Driver Mental Fatigue Detection Based on Head Posture Using New Modified reLU-BiLSTM Deep Neural Network
Early detection of driver mental fatigue is one of the active areas of research in smart and intelligent vehicles. There are various methods, based on measuring the physiological characteristics of the driver utilising sensors and computer vision, proposed in the literature. In general, driver behav...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 23; no. 8; pp. 10957 - 10969 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Early detection of driver mental fatigue is one of the active areas of research in smart and intelligent vehicles. There are various methods, based on measuring the physiological characteristics of the driver utilising sensors and computer vision, proposed in the literature. In general, driver behaviour is unpredictable that can suddenly change the nature of driving and dynamics under mental fatigue. This results in sudden variations in driver body posture and head movement, with consequent inattentive behaviour that can end in fatal accidents and crashes. In the process of delineating the different driving patterns of driver states while active or influenced by mental fatigue, this paper contributes to advancing direct measurement approaches. In the novel approach proposed in this paper, driver mental fatigue and drowsiness are measured by monitoring driver's head posture motions using XSENS motion capture system. The experiments were conducted on 15 healthy subjects on a MATHWORKS driver-in-loop (DIL) simulator, interfaced with Unreal Engine 4 studio. A new modified bidirectional long short-term memory deep neural network, based on a rectified linear unit layer, was designed, trained and tested on 3D time-series head angular acceleration data for sequence-to-sequence classification. The results showed that the proposed classifier outperformed state-of-art approaches and conventional machine learning tools, and successfully recognised driver's active, fatigue and transition states, with overall training accuracy of 99.2%, sensitivity of 97.54%, precision and F1 scores of 97.38% and 97.46%, respectively. The limitations of the current work and directions for future work are also explored. |
---|---|
AbstractList | Early detection of driver mental fatigue is one of the active areas of research in smart and intelligent vehicles. There are various methods, based on measuring the physiological characteristics of the driver utilising sensors and computer vision, proposed in the literature. In general, driver behaviour is unpredictable that can suddenly change the nature of driving and dynamics under mental fatigue. This results in sudden variations in driver body posture and head movement, with consequent inattentive behaviour that can end in fatal accidents and crashes. In the process of delineating the different driving patterns of driver states while active or influenced by mental fatigue, this paper contributes to advancing direct measurement approaches. In the novel approach proposed in this paper, driver mental fatigue and drowsiness are measured by monitoring driver’s head posture motions using XSENS motion capture system. The experiments were conducted on 15 healthy subjects on a MATHWORKS driver-in-loop (DIL) simulator, interfaced with Unreal Engine 4 studio. A new modified bidirectional long short-term memory deep neural network, based on a rectified linear unit layer, was designed, trained and tested on 3D time-series head angular acceleration data for sequence-to-sequence classification. The results showed that the proposed classifier outperformed state-of-art approaches and conventional machine learning tools, and successfully recognised driver’s active, fatigue and transition states, with overall training accuracy of 99.2%, sensitivity of 97.54%, precision and F1 scores of 97.38% and 97.46%, respectively. The limitations of the current work and directions for future work are also explored. |
Author | Pahnwar, Yasmeen Naz Naghdy, Fazel Ansari, Shahzeb Du, Haiping |
Author_xml | – sequence: 1 givenname: Shahzeb orcidid: 0000-0002-9453-1763 surname: Ansari fullname: Ansari, Shahzeb email: sa345@uowmail.edu.au organization: School of Electrical, Computer and Telecommunications Engineering (SECTE), University of Wollongong, Wollongong, NSW, Australia – sequence: 2 givenname: Fazel surname: Naghdy fullname: Naghdy, Fazel email: fazel@uow.edu.au organization: School of Electrical, Computer and Telecommunications Engineering (SECTE), University of Wollongong, Wollongong, NSW, Australia – sequence: 3 givenname: Haiping orcidid: 0000-0002-3439-3821 surname: Du fullname: Du, Haiping email: hdu@uow.edu.au organization: School of Electrical, Computer and Telecommunications Engineering (SECTE), University of Wollongong, Wollongong, NSW, Australia – sequence: 4 givenname: Yasmeen Naz surname: Pahnwar fullname: Pahnwar, Yasmeen Naz email: ynp999@uowmail.edu.au organization: School of Electrical, Computer and Telecommunications Engineering (SECTE), University of Wollongong, Wollongong, NSW, Australia |
BookMark | eNp9kE1PAjEQhhuDiYD-AOOliefF6XY_2qOAHySAJsJ5U7qzWsVdbLsa_73dQDx48ND0zfR9ZqbvgPTqpkZCzhmMGAN5tZqtnkYxxGzEQYpwjkifpamIAFjW63ScRBJSOCED515DNUkZ65OXqTWfaOkCa6-29FZ589winaJH7U1T07FyWNIg7lGV9LFxvrVI187Uz3SJX3TRlKYywWJxvo7GZv60WgQcd-G1taHlEv1XY99OyXGltg7PDveQrG9vVpP7aP5wN5tczyMdS-6jciMyqTXXeZ5naaKBwSYvK6FEIjIupSixKjGHWCAGBSiAMyUAM81YvCn5kFzu--5s89Gi88Vr09o6jCziHCBhqczi4Mr3Lm0b5yxWhTZedR_2VpltwaDoYi26WIsu1uIQayDZH3Jnzbuy3_8yF3vGhKV__TKFnEvGfwCsA4Rx |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3534235 crossref_primary_10_3390_pr13030706 crossref_primary_10_3390_safety10010009 crossref_primary_10_1109_ACCESS_2024_3496578 crossref_primary_10_7240_jeps_1357794 crossref_primary_10_1109_TNSRE_2023_3267114 crossref_primary_10_1109_JSEN_2022_3216057 crossref_primary_10_1109_ACCESS_2021_3123388 crossref_primary_10_1061_JMENEA_MEENG_5913 crossref_primary_10_1109_TITS_2023_3333252 crossref_primary_10_1038_s41598_023_44955_1 crossref_primary_10_1109_ACCESS_2023_3304328 crossref_primary_10_1109_ACCESS_2024_3451622 crossref_primary_10_1007_s10489_024_05696_4 crossref_primary_10_1007_s11837_024_06942_3 crossref_primary_10_3390_electronics11020285 crossref_primary_10_1142_S0218001422520255 crossref_primary_10_1007_s11227_022_04711_0 crossref_primary_10_1109_TIV_2022_3154426 crossref_primary_10_1016_j_aap_2024_107511 crossref_primary_10_1109_ACCESS_2023_3312576 crossref_primary_10_1109_TII_2022_3218839 crossref_primary_10_1109_TITS_2024_3451144 crossref_primary_10_3390_electronics13061019 crossref_primary_10_3390_technologies12030038 crossref_primary_10_1109_JBHI_2023_3240891 crossref_primary_10_3390_app12094689 crossref_primary_10_1016_j_ins_2024_120735 crossref_primary_10_1109_JSEN_2023_3337515 crossref_primary_10_1177_15485129231158580 crossref_primary_10_1016_j_heliyon_2024_e39592 crossref_primary_10_1109_TITS_2023_3347075 crossref_primary_10_1109_TFUZZ_2024_3399400 crossref_primary_10_1109_JSEN_2022_3177931 crossref_primary_10_31083_j_jin2206146 crossref_primary_10_1142_S0218126623501797 crossref_primary_10_3390_app14073016 crossref_primary_10_1016_j_displa_2024_102956 crossref_primary_10_1016_j_fuel_2023_128936 crossref_primary_10_1080_10255842_2024_2324878 crossref_primary_10_3390_s25030602 crossref_primary_10_1109_TITS_2024_3420409 crossref_primary_10_1109_TITS_2024_3484452 crossref_primary_10_1061_AJRUA6_RUENG_1447 crossref_primary_10_1007_s11760_025_03931_0 crossref_primary_10_3390_app13085074 crossref_primary_10_3389_fnrgo_2022_935092 crossref_primary_10_1007_s40747_023_01236_8 crossref_primary_10_1016_j_aei_2022_101777 crossref_primary_10_1145_3709363 crossref_primary_10_1016_j_bbr_2024_114898 crossref_primary_10_1016_j_mfglet_2024_09_162 crossref_primary_10_1016_j_trf_2025_01_002 crossref_primary_10_1007_s11517_024_03033_y crossref_primary_10_1016_j_eij_2024_100529 |
Cites_doi | 10.1016/j.eswa.2010.07.115 10.3390/jimaging6030008 10.1109/SMC42975.2020.9283169 10.3390/s19143059 10.1016/0001-4575(95)00034-8 10.1016/j.apergo.2018.06.006 10.1061/9780784412442.215 10.1109/TFUZZ.2020.2992856 10.1109/TITS.2006.869598 10.1080/00140139.2018.1482373 10.1162/neco.1997.9.8.1735 10.1109/TITS.2010.2044241 10.1109/TITS.2017.2771351 10.32604/cmc.2020.09763 10.1109/THMS.2017.2736948 10.1016/j.trf.2008.11.005 10.1109/TIM.2017.2779329 10.1016/j.neunet.2018.09.002 10.1016/j.apergo.2017.02.016 10.1007/s11571-018-9496-y 10.1016/j.aap.2015.09.002 10.1016/j.eswa.2020.113204 10.1016/j.aap.2011.02.004 10.1109/TITS.2015.2462084 10.1109/ACCESS.2020.2998363 10.3390/s17061212 10.1109/SSCI47803.2020.9308534 10.1109/TITS.2013.2262098 10.3390/s17112556 10.1016/j.trf.2016.06.004 10.3390/s141017915 10.1016/j.aap.2011.11.019 10.1109/TVT.2020.2995835 10.1016/j.aap.2009.06.007 10.1016/j.trf.2013.09.003 10.1109/IWQoS.2018.8624183 10.1109/THMS.2018.2861225 10.1016/j.apergo.2020.103118 10.3390/s20164426 10.1109/BIBE.2018.00059 10.1109/ACCESS.2020.2963960 10.1109/MPRV.2015.38 10.3233/IFS-151770 10.1016/j.jsr.2019.12.015 10.1016/j.jvcir.2019.102723 10.1109/THMS.2017.2759808 10.1016/j.apergo.2018.11.003 10.1109/TIV.2017.2720459 10.1016/j.neunet.2011.07.003 10.1109/EMBC.2012.6347469 10.1109/TITS.2018.2868499 10.3901/CJME.2014.0724.126 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2021.3098309 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 10969 |
ExternalDocumentID | 10_1109_TITS_2021_3098309 9507391 |
Genre | orig-research |
GrantInformation_xml | – fundername: University of Wollongong, Australia funderid: 10.13039/501100001777 – fundername: Higher Education Commission (HEC), Pakistan funderid: 10.13039/501100004681 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-db869cc3c777654c010b7df8a84863998defde7028eeefd0e8031a80e6c112bd3 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Mon Jun 30 03:31:18 EDT 2025 Tue Jul 01 04:29:06 EDT 2025 Thu Apr 24 22:54:17 EDT 2025 Wed Aug 27 02:23:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-db869cc3c777654c010b7df8a84863998defde7028eeefd0e8031a80e6c112bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9453-1763 0000-0002-3439-3821 |
PQID | 2700415962 |
PQPubID | 75735 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TITS_2021_3098309 proquest_journals_2700415962 crossref_primary_10_1109_TITS_2021_3098309 ieee_primary_9507391 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 ref14 ref53 ref11 ref55 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 (ref30) 2019 ref49 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref33 ref32 (ref7) 2017 ref2 ref1 ref39 ref38 Goodfellow (ref52) 2016 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Ford (ref54) 2021 |
References_xml | – ident: ref2 doi: 10.1016/j.eswa.2010.07.115 – ident: ref33 doi: 10.3390/jimaging6030008 – ident: ref26 doi: 10.1109/SMC42975.2020.9283169 – ident: ref39 doi: 10.3390/s19143059 – volume-title: Deep Learning year: 2016 ident: ref52 – ident: ref47 doi: 10.1016/0001-4575(95)00034-8 – ident: ref15 doi: 10.1016/j.apergo.2018.06.006 – ident: ref46 doi: 10.1061/9780784412442.215 – volume-title: Fatigued and Distracted Driver Trauma Trends year: 2017 ident: ref7 – ident: ref35 doi: 10.1109/TFUZZ.2020.2992856 – ident: ref43 doi: 10.1109/TITS.2006.869598 – ident: ref48 doi: 10.1080/00140139.2018.1482373 – ident: ref50 doi: 10.1162/neco.1997.9.8.1735 – ident: ref24 doi: 10.1109/TITS.2010.2044241 – ident: ref12 doi: 10.1109/TITS.2017.2771351 – ident: ref34 doi: 10.32604/cmc.2020.09763 – ident: ref41 doi: 10.1109/THMS.2017.2736948 – ident: ref8 doi: 10.1016/j.trf.2008.11.005 – ident: ref19 doi: 10.1109/TIM.2017.2779329 – ident: ref29 doi: 10.1016/j.neunet.2018.09.002 – ident: ref37 doi: 10.1016/j.apergo.2017.02.016 – ident: ref28 doi: 10.1007/s11571-018-9496-y – ident: ref4 doi: 10.1016/j.aap.2015.09.002 – ident: ref31 doi: 10.1016/j.eswa.2020.113204 – ident: ref9 doi: 10.1016/j.aap.2011.02.004 – ident: ref6 doi: 10.1109/TITS.2015.2462084 – ident: ref18 doi: 10.1109/ACCESS.2020.2998363 – ident: ref38 doi: 10.3390/s17061212 – ident: ref21 doi: 10.1109/SSCI47803.2020.9308534 – ident: ref44 doi: 10.1109/TITS.2013.2262098 – ident: ref49 doi: 10.3390/s17112556 – ident: ref10 doi: 10.1016/j.trf.2016.06.004 – ident: ref55 doi: 10.3390/s141017915 – ident: ref1 doi: 10.1016/j.aap.2011.11.019 – ident: ref20 doi: 10.1109/TVT.2020.2995835 – ident: ref11 doi: 10.1016/j.aap.2009.06.007 – ident: ref13 doi: 10.1016/j.trf.2013.09.003 – ident: ref25 doi: 10.1109/IWQoS.2018.8624183 – ident: ref42 doi: 10.1109/THMS.2018.2861225 – ident: ref56 doi: 10.1016/j.apergo.2020.103118 – ident: ref27 doi: 10.3390/s20164426 – ident: ref45 doi: 10.1109/BIBE.2018.00059 – ident: ref17 doi: 10.1109/ACCESS.2020.2963960 – ident: ref5 doi: 10.1109/MPRV.2015.38 – ident: ref40 doi: 10.3233/IFS-151770 – volume-title: New Ford Lab Integrates Wearables and Vehicles; Ford Looks at Linking Health Data to Driver-Assist Technology year: 2021 ident: ref54 – ident: ref14 doi: 10.1016/j.jsr.2019.12.015 – volume-title: Vehicle Dynamics Blockset year: 2019 ident: ref30 – ident: ref32 doi: 10.1016/j.jvcir.2019.102723 – ident: ref36 doi: 10.1109/THMS.2017.2759808 – ident: ref22 doi: 10.1016/j.apergo.2018.11.003 – ident: ref53 doi: 10.1109/TIV.2017.2720459 – ident: ref51 doi: 10.1016/j.neunet.2011.07.003 – ident: ref3 doi: 10.1109/EMBC.2012.6347469 – ident: ref16 doi: 10.1109/TITS.2018.2868499 – ident: ref23 doi: 10.3901/CJME.2014.0724.126 |
SSID | ssj0014511 |
Score | 2.613063 |
Snippet | Early detection of driver mental fatigue is one of the active areas of research in smart and intelligent vehicles. There are various methods, based on... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10957 |
SubjectTerms | Angular acceleration Artificial neural networks Biomedical monitoring Computer vision Crashes deep learning model Driver behavior Driver behaviour Fatigue Head movement head posture Intelligent vehicles Machine learning Magnetic heads mental fatigue detection Monitoring Motion capture Neural networks reLU-BiLSTM Series (mathematics) Vehicle dynamics Vehicles |
Title | Driver Mental Fatigue Detection Based on Head Posture Using New Modified reLU-BiLSTM Deep Neural Network |
URI | https://ieeexplore.ieee.org/document/9507391 https://www.proquest.com/docview/2700415962 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSByaEixsnjj3yqgqiLLQSW5TYZ6hALSrJwq_n7KQVAoTYPNiRo-_iu8t9_o6QYy65AC2AOXT2LLaRY1o4wzAbKgoXRdwFMZ3-vewN49vH5HGBnM7vwgBAIJ9B2w9DLd9OTOV_lZ3pxNeVMNdZxMStvqs1rxh4na2gjRrFTPNkVsHscH02uBk8YCYYddqCayU89_CLDwpNVX6cxMG9dNdIf7axmlXy0q7Kom0-vmk2_nfn62S1iTPpeW0YG2QBxptk5Yv64BZ5vpp6UgatZXxoFzF6qoBeQRnoWWN6gR7OUhz00BCob-tbTYEGkgHFw5H2J3bkMISlU7gbsovR3cOgj8vhjXrJD3zkfc0x3ybD7vXgsseaxgvMoPcvmS2U1MYIk6apTGKDOVuRWqdyFSsf0SgLzkKKoQm-qLMcFB4NueIgDYZvhRU7ZGk8GcMuoQlmSCo3TkiVx9J1cg-BElZq0EbkUYvwGRSZaVTJfXOM1yxkJ1xnHr3Mo5c16LXIyXzJWy3J8dfkLY_GfGIDRIsczPDOmo_2PfM1eIxntIz2fl-1T5Yjf_sh8P8OyFI5reAQY5KyOArG-AlmGdvP |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB2VcoAe-CqogQI-wAVpU8feD_vAgRKihCa5dCP1tuzaY6hASZXuCsFv4a_w3xh7N1EFiFslbj7YXq3nrWdm5_kZ4AVPuUQtMXLk7KPYChdp6UxE2VBVOSG4C2I6s3k6XsTvz5KzHfixPQuDiIF8hn3fDLV8uzKN_1V2pBNfVxp0FMoT_PaVErTL15MhWfOlEKN3-dtx1N0hEBlyZHVkK5VqY6TJsixNYkPpR5VZp0oVK--clUVnMSMvS09zlqMilJeKY2ooEqmspHlvwE2KMxLRng7b1ii8sldQYxVxpHmyqZkOuD7KJ_kp5Z5i0JdcK-nZjle8XrjG5Y-9Pzi00V34uVmKlsfyud_UVd98_00l8n9dq3twp4uk2ZsW-vdhB5cPYO-KvuI-fBquPe2EtUJFbEQo_NggG2IdCGhLdkw-3DJqjAnqzF9c3KyRBRoFo-2fzVb23FGQztY4XUTH59PTfEbD8YJ5UROact6y6B_C4lpe9RHsLldLPACWUA6oSuNkqso4dYPSm1xJm2rURpaiB3xj-sJ0uuv--o8vRci_uC48WgqPlqJDSw9ebYdctKIj_-q8762_7dgZvgeHG3wV3bZ0WXiWAUVsOhWP_z7qOdwa57NpMZ3MT57AbeHPegS24yHs1usGn1IEVlfPwofA4MN1o-kXqd86aA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Driver+Mental+Fatigue+Detection+Based+on+Head+Posture+Using+New+Modified+reLU-BiLSTM+Deep+Neural+Network&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Ansari%2C+Shahzeb&rft.au=Naghdy%2C+Fazel&rft.au=Du%2C+Haiping&rft.au=Pahnwar%2C+Yasmeen+Naz&rft.date=2022-08-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=8&rft.spage=10957&rft.epage=10969&rft_id=info:doi/10.1109%2FTITS.2021.3098309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2021_3098309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |