018-0-01798
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
RIG
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-e03a9c6344186afaa6e71fe4465f9641997f2bf4beb2060548bcb2b1799ff5c63
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 12:40:32 EDT 2025
Tue Jul 01 03:45:45 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Wed Aug 27 05:07:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-e03a9c6344186afaa6e71fe4465f9641997f2bf4beb2060548bcb2b1799ff5c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4067-6254
0000-0002-9257-6503
0000-0001-6833-9922
PQID 2610182882
PQPubID 75725
PageCount 5
ParticipantIDs proquest_journals_2610182882
crossref_primary_10_1109_LGRS_2020_3046015
ieee_primary_9319850
crossref_citationtrail_10_1109_LGRS_2020_3046015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
Chaudhry (ref17) 2019
ref2
ref1
Díaz-Rodríguez (ref20) 2018
ref19
ref18
ref8
ref7
Lopez-Paz (ref16)
ref9
ref4
Zenke (ref13); 70
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1016/s0079-7421(08)60536-8
– ident: ref8
  doi: 10.3390/s16121990
– ident: ref1
  doi: 10.1109/MSP.2018.2890128
– ident: ref4
  doi: 10.1109/TGRS.2009.2012849
– ident: ref14
  doi: 10.1007/978-3-030-01219-9_9
– start-page: 6467
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref16
  article-title: Gradient episodic memory for continual learning
– ident: ref2
  doi: 10.1109/RADAR.2016.7485147
– ident: ref12
  doi: 10.1073/pnas.1611835114
– ident: ref19
  doi: 10.3390/s20041226
– ident: ref3
  doi: 10.1109/RADAR.2015.7131232
– ident: ref9
  doi: 10.1109/LGRS.2019.2919770
– ident: ref18
  doi: 10.1109/JSTARS.2019.2925416
– ident: ref7
  doi: 10.1109/LGRS.2015.2491329
– volume-title: arXiv:1810.13166
  year: 2018
  ident: ref20
  article-title: Don’t forget, there is more than forgetting: New metrics for continual learning
– volume: 70
  start-page: 3987
  volume-title: Proc. 34th Int. Conf. Mach. Learn. (JMLR)
  ident: ref13
  article-title: Continual learning through synaptic intelligence
– ident: ref5
  doi: 10.1049/iet-rsn.2013.0165
– volume-title: arXiv:1902.10486
  year: 2019
  ident: ref17
  article-title: On tiny episodic memories in continual learning
– ident: ref11
  doi: 10.1016/j.neunet.2019.01.012
– ident: ref6
  doi: 10.1049/iet-rsn.2015.0119
– ident: ref15
  doi: 10.1109/CVPR.2017.587
SSID ssj0024887
Score 2.3760011
Snippet Human activity classification based on micro-Doppler signatures measured by radar recently has been successfully applied in diverse applications due to the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Classification
Comparative analysis
Comparative studies
Competitiveness
Continual learning
deep convolutional neural networks (DCNNs)
Doppler sonar
human activity classification
Learning algorithms
Learning systems
Machine learning
Methods
micro-Doppler
Neural networks
Radar
Radar data
Radar imaging
Radar signatures
Rescue operations
Search and rescue missions
Spectrogram
Task analysis
Training
Training data
Title Continual Learning of Micro-Doppler Signature-Based Human Activity Classification
URI https://ieeexplore.ieee.org/document/9319850
https://www.proquest.com/docview/2610182882
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VSggu7IiyyQdOCJeQJk58ZK8QRWKTeotixy4VqEWlPZSvZ8ZxCwKEuOVgS5HHybxnz7wHsCdjGRY6irlJQ4sERQiuoiTkxsS6kRcqzgX1O7duRPMxumrH7QocTHthjDGu-MzU6dHd5Rd9PaKjskOJ-yUlgj6DxK3s1frU1UudGR4hAh7LtO1vMI8CeXh9eXePTDBEgkrXgOSA-yUHOVOVH39il14uFqE1ebGyquS5Phqqun7_ptn43zdfggWPM9lxuTGWoWJ6KzDnLc-fxiswe-k8fcercEsKVV2SJmVebbXD-pa1qFSPn_URppoBu-92Sg1QfoJ5r2Du8J8d69J8gjlvTao6coFeg8eL84fTJvdOC1xjuh9yEzRyqUUDsVEqcpvnwiRH1pCYmpUiomIUGyobKeThARKgKFVahYrU5KyNceI6VHv9ntkAFidhIPPUIvAxUZIKJWWBIE1rETRUoYoaBJO1z7SXISc3jJfM0ZFAZhSujMKV-XDVYH865bXU4Phr8Cot_3SgX_kabE8CnPmv9C1D9hggv0KSsfn7rC2YD6ndgY5ckm2oDgcjs4MgZKh23e77AHcV15k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0hqipcaEtApFDqAyeEw2azdtbH9IMESCLxJeW2WnvtgEBJBckh_HpmvE5AUFW97cGWVh7vznv2zHsA-0qouDCJ4DaNHRIUKblOWjG3VphmXmiRS-p37g9k9zo5HYrhChwue2Gstb74zNbp0d_lFxMzo6OyI4X7JSWC_gHzvmiU3Vovynqpt8MjTMCFSofhDrMRqaNe5-ISuWCMFJUuAskD91UW8rYq7_7FPsEcf4L-4tXKupK7-myq6-bpjWrj_777Z1gPSJO1y63xBVbseAMqwfT8Zr4BHzve1XdehXPSqLolcVIW9FZHbOJYn4r1-K8JAlX7wC5vR6UKKP-Bma9g_viftU1pP8G8uybVHflQb8L18e-rn10evBa4wYQ_5TZq5srIJqKjVOYuz6VtNZwlOTWnZELlKC7WLtHIxCOkQEmqjY416ck5J3DiFqyOJ2O7DUy04kjlqUPoY5NWKrVSBcI0Y2TU1IUuahAt1j4zQYic_DDuM09IIpVRuDIKVxbCVYOD5ZQ_pQrHvwZXafmXA8PK12B3EeAsfKePGfLHCBkW0oyvf5_1HSrdq34v650MznZgLabmB38Aswur04eZ_YaQZKr3_E58BuEA2tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continual+Learning+of+Micro-Doppler+Signature-Based+Human+Activity+Classification&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Lee%2C+Donggyu&rft.au=Park%2C+Hyeongmin&rft.au=Moon%2C+Taesup&rft.au=Kim%2C+Youngwook&rft.date=2022&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2020.3046015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2020_3046015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon