Continual Learning of Micro-Doppler Signature-Based Human Activity Classification
Human activity classification based on micro-Doppler signatures measured by radar recently has been successfully applied in diverse applications due to the improvement of machine learning methods, e.g., deep convolutional neural networks (DCNNs). Despite the success, those methods encounter a common...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 19; pp. 1 - 5 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human activity classification based on micro-Doppler signatures measured by radar recently has been successfully applied in diverse applications due to the improvement of machine learning methods, e.g., deep convolutional neural networks (DCNNs). Despite the success, those methods encounter a common practical problem when all the radar data are not readily available before training a model but sequentially arrive as the learning continues, e.g., during surveillance or search-and-rescue operations. That is, when DCNN is naively utilized in such settings, it is well-known that catastrophic forgetting of past learned tasks occurs; hence, more robust continual learning methods should be developed. To that end, we apply several state-of-the-art methods for two practical continual learning scenarios in activity classification, i.e., when the data for a subject and an activity class arrive incrementally, respectively, and compare the competitiveness of those methods. To the best of our knowledge, this is the first comparative study of continual learning methods for the classification based on micro-Doppler signatures-we find that exemplar memory-based methods particularly become very effective for both scenarios, not only for the performance but also for the memory usage. |
---|---|
AbstractList | Human activity classification based on micro-Doppler signatures measured by radar recently has been successfully applied in diverse applications due to the improvement of machine learning methods, e.g., deep convolutional neural networks (DCNNs). Despite the success, those methods encounter a common practical problem when all the radar data are not readily available before training a model but sequentially arrive as the learning continues, e.g., during surveillance or search-and-rescue operations. That is, when DCNN is naively utilized in such settings, it is well-known that catastrophic forgetting of past learned tasks occurs; hence, more robust continual learning methods should be developed. To that end, we apply several state-of-the-art methods for two practical continual learning scenarios in activity classification, i.e., when the data for a subject and an activity class arrive incrementally, respectively, and compare the competitiveness of those methods. To the best of our knowledge, this is the first comparative study of continual learning methods for the classification based on micro-Doppler signatures-we find that exemplar memory-based methods particularly become very effective for both scenarios, not only for the performance but also for the memory usage. |
Author | Park, Hyeongmin Moon, Taesup Lee, Donggyu Kim, Youngwook |
Author_xml | – sequence: 1 givenname: Donggyu orcidid: 0000-0001-6833-9922 surname: Lee fullname: Lee, Donggyu organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 2 givenname: Hyeongmin surname: Park fullname: Park, Hyeongmin organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 3 givenname: Taesup orcidid: 0000-0002-9257-6503 surname: Moon fullname: Moon, Taesup email: tsmoon@skku.edu organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 4 givenname: Youngwook orcidid: 0000-0002-4067-6254 surname: Kim fullname: Kim, Youngwook organization: Department of Electrical and Computer Engineering, California State University at Fresno, Fresno, CA, USA |
BookMark | eNp9kEFLwzAYhoMouE1_gHgpeO5M0iRNjnPqJlREp-AtpDUZGV1ak1TYv7d1w4MHT993eJ_v5XvG4Ng1TgNwgeAUISiui8XLaoohhtMMEgYRPQIjRClPIc3R8bATmlLB30_BOIQNhJhwno_A87xx0bpO1UmhlXfWrZPGJI-28k1627RtrX2ysmunYud1eqOC_kiW3Va5ZFZF-2XjLpnXKgRrbKWibdwZODGqDvr8MCfg7f7udb5Mi6fFw3xWpBUWWUw1zJSoWEYI4kwZpZjOkdGEMGoEI0iI3ODSkFKXGDJICS-rEpcoF8IY2oMTcLW_2_rms9Mhyk3TeddXSswQRBxzjvsU2qf6f0Lw2sjW263yO4mgHMzJwZwczMmDuZ7J_zCVjT-_Ra9s_S95uSet1vq3SWRIcAqzbxNHfXY |
CODEN | IGRSBY |
CitedBy_id | crossref_primary_10_3390_rs13214264 crossref_primary_10_1109_TIM_2022_3154832 crossref_primary_10_1109_JSEN_2022_3141213 crossref_primary_10_3390_electronics13214257 crossref_primary_10_1109_TBIOM_2024_3428577 crossref_primary_10_3390_eng6030044 |
Cites_doi | 10.1016/s0079-7421(08)60536-8 10.3390/s16121990 10.1109/MSP.2018.2890128 10.1109/TGRS.2009.2012849 10.1007/978-3-030-01219-9_9 10.1109/RADAR.2016.7485147 10.1073/pnas.1611835114 10.3390/s20041226 10.1109/RADAR.2015.7131232 10.1109/LGRS.2019.2919770 10.1109/JSTARS.2019.2925416 10.1109/LGRS.2015.2491329 10.1049/iet-rsn.2013.0165 10.1016/j.neunet.2019.01.012 10.1049/iet-rsn.2015.0119 10.1109/CVPR.2017.587 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2020.3046015 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 5 |
ExternalDocumentID | 10_1109_LGRS_2020_3046015 9319850 |
Genre | orig-research |
GrantInformation_xml | – fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP) grant – fundername: Korean Government grantid: 2016-0-00563; 2019-0-00421; 2019-0-01396; IITP-2020-2018-0-01798 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION RIG 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-e03a9c6344186afaa6e71fe4465f9641997f2bf4beb2060548bcb2b1799ff5c63 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Mon Jun 30 12:40:32 EDT 2025 Tue Jul 01 03:45:45 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Wed Aug 27 05:07:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-e03a9c6344186afaa6e71fe4465f9641997f2bf4beb2060548bcb2b1799ff5c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4067-6254 0000-0002-9257-6503 0000-0001-6833-9922 |
PQID | 2610182882 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2610182882 crossref_primary_10_1109_LGRS_2020_3046015 ieee_primary_9319850 crossref_citationtrail_10_1109_LGRS_2020_3046015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref11 ref10 Chaudhry (ref17) 2019 ref2 ref1 Díaz-Rodríguez (ref20) 2018 ref19 ref18 ref8 ref7 Lopez-Paz (ref16) ref9 ref4 Zenke (ref13); 70 ref3 ref6 ref5 |
References_xml | – ident: ref10 doi: 10.1016/s0079-7421(08)60536-8 – ident: ref8 doi: 10.3390/s16121990 – ident: ref1 doi: 10.1109/MSP.2018.2890128 – ident: ref4 doi: 10.1109/TGRS.2009.2012849 – ident: ref14 doi: 10.1007/978-3-030-01219-9_9 – start-page: 6467 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref16 article-title: Gradient episodic memory for continual learning – ident: ref2 doi: 10.1109/RADAR.2016.7485147 – ident: ref12 doi: 10.1073/pnas.1611835114 – ident: ref19 doi: 10.3390/s20041226 – ident: ref3 doi: 10.1109/RADAR.2015.7131232 – ident: ref9 doi: 10.1109/LGRS.2019.2919770 – ident: ref18 doi: 10.1109/JSTARS.2019.2925416 – ident: ref7 doi: 10.1109/LGRS.2015.2491329 – volume-title: arXiv:1810.13166 year: 2018 ident: ref20 article-title: Don’t forget, there is more than forgetting: New metrics for continual learning – volume: 70 start-page: 3987 volume-title: Proc. 34th Int. Conf. Mach. Learn. (JMLR) ident: ref13 article-title: Continual learning through synaptic intelligence – ident: ref5 doi: 10.1049/iet-rsn.2013.0165 – volume-title: arXiv:1902.10486 year: 2019 ident: ref17 article-title: On tiny episodic memories in continual learning – ident: ref11 doi: 10.1016/j.neunet.2019.01.012 – ident: ref6 doi: 10.1049/iet-rsn.2015.0119 – ident: ref15 doi: 10.1109/CVPR.2017.587 |
SSID | ssj0024887 |
Score | 2.3760011 |
Snippet | Human activity classification based on micro-Doppler signatures measured by radar recently has been successfully applied in diverse applications due to the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Classification Comparative analysis Comparative studies Competitiveness Continual learning deep convolutional neural networks (DCNNs) Doppler sonar human activity classification Learning algorithms Learning systems Machine learning Methods micro-Doppler Neural networks Radar Radar data Radar imaging Radar signatures Rescue operations Search and rescue missions Spectrogram Task analysis Training Training data |
Title | Continual Learning of Micro-Doppler Signature-Based Human Activity Classification |
URI | https://ieeexplore.ieee.org/document/9319850 https://www.proquest.com/docview/2610182882 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VSggu7IiyyQdOCJeQJk58ZK8QRWKTeotixy4VqEWlPZSvZ8ZxCwKEuOVgS5HHybxnz7wHsCdjGRY6irlJQ4sERQiuoiTkxsS6kRcqzgX1O7duRPMxumrH7QocTHthjDGu-MzU6dHd5Rd9PaKjskOJ-yUlgj6DxK3s1frU1UudGR4hAh7LtO1vMI8CeXh9eXePTDBEgkrXgOSA-yUHOVOVH39il14uFqE1ebGyquS5Phqqun7_ptn43zdfggWPM9lxuTGWoWJ6KzDnLc-fxiswe-k8fcercEsKVV2SJmVebbXD-pa1qFSPn_URppoBu-92Sg1QfoJ5r2Du8J8d69J8gjlvTao6coFeg8eL84fTJvdOC1xjuh9yEzRyqUUDsVEqcpvnwiRH1pCYmpUiomIUGyobKeThARKgKFVahYrU5KyNceI6VHv9ntkAFidhIPPUIvAxUZIKJWWBIE1rETRUoYoaBJO1z7SXISc3jJfM0ZFAZhSujMKV-XDVYH865bXU4Phr8Cot_3SgX_kabE8CnPmv9C1D9hggv0KSsfn7rC2YD6ndgY5ckm2oDgcjs4MgZKh23e77AHcV15k |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0hqipcaEtApFDqAyeEw2azdtbH9IMESCLxJeW2WnvtgEBJBckh_HpmvE5AUFW97cGWVh7vznv2zHsA-0qouDCJ4DaNHRIUKblOWjG3VphmXmiRS-p37g9k9zo5HYrhChwue2Gstb74zNbp0d_lFxMzo6OyI4X7JSWC_gHzvmiU3Vovynqpt8MjTMCFSofhDrMRqaNe5-ISuWCMFJUuAskD91UW8rYq7_7FPsEcf4L-4tXKupK7-myq6-bpjWrj_777Z1gPSJO1y63xBVbseAMqwfT8Zr4BHzve1XdehXPSqLolcVIW9FZHbOJYn4r1-K8JAlX7wC5vR6UKKP-Bma9g_viftU1pP8G8uybVHflQb8L18e-rn10evBa4wYQ_5TZq5srIJqKjVOYuz6VtNZwlOTWnZELlKC7WLtHIxCOkQEmqjY416ck5J3DiFqyOJ2O7DUy04kjlqUPoY5NWKrVSBcI0Y2TU1IUuahAt1j4zQYic_DDuM09IIpVRuDIKVxbCVYOD5ZQ_pQrHvwZXafmXA8PK12B3EeAsfKePGfLHCBkW0oyvf5_1HSrdq34v650MznZgLabmB38Aswur04eZ_YaQZKr3_E58BuEA2tw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continual+Learning+of+Micro-Doppler+Signature-Based+Human+Activity+Classification&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Lee%2C+Donggyu&rft.au=Park%2C+Hyeongmin&rft.au=Moon%2C+Taesup&rft.au=Kim%2C+Youngwook&rft.date=2022&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2020.3046015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2020_3046015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |