Driver Mental Fatigue Detection Based on Head Posture Using New Modified reLU-BiLSTM Deep Neural Network

Early detection of driver mental fatigue is one of the active areas of research in smart and intelligent vehicles. There are various methods, based on measuring the physiological characteristics of the driver utilising sensors and computer vision, proposed in the literature. In general, driver behav...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 23; no. 8; pp. 10957 - 10969
Main Authors Ansari, Shahzeb, Naghdy, Fazel, Du, Haiping, Pahnwar, Yasmeen Naz
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Early detection of driver mental fatigue is one of the active areas of research in smart and intelligent vehicles. There are various methods, based on measuring the physiological characteristics of the driver utilising sensors and computer vision, proposed in the literature. In general, driver behaviour is unpredictable that can suddenly change the nature of driving and dynamics under mental fatigue. This results in sudden variations in driver body posture and head movement, with consequent inattentive behaviour that can end in fatal accidents and crashes. In the process of delineating the different driving patterns of driver states while active or influenced by mental fatigue, this paper contributes to advancing direct measurement approaches. In the novel approach proposed in this paper, driver mental fatigue and drowsiness are measured by monitoring driver's head posture motions using XSENS motion capture system. The experiments were conducted on 15 healthy subjects on a MATHWORKS driver-in-loop (DIL) simulator, interfaced with Unreal Engine 4 studio. A new modified bidirectional long short-term memory deep neural network, based on a rectified linear unit layer, was designed, trained and tested on 3D time-series head angular acceleration data for sequence-to-sequence classification. The results showed that the proposed classifier outperformed state-of-art approaches and conventional machine learning tools, and successfully recognised driver's active, fatigue and transition states, with overall training accuracy of 99.2%, sensitivity of 97.54%, precision and F1 scores of 97.38% and 97.46%, respectively. The limitations of the current work and directions for future work are also explored.
AbstractList Early detection of driver mental fatigue is one of the active areas of research in smart and intelligent vehicles. There are various methods, based on measuring the physiological characteristics of the driver utilising sensors and computer vision, proposed in the literature. In general, driver behaviour is unpredictable that can suddenly change the nature of driving and dynamics under mental fatigue. This results in sudden variations in driver body posture and head movement, with consequent inattentive behaviour that can end in fatal accidents and crashes. In the process of delineating the different driving patterns of driver states while active or influenced by mental fatigue, this paper contributes to advancing direct measurement approaches. In the novel approach proposed in this paper, driver mental fatigue and drowsiness are measured by monitoring driver’s head posture motions using XSENS motion capture system. The experiments were conducted on 15 healthy subjects on a MATHWORKS driver-in-loop (DIL) simulator, interfaced with Unreal Engine 4 studio. A new modified bidirectional long short-term memory deep neural network, based on a rectified linear unit layer, was designed, trained and tested on 3D time-series head angular acceleration data for sequence-to-sequence classification. The results showed that the proposed classifier outperformed state-of-art approaches and conventional machine learning tools, and successfully recognised driver’s active, fatigue and transition states, with overall training accuracy of 99.2%, sensitivity of 97.54%, precision and F1 scores of 97.38% and 97.46%, respectively. The limitations of the current work and directions for future work are also explored.
Author Pahnwar, Yasmeen Naz
Naghdy, Fazel
Ansari, Shahzeb
Du, Haiping
Author_xml – sequence: 1
  givenname: Shahzeb
  orcidid: 0000-0002-9453-1763
  surname: Ansari
  fullname: Ansari, Shahzeb
  email: sa345@uowmail.edu.au
  organization: School of Electrical, Computer and Telecommunications Engineering (SECTE), University of Wollongong, Wollongong, NSW, Australia
– sequence: 2
  givenname: Fazel
  surname: Naghdy
  fullname: Naghdy, Fazel
  email: fazel@uow.edu.au
  organization: School of Electrical, Computer and Telecommunications Engineering (SECTE), University of Wollongong, Wollongong, NSW, Australia
– sequence: 3
  givenname: Haiping
  orcidid: 0000-0002-3439-3821
  surname: Du
  fullname: Du, Haiping
  email: hdu@uow.edu.au
  organization: School of Electrical, Computer and Telecommunications Engineering (SECTE), University of Wollongong, Wollongong, NSW, Australia
– sequence: 4
  givenname: Yasmeen Naz
  surname: Pahnwar
  fullname: Pahnwar, Yasmeen Naz
  email: ynp999@uowmail.edu.au
  organization: School of Electrical, Computer and Telecommunications Engineering (SECTE), University of Wollongong, Wollongong, NSW, Australia
BookMark eNp9kE1PAjEQhhuDiYD-AOOliefF6XY_2qOAHySAJsJ5U7qzWsVdbLsa_73dQDx48ND0zfR9ZqbvgPTqpkZCzhmMGAN5tZqtnkYxxGzEQYpwjkifpamIAFjW63ScRBJSOCED515DNUkZ65OXqTWfaOkCa6-29FZ589winaJH7U1T07FyWNIg7lGV9LFxvrVI187Uz3SJX3TRlKYywWJxvo7GZv60WgQcd-G1taHlEv1XY99OyXGltg7PDveQrG9vVpP7aP5wN5tczyMdS-6jciMyqTXXeZ5naaKBwSYvK6FEIjIupSixKjGHWCAGBSiAMyUAM81YvCn5kFzu--5s89Gi88Vr09o6jCziHCBhqczi4Mr3Lm0b5yxWhTZedR_2VpltwaDoYi26WIsu1uIQayDZH3Jnzbuy3_8yF3vGhKV__TKFnEvGfwCsA4Rx
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3534235
crossref_primary_10_3390_pr13030706
crossref_primary_10_3390_safety10010009
crossref_primary_10_1109_ACCESS_2024_3496578
crossref_primary_10_7240_jeps_1357794
crossref_primary_10_1109_TNSRE_2023_3267114
crossref_primary_10_1109_JSEN_2022_3216057
crossref_primary_10_1109_ACCESS_2021_3123388
crossref_primary_10_1061_JMENEA_MEENG_5913
crossref_primary_10_1109_TITS_2023_3333252
crossref_primary_10_1038_s41598_023_44955_1
crossref_primary_10_1109_ACCESS_2023_3304328
crossref_primary_10_1109_ACCESS_2024_3451622
crossref_primary_10_1007_s10489_024_05696_4
crossref_primary_10_1007_s11837_024_06942_3
crossref_primary_10_3390_electronics11020285
crossref_primary_10_1142_S0218001422520255
crossref_primary_10_1007_s11227_022_04711_0
crossref_primary_10_1109_TIV_2022_3154426
crossref_primary_10_1016_j_aap_2024_107511
crossref_primary_10_1109_ACCESS_2023_3312576
crossref_primary_10_1109_TII_2022_3218839
crossref_primary_10_1109_TITS_2024_3451144
crossref_primary_10_3390_electronics13061019
crossref_primary_10_3390_technologies12030038
crossref_primary_10_1109_JBHI_2023_3240891
crossref_primary_10_3390_app12094689
crossref_primary_10_1016_j_ins_2024_120735
crossref_primary_10_1109_JSEN_2023_3337515
crossref_primary_10_1177_15485129231158580
crossref_primary_10_1016_j_heliyon_2024_e39592
crossref_primary_10_1109_TITS_2023_3347075
crossref_primary_10_1109_TFUZZ_2024_3399400
crossref_primary_10_1109_JSEN_2022_3177931
crossref_primary_10_31083_j_jin2206146
crossref_primary_10_1142_S0218126623501797
crossref_primary_10_3390_app14073016
crossref_primary_10_1016_j_displa_2024_102956
crossref_primary_10_1016_j_fuel_2023_128936
crossref_primary_10_1080_10255842_2024_2324878
crossref_primary_10_3390_s25030602
crossref_primary_10_1109_TITS_2024_3420409
crossref_primary_10_1109_TITS_2024_3484452
crossref_primary_10_1061_AJRUA6_RUENG_1447
crossref_primary_10_1007_s11760_025_03931_0
crossref_primary_10_3390_app13085074
crossref_primary_10_3389_fnrgo_2022_935092
crossref_primary_10_1007_s40747_023_01236_8
crossref_primary_10_1016_j_aei_2022_101777
crossref_primary_10_1145_3709363
crossref_primary_10_1016_j_bbr_2024_114898
crossref_primary_10_1016_j_mfglet_2024_09_162
crossref_primary_10_1016_j_trf_2025_01_002
crossref_primary_10_1007_s11517_024_03033_y
crossref_primary_10_1016_j_eij_2024_100529
Cites_doi 10.1016/j.eswa.2010.07.115
10.3390/jimaging6030008
10.1109/SMC42975.2020.9283169
10.3390/s19143059
10.1016/0001-4575(95)00034-8
10.1016/j.apergo.2018.06.006
10.1061/9780784412442.215
10.1109/TFUZZ.2020.2992856
10.1109/TITS.2006.869598
10.1080/00140139.2018.1482373
10.1162/neco.1997.9.8.1735
10.1109/TITS.2010.2044241
10.1109/TITS.2017.2771351
10.32604/cmc.2020.09763
10.1109/THMS.2017.2736948
10.1016/j.trf.2008.11.005
10.1109/TIM.2017.2779329
10.1016/j.neunet.2018.09.002
10.1016/j.apergo.2017.02.016
10.1007/s11571-018-9496-y
10.1016/j.aap.2015.09.002
10.1016/j.eswa.2020.113204
10.1016/j.aap.2011.02.004
10.1109/TITS.2015.2462084
10.1109/ACCESS.2020.2998363
10.3390/s17061212
10.1109/SSCI47803.2020.9308534
10.1109/TITS.2013.2262098
10.3390/s17112556
10.1016/j.trf.2016.06.004
10.3390/s141017915
10.1016/j.aap.2011.11.019
10.1109/TVT.2020.2995835
10.1016/j.aap.2009.06.007
10.1016/j.trf.2013.09.003
10.1109/IWQoS.2018.8624183
10.1109/THMS.2018.2861225
10.1016/j.apergo.2020.103118
10.3390/s20164426
10.1109/BIBE.2018.00059
10.1109/ACCESS.2020.2963960
10.1109/MPRV.2015.38
10.3233/IFS-151770
10.1016/j.jsr.2019.12.015
10.1016/j.jvcir.2019.102723
10.1109/THMS.2017.2759808
10.1016/j.apergo.2018.11.003
10.1109/TIV.2017.2720459
10.1016/j.neunet.2011.07.003
10.1109/EMBC.2012.6347469
10.1109/TITS.2018.2868499
10.3901/CJME.2014.0724.126
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2021.3098309
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 10969
ExternalDocumentID 10_1109_TITS_2021_3098309
9507391
Genre orig-research
GrantInformation_xml – fundername: University of Wollongong, Australia
  funderid: 10.13039/501100001777
– fundername: Higher Education Commission (HEC), Pakistan
  funderid: 10.13039/501100004681
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-db869cc3c777654c010b7df8a84863998defde7028eeefd0e8031a80e6c112bd3
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 03:31:18 EDT 2025
Tue Jul 01 04:29:06 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Wed Aug 27 02:23:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-db869cc3c777654c010b7df8a84863998defde7028eeefd0e8031a80e6c112bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9453-1763
0000-0002-3439-3821
PQID 2700415962
PQPubID 75735
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TITS_2021_3098309
proquest_journals_2700415962
crossref_primary_10_1109_TITS_2021_3098309
ieee_primary_9507391
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref14
ref53
ref11
ref55
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
(ref30) 2019
ref49
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
(ref7) 2017
ref2
ref1
ref39
ref38
Goodfellow (ref52) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Ford (ref54) 2021
References_xml – ident: ref2
  doi: 10.1016/j.eswa.2010.07.115
– ident: ref33
  doi: 10.3390/jimaging6030008
– ident: ref26
  doi: 10.1109/SMC42975.2020.9283169
– ident: ref39
  doi: 10.3390/s19143059
– volume-title: Deep Learning
  year: 2016
  ident: ref52
– ident: ref47
  doi: 10.1016/0001-4575(95)00034-8
– ident: ref15
  doi: 10.1016/j.apergo.2018.06.006
– ident: ref46
  doi: 10.1061/9780784412442.215
– volume-title: Fatigued and Distracted Driver Trauma Trends
  year: 2017
  ident: ref7
– ident: ref35
  doi: 10.1109/TFUZZ.2020.2992856
– ident: ref43
  doi: 10.1109/TITS.2006.869598
– ident: ref48
  doi: 10.1080/00140139.2018.1482373
– ident: ref50
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref24
  doi: 10.1109/TITS.2010.2044241
– ident: ref12
  doi: 10.1109/TITS.2017.2771351
– ident: ref34
  doi: 10.32604/cmc.2020.09763
– ident: ref41
  doi: 10.1109/THMS.2017.2736948
– ident: ref8
  doi: 10.1016/j.trf.2008.11.005
– ident: ref19
  doi: 10.1109/TIM.2017.2779329
– ident: ref29
  doi: 10.1016/j.neunet.2018.09.002
– ident: ref37
  doi: 10.1016/j.apergo.2017.02.016
– ident: ref28
  doi: 10.1007/s11571-018-9496-y
– ident: ref4
  doi: 10.1016/j.aap.2015.09.002
– ident: ref31
  doi: 10.1016/j.eswa.2020.113204
– ident: ref9
  doi: 10.1016/j.aap.2011.02.004
– ident: ref6
  doi: 10.1109/TITS.2015.2462084
– ident: ref18
  doi: 10.1109/ACCESS.2020.2998363
– ident: ref38
  doi: 10.3390/s17061212
– ident: ref21
  doi: 10.1109/SSCI47803.2020.9308534
– ident: ref44
  doi: 10.1109/TITS.2013.2262098
– ident: ref49
  doi: 10.3390/s17112556
– ident: ref10
  doi: 10.1016/j.trf.2016.06.004
– ident: ref55
  doi: 10.3390/s141017915
– ident: ref1
  doi: 10.1016/j.aap.2011.11.019
– ident: ref20
  doi: 10.1109/TVT.2020.2995835
– ident: ref11
  doi: 10.1016/j.aap.2009.06.007
– ident: ref13
  doi: 10.1016/j.trf.2013.09.003
– ident: ref25
  doi: 10.1109/IWQoS.2018.8624183
– ident: ref42
  doi: 10.1109/THMS.2018.2861225
– ident: ref56
  doi: 10.1016/j.apergo.2020.103118
– ident: ref27
  doi: 10.3390/s20164426
– ident: ref45
  doi: 10.1109/BIBE.2018.00059
– ident: ref17
  doi: 10.1109/ACCESS.2020.2963960
– ident: ref5
  doi: 10.1109/MPRV.2015.38
– ident: ref40
  doi: 10.3233/IFS-151770
– volume-title: New Ford Lab Integrates Wearables and Vehicles; Ford Looks at Linking Health Data to Driver-Assist Technology
  year: 2021
  ident: ref54
– ident: ref14
  doi: 10.1016/j.jsr.2019.12.015
– volume-title: Vehicle Dynamics Blockset
  year: 2019
  ident: ref30
– ident: ref32
  doi: 10.1016/j.jvcir.2019.102723
– ident: ref36
  doi: 10.1109/THMS.2017.2759808
– ident: ref22
  doi: 10.1016/j.apergo.2018.11.003
– ident: ref53
  doi: 10.1109/TIV.2017.2720459
– ident: ref51
  doi: 10.1016/j.neunet.2011.07.003
– ident: ref3
  doi: 10.1109/EMBC.2012.6347469
– ident: ref16
  doi: 10.1109/TITS.2018.2868499
– ident: ref23
  doi: 10.3901/CJME.2014.0724.126
SSID ssj0014511
Score 2.613063
Snippet Early detection of driver mental fatigue is one of the active areas of research in smart and intelligent vehicles. There are various methods, based on...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10957
SubjectTerms Angular acceleration
Artificial neural networks
Biomedical monitoring
Computer vision
Crashes
deep learning model
Driver behavior
Driver behaviour
Fatigue
Head movement
head posture
Intelligent vehicles
Machine learning
Magnetic heads
mental fatigue detection
Monitoring
Motion capture
Neural networks
reLU-BiLSTM
Series (mathematics)
Vehicle dynamics
Vehicles
Title Driver Mental Fatigue Detection Based on Head Posture Using New Modified reLU-BiLSTM Deep Neural Network
URI https://ieeexplore.ieee.org/document/9507391
https://www.proquest.com/docview/2700415962
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSByaEixsnjj3yqgqiLLQSW5TYZ6hALSrJwq_n7KQVAoTYPNiRo-_iu8t9_o6QYy65AC2AOXT2LLaRY1o4wzAbKgoXRdwFMZ3-vewN49vH5HGBnM7vwgBAIJ9B2w9DLd9OTOV_lZ3pxNeVMNdZxMStvqs1rxh4na2gjRrFTPNkVsHscH02uBk8YCYYddqCayU89_CLDwpNVX6cxMG9dNdIf7axmlXy0q7Kom0-vmk2_nfn62S1iTPpeW0YG2QBxptk5Yv64BZ5vpp6UgatZXxoFzF6qoBeQRnoWWN6gR7OUhz00BCob-tbTYEGkgHFw5H2J3bkMISlU7gbsovR3cOgj8vhjXrJD3zkfc0x3ybD7vXgsseaxgvMoPcvmS2U1MYIk6apTGKDOVuRWqdyFSsf0SgLzkKKoQm-qLMcFB4NueIgDYZvhRU7ZGk8GcMuoQlmSCo3TkiVx9J1cg-BElZq0EbkUYvwGRSZaVTJfXOM1yxkJ1xnHr3Mo5c16LXIyXzJWy3J8dfkLY_GfGIDRIsczPDOmo_2PfM1eIxntIz2fl-1T5Yjf_sh8P8OyFI5reAQY5KyOArG-AlmGdvP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB2VcoAe-CqogQI-wAVpU8feD_vAgRKihCa5dCP1tuzaY6hASZXuCsFv4a_w3xh7N1EFiFslbj7YXq3nrWdm5_kZ4AVPuUQtMXLk7KPYChdp6UxE2VBVOSG4C2I6s3k6XsTvz5KzHfixPQuDiIF8hn3fDLV8uzKN_1V2pBNfVxp0FMoT_PaVErTL15MhWfOlEKN3-dtx1N0hEBlyZHVkK5VqY6TJsixNYkPpR5VZp0oVK--clUVnMSMvS09zlqMilJeKY2ooEqmspHlvwE2KMxLRng7b1ii8sldQYxVxpHmyqZkOuD7KJ_kp5Z5i0JdcK-nZjle8XrjG5Y-9Pzi00V34uVmKlsfyud_UVd98_00l8n9dq3twp4uk2ZsW-vdhB5cPYO-KvuI-fBquPe2EtUJFbEQo_NggG2IdCGhLdkw-3DJqjAnqzF9c3KyRBRoFo-2fzVb23FGQztY4XUTH59PTfEbD8YJ5UROact6y6B_C4lpe9RHsLldLPACWUA6oSuNkqso4dYPSm1xJm2rURpaiB3xj-sJ0uuv--o8vRci_uC48WgqPlqJDSw9ebYdctKIj_-q8762_7dgZvgeHG3wV3bZ0WXiWAUVsOhWP_z7qOdwa57NpMZ3MT57AbeHPegS24yHs1usGn1IEVlfPwofA4MN1o-kXqd86aA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Driver+Mental+Fatigue+Detection+Based+on+Head+Posture+Using+New+Modified+reLU-BiLSTM+Deep+Neural+Network&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Ansari%2C+Shahzeb&rft.au=Naghdy%2C+Fazel&rft.au=Du%2C+Haiping&rft.au=Pahnwar%2C+Yasmeen+Naz&rft.date=2022-08-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=8&rft.spage=10957&rft.epage=10969&rft_id=info:doi/10.1109%2FTITS.2021.3098309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2021_3098309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon