SCAttNet: Semantic Segmentation Network With Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images
High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing mass HRRSIs. However, HRRSIs often exhibit large in...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 18; no. 5; pp. 905 - 909 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing mass HRRSIs. However, HRRSIs often exhibit large intraclass variance and small interclass variance due to the diversity and complexity of ground objects, thereby bringing great challenges to a semantic segmentation task. In this letter, we propose a new end-to-end semantic segmentation network, which integrates lightweight spatial and channel attention modules that can refine features adaptively. We compare our method with several classic methods on the ISPRS Vaihingen and Potsdam data sets. Experimental results show that our method can achieve better semantic segmentation results. The source codes are available at https://github.com/lehaifeng/SCAttNet . |
---|---|
AbstractList | High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing mass HRRSIs. However, HRRSIs often exhibit large intraclass variance and small interclass variance due to the diversity and complexity of ground objects, thereby bringing great challenges to a semantic segmentation task. In this letter, we propose a new end-to-end semantic segmentation network, which integrates lightweight spatial and channel attention modules that can refine features adaptively. We compare our method with several classic methods on the ISPRS Vaihingen and Potsdam data sets. Experimental results show that our method can achieve better semantic segmentation results. The source codes are available at https://github.com/lehaifeng/SCAttNet . |
Author | Qiu, Kaijian Hong, Liang Tao, Chao Li, Haifeng Chen, Li Mei, Xiaoming |
Author_xml | – sequence: 1 givenname: Haifeng orcidid: 0000-0003-1173-6593 surname: Li fullname: Li, Haifeng organization: School of Geosciences and Info-Physics, Central South University, Changsha, China – sequence: 2 givenname: Kaijian surname: Qiu fullname: Qiu, Kaijian organization: School of Geosciences and Info-Physics, Central South University, Changsha, China – sequence: 3 givenname: Li orcidid: 0000-0002-4761-5913 surname: Chen fullname: Chen, Li organization: School of Geosciences and Info-Physics, Central South University, Changsha, China – sequence: 4 givenname: Xiaoming surname: Mei fullname: Mei, Xiaoming organization: School of Geosciences and Info-Physics, Central South University, Changsha, China – sequence: 5 givenname: Liang surname: Hong fullname: Hong, Liang organization: College of Tourism and Geographic Science, Yunnan Normal University, Kunming, China – sequence: 6 givenname: Chao orcidid: 0000-0003-0071-310X surname: Tao fullname: Tao, Chao email: kingtaohao@csu.edu.cn organization: School of Geosciences and Info-Physics, Central South University, Changsha, China |
BookMark | eNp9kM1r3DAQxUVJoPn6A0ovgp69HUmWbeUWluYDtg3sJqQ3o9ijXaW2tJW0lF7yt0fuhhx6yGmGee_Ng98xOXDeISGfGMwYA_V1cbVczThwmHHVNFyVH8gRk7IpQNbsYNpLWUjV_PxIjmN8AuBl09RH5Hk1v0jpB6ZzusJRu2S7vKxHdEkn6x3N0h8fftEHmzZ0tc1HPVDtejrfaOdwoDmezZP1O3b5ZuNIjQ_02q43xRKjH3b_1CWOPmF-7qJ1a3oz6jXGU3Jo9BDx7HWekPvLb3fz62Jxe3Uzv1gUHVciFf3jY9lVKEAbLcCAqOqyU72U2DNdctNLrKqqF4ZnxTBAyRWrmFRoGiYAxAn5sv-7Df73DmNqn_wuuFzZcslqEBzU5GJ7Vxd8jAFNuw121OFvy6CdMLcT5nbC3L5izpn6v0xn9-hS0HZ4N_l5n7SI-NakoGFK1OIFOayNpA |
CODEN | IGRSBY |
CitedBy_id | crossref_primary_10_3390_geomatics5010007 crossref_primary_10_3390_rs14092253 crossref_primary_10_1109_TGRS_2022_3224733 crossref_primary_10_1109_JSTARS_2023_3280365 crossref_primary_10_3390_rs14184514 crossref_primary_10_1016_j_jag_2023_103646 crossref_primary_10_3390_aerospace10100880 crossref_primary_10_1109_TGRS_2023_3243954 crossref_primary_10_3390_rs13245100 crossref_primary_10_3390_rs16071214 crossref_primary_10_1016_j_asoc_2024_112061 crossref_primary_10_1080_15481603_2024_2356355 crossref_primary_10_3390_app13179491 crossref_primary_10_1016_j_sigpro_2023_109152 crossref_primary_10_1109_JSTARS_2023_3269852 crossref_primary_10_7717_peerj_cs_1558 crossref_primary_10_1109_TIV_2022_3221767 crossref_primary_10_1016_j_neucom_2024_128784 crossref_primary_10_1109_JSTARS_2021_3078631 crossref_primary_10_3788_LOP212864 crossref_primary_10_1080_10095020_2024_2405017 crossref_primary_10_1080_17538947_2024_2341970 crossref_primary_10_3390_rs13010119 crossref_primary_10_1080_01431161_2021_1876272 crossref_primary_10_1109_LGRS_2023_3235117 crossref_primary_10_1109_TIP_2021_3120054 crossref_primary_10_1109_TCSVT_2024_3457622 crossref_primary_10_1109_JSTARS_2021_3102137 crossref_primary_10_1016_j_eswa_2024_124019 crossref_primary_10_1109_ACCESS_2021_3058571 crossref_primary_10_1109_LGRS_2020_3047443 crossref_primary_10_1109_LGRS_2024_3397851 crossref_primary_10_1016_j_dsp_2023_104339 crossref_primary_10_3390_e24121759 crossref_primary_10_1038_s41598_024_65585_1 crossref_primary_10_3390_rs15081980 crossref_primary_10_1080_01431161_2023_2285742 crossref_primary_10_1109_JSTARS_2024_3456842 crossref_primary_10_1002_mp_17628 crossref_primary_10_1109_ACCESS_2021_3111899 crossref_primary_10_1016_j_engappai_2024_108782 crossref_primary_10_1109_TGRS_2023_3339291 crossref_primary_10_1109_TETCI_2022_3182414 crossref_primary_10_1109_JSTARS_2023_3289293 crossref_primary_10_3389_fevo_2023_1201125 crossref_primary_10_3390_math11071644 crossref_primary_10_1109_TGRS_2023_3272614 crossref_primary_10_3788_LOP222250 crossref_primary_10_1016_j_eswa_2024_125779 crossref_primary_10_1109_JSTARS_2023_3310160 crossref_primary_10_3390_rs14194983 crossref_primary_10_3390_rs15010236 crossref_primary_10_1016_j_jag_2024_103661 crossref_primary_10_3390_rs15030840 crossref_primary_10_1109_LGRS_2022_3183613 crossref_primary_10_3390_rs15163975 crossref_primary_10_1177_00405175231205898 crossref_primary_10_3390_electronics12112463 crossref_primary_10_3390_rs14010102 crossref_primary_10_1109_JSTARS_2023_3244209 crossref_primary_10_3390_rs13163196 crossref_primary_10_1109_ACCESS_2024_3355154 crossref_primary_10_1109_TGRS_2022_3168697 crossref_primary_10_1109_LGRS_2021_3116601 crossref_primary_10_3390_agriculture12101543 crossref_primary_10_1109_TGRS_2023_3302024 crossref_primary_10_1371_journal_pone_0301134 crossref_primary_10_3390_ijgi10100672 crossref_primary_10_1109_LGRS_2022_3145499 crossref_primary_10_1109_TGRS_2024_3379669 crossref_primary_10_1109_LGRS_2023_3233979 crossref_primary_10_1109_ACCESS_2024_3451153 crossref_primary_10_3390_rs15215148 crossref_primary_10_1109_TGRS_2021_3085889 crossref_primary_10_1109_TGRS_2021_3103517 crossref_primary_10_3390_rs13152986 crossref_primary_10_3390_rs15040927 crossref_primary_10_1016_j_jag_2021_102515 crossref_primary_10_1109_JSTARS_2022_3205609 crossref_primary_10_1016_j_isprsjprs_2024_04_018 crossref_primary_10_1109_ACCESS_2021_3122162 crossref_primary_10_3390_rs14040818 crossref_primary_10_3390_s23146295 crossref_primary_10_3390_app14177499 crossref_primary_10_1016_j_patrec_2022_04_037 crossref_primary_10_1109_TAI_2024_3363685 crossref_primary_10_1109_LGRS_2023_3307240 crossref_primary_10_1080_01431161_2024_2338232 crossref_primary_10_3390_app14041439 crossref_primary_10_1016_j_compbiomed_2024_108500 crossref_primary_10_1109_JSTARS_2023_3331444 crossref_primary_10_1109_ACCESS_2021_3065695 crossref_primary_10_1038_s41598_025_85125_9 crossref_primary_10_3389_fnins_2024_1363930 crossref_primary_10_1016_j_aej_2024_03_035 crossref_primary_10_1109_JSTARS_2024_3470316 crossref_primary_10_1109_LGRS_2024_3507033 crossref_primary_10_1109_TGRS_2023_3338699 crossref_primary_10_3390_app112110208 crossref_primary_10_1109_JSTARS_2022_3175191 crossref_primary_10_1109_JSTARS_2023_3328559 crossref_primary_10_1109_TGRS_2023_3314641 crossref_primary_10_1109_TIM_2024_3374318 crossref_primary_10_1109_JSTARS_2024_3355943 crossref_primary_10_1016_j_compag_2025_109973 crossref_primary_10_3390_rs14030533 crossref_primary_10_3390_ijgi11070385 crossref_primary_10_3390_rs14030498 crossref_primary_10_3390_rs14030531 crossref_primary_10_3390_rs16173334 crossref_primary_10_1109_TGRS_2021_3076050 crossref_primary_10_3390_rs15123121 crossref_primary_10_1038_s41598_024_72996_7 crossref_primary_10_1109_LGRS_2023_3278448 crossref_primary_10_3390_rs14205175 crossref_primary_10_1109_LGRS_2021_3065039 crossref_primary_10_1109_TGRS_2024_3479190 crossref_primary_10_1109_JSTARS_2023_3335891 crossref_primary_10_1109_TGRS_2025_3531879 crossref_primary_10_3390_su142214723 crossref_primary_10_3390_rs17030402 crossref_primary_10_1038_s41598_024_76622_4 crossref_primary_10_3390_rs14071636 crossref_primary_10_1016_j_eswa_2023_122299 crossref_primary_10_3390_agriculture12081284 crossref_primary_10_1080_27669645_2023_2202961 crossref_primary_10_1016_j_engappai_2023_107638 crossref_primary_10_3390_rs14133109 crossref_primary_10_1080_01431161_2024_2349266 crossref_primary_10_1016_j_neucom_2022_12_004 crossref_primary_10_1109_ACCESS_2023_3320792 crossref_primary_10_1109_TII_2020_3022912 crossref_primary_10_3390_s23021023 crossref_primary_10_1155_2022_8517706 crossref_primary_10_3390_rs14246193 crossref_primary_10_3390_rs15010039 crossref_primary_10_1017_S0263574722001059 crossref_primary_10_3390_electronics13163112 crossref_primary_10_3390_rs14194941 crossref_primary_10_1109_LGRS_2022_3222836 crossref_primary_10_3390_rs13173504 crossref_primary_10_1117_1_JRS_16_044520 crossref_primary_10_1007_s10553_025_01825_y crossref_primary_10_1109_TETCI_2020_3045485 crossref_primary_10_3233_IDT_240773 crossref_primary_10_1109_JSTARS_2024_3447086 crossref_primary_10_1109_LGRS_2023_3336061 crossref_primary_10_1016_j_compbiomed_2023_107300 crossref_primary_10_1108_IJICC_03_2023_0053 crossref_primary_10_1080_10106049_2024_2311217 crossref_primary_10_1049_ell2_70014 crossref_primary_10_4018_IJSWIS_333712 crossref_primary_10_1109_TGRS_2023_3292112 crossref_primary_10_1016_j_inffus_2025_102960 crossref_primary_10_3390_rs13224518 crossref_primary_10_3390_s25051394 crossref_primary_10_3390_rs14092263 crossref_primary_10_3390_rs14194770 crossref_primary_10_4018_IJWLTT_335115 crossref_primary_10_3390_electronics12051215 crossref_primary_10_3390_rs15051328 crossref_primary_10_1016_j_bspc_2024_107456 crossref_primary_10_3390_rs15235610 crossref_primary_10_1109_TGRS_2023_3336285 crossref_primary_10_1109_TGRS_2022_3153679 crossref_primary_10_3390_rs14164065 crossref_primary_10_1016_j_isprsjprs_2022_06_008 crossref_primary_10_3390_rs16162930 crossref_primary_10_1049_ell2_13305 crossref_primary_10_1109_TGRS_2023_3276172 crossref_primary_10_1109_TMM_2022_3197369 crossref_primary_10_3390_info13050259 crossref_primary_10_1109_LSP_2024_3398358 crossref_primary_10_1007_s00371_024_03419_x crossref_primary_10_1109_TGRS_2023_3268159 crossref_primary_10_1109_TGRS_2024_3477548 |
Cites_doi | 10.1007/s11263-009-0275-4 10.1080/01431160903439882 10.1109/CVPR.2015.7298965 10.1016/j.isprsjprs.2019.10.001 10.1109/CVPR.2017.549 10.1109/ACCESS.2019.2917952 10.1109/IGARSS.2019.8900224 10.1109/ICCV.2019.00069 10.3390/ijgi7030110 10.3390/rs9060522 10.1109/TPAMI.2016.2644615 10.1109/IGARSS.2019.8900281 10.1109/TPAMI.2011.208 10.1109/CVPR.2016.350 10.1109/CVPR.2017.518 10.1109/IGARSS.2019.8899217 10.1109/CVPR.2019.00326 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2020.2988294 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 909 |
ExternalDocumentID | 10_1109_LGRS_2020_2988294 9081937 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41871276; 41771458; 41861048; 41871364; 41871302 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION RIG 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-dbb4c6e30afa30f03674c9d55ed1a42fd5e666d3f2367f10e52916159ef813003 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Mon Jun 30 08:32:35 EDT 2025 Tue Jul 01 03:45:43 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Wed Aug 27 02:30:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-dbb4c6e30afa30f03674c9d55ed1a42fd5e666d3f2367f10e52916159ef813003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1173-6593 0000-0002-4761-5913 0000-0003-0071-310X |
PQID | 2517032090 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9081937 proquest_journals_2517032090 crossref_primary_10_1109_LGRS_2020_2988294 crossref_citationtrail_10_1109_LGRS_2020_2988294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref24 ref12 ref23 li (ref14) 2018 ronneberger (ref3) 2015 ref20 oktay (ref15) 2018 ref22 ref10 ref2 ref1 ref17 woo (ref18) 2018 ref16 audebert (ref11) 2016 ref8 ref7 ref9 ref4 ref6 ref5 he (ref19) 2016 chen (ref21) 2018 |
References_xml | – ident: ref6 doi: 10.1007/s11263-009-0275-4 – ident: ref1 doi: 10.1080/01431160903439882 – start-page: 630 year: 2016 ident: ref19 article-title: Identity mappings in deep residual networks publication-title: Proc Eur Conf Comput Vis – year: 2018 ident: ref15 article-title: Attention U-Net: Learning where to look for the pancreas publication-title: arXiv 1804 03999 – ident: ref4 doi: 10.1109/CVPR.2015.7298965 – ident: ref13 doi: 10.1016/j.isprsjprs.2019.10.001 – year: 2018 ident: ref14 article-title: Pyramid attention network for semantic segmentation publication-title: arXiv 1805 10180 – ident: ref20 doi: 10.1109/CVPR.2017.549 – ident: ref8 doi: 10.1109/ACCESS.2019.2917952 – ident: ref12 doi: 10.1109/IGARSS.2019.8900224 – ident: ref17 doi: 10.1109/ICCV.2019.00069 – ident: ref24 doi: 10.3390/ijgi7030110 – start-page: 180 year: 2016 ident: ref11 article-title: Semantic segmentation of earth observation data using multimodal and multi-scale deep networks publication-title: Proc Asian Conf Comput Vis – start-page: 3 year: 2018 ident: ref18 article-title: CBAM: Convolutional block attention module publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref23 doi: 10.3390/rs9060522 – start-page: 234 year: 2015 ident: ref3 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref5 doi: 10.1109/TPAMI.2016.2644615 – ident: ref9 doi: 10.1109/IGARSS.2019.8900281 – start-page: 801 year: 2018 ident: ref21 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref2 doi: 10.1109/TPAMI.2011.208 – ident: ref7 doi: 10.1109/CVPR.2016.350 – ident: ref22 doi: 10.1109/CVPR.2017.518 – ident: ref10 doi: 10.1109/IGARSS.2019.8899217 – ident: ref16 doi: 10.1109/CVPR.2019.00326 |
SSID | ssj0024887 |
Score | 2.6351597 |
Snippet | High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 905 |
SubjectTerms | Attention module Computational modeling convolutional neural network Feature extraction High resolution Image resolution Image segmentation Remote sensing Resolution Semantic segmentation Semantics Task analysis Training |
Title | SCAttNet: Semantic Segmentation Network With Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images |
URI | https://ieeexplore.ieee.org/document/9081937 https://www.proquest.com/docview/2517032090 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21lRBc-GhBLBTkAydEtk7iZGNuVUVbEN1Dl4q9RYk9blewKWK9h3Lob--M492KghCXyAfbsTITz9jz5g3AG6eZ0wjTJCvpoUajPNEKq8TorHXSpGXTBrTFuDw-U5-mxXQD3q1zYRAxgM9wyM0Qy7eXZslXZXua7Vc-2oRNOrj1uVq3vHpVKIbHHkFS6GoaI5ip1Hufj04ndBLM5DDT5FBq9ZsNCkVV_tiJg3k5fAQnq4X1qJJvw6Vvh-bXHc7G_135Y3gY_Uyx3yvGE9jAbhvux5LnF1fbcO8o1PS92oHrycG-92P078UE5_SlZ4Ya5_OYldSJcQ8VF19n_kJwDWPSWdF0VnBqQof0Fu971KQ4Qc4kni3mgpxhwSCShAMEvXqLUyTFQJq84xsK8XFOm9niKZwdfvhycJzEsgyJId_AJ7ZtlSkxl41rcunIBI6U0bYo0KaNypwtkM5ENndMDudSiUWm2a_U6CoOnuXPYKu77PA5CGbXt5lDWblKuaJqVclsNoYmamjnswOQK0HVJnKWc-mM73U4u0hds2xrlm0dZTuAt-shP3rCjn913mFZrTtGMQ1gd6UNdfylFzVzu3G1eS1f_H3US3iQMeAloCF3Ycv_XOIr8lh8-zqo6g17--dV |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIlQuPFoqFgr4wAmRreM42ZhbVdFuYXcP3VbsLUrsMV3Bpoj1HsqB347H8S7iIcQl8sF2rMzEM_Z88w3AS6uI0wjTRBT-IQeDLFESy0Qr0Viu06JuAtpiUgwv5btZPtuC15tcGEQM4DPsUzPE8s21XtFV2aEi-5UNbsFtb_dz0WVr_WTWK0M5PPIJklyVsxjDTLk6HJ2eT_1ZUPC-UN6lVPIXKxTKqvyxFwcDc3IfxuuldbiST_2Va_r622-sjf-79gdwL3qa7KhTjYewhe0u7MSi51c3u3DnNFT1vdmD79PjI-cm6N6wKS78t55r3_i4iHlJLZt0YHH2Ye6uGFUx9lrL6tYwSk5o0b_FuQ43ycZIucTz5YJ5d5gRjCShEEGn4OwcvWqgn7ylOwp2tvDb2fIRXJ68vTgeJrEwQ6K9d-AS0zRSF5jx2tYZt94IDqRWJs_RpLUU1uToT0Ums0QPZ1OOuVDkWSq0JYXPsn3Ybq9bfAyM-PWNsMhLW0qbl40siM9G-4lqv_eZHvC1oCodWcupeMbnKpxeuKpIthXJtoqy7cGrzZAvHWXHvzrvkaw2HaOYenCw1oYq_tTLitjdqN684k_-PuoF7AwvxqNqdDZ5_xTuCoK_BGzkAWy7ryt85v0X1zwPavsDthDqnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SCAttNet%3A+Semantic+Segmentation+Network+With+Spatial+and+Channel+Attention+Mechanism+for+High-Resolution+Remote+Sensing+Images&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Li%2C+Haifeng&rft.au=Qiu%2C+Kaijian&rft.au=Chen%2C+Li&rft.au=Mei%2C+Xiaoming&rft.date=2021-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=18&rft.issue=5&rft.spage=905&rft_id=info:doi/10.1109%2FLGRS.2020.2988294&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |