Multitarget Multiple-Instance Learning for Hyperspectral Target Detection

In remote sensing, it is often challenging to acquire or collect a large data set that is accurately labeled. This difficulty is usually due to several issues, including but not limited to the study site's spatial area and accessibility, errors in the global positioning system (GPS), and mixed...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 14
Main Authors Meerdink, Susan, Bocinsky, James, Zare, Alina, Kroeger, Nicholas, McCurley, Connor, Shats, Daniel, Gader, Paul
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2021.3060966

Cover

Abstract In remote sensing, it is often challenging to acquire or collect a large data set that is accurately labeled. This difficulty is usually due to several issues, including but not limited to the study site's spatial area and accessibility, errors in the global positioning system (GPS), and mixed pixels caused by an image's spatial resolution. We propose an approach, with two variations, that estimates multiple-target signatures from training samples with imprecise labels: multitarget multiple-instance adaptive cosine estimator (MTMI-ACE) and multitarget multiple-instance spectral match filter (MTMI-SMF). The proposed methods address the abovementioned problems by directly considering the multiple-instance, imprecisely labeled data set. They learn a dictionary of target signatures that optimizes detection against a background using the adaptive cosine estimator (ACE) and spectral match filter (SMF). Experiments were conducted to test the proposed algorithms using a simulated hyperspectral data set, the MUUFL Gulfport hyperspectral data set collected over the University of Southern Mississippi-Gulfpark Campus, and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data set collected over Santa Barbara County, CA, USA. Both simulated and real hyperspectral target detection experiments show that the proposed algorithms are effective at learning target signatures and performing target detection.
AbstractList In remote sensing, it is often challenging to acquire or collect a large data set that is accurately labeled. This difficulty is usually due to several issues, including but not limited to the study site's spatial area and accessibility, errors in the global positioning system (GPS), and mixed pixels caused by an image's spatial resolution. We propose an approach, with two variations, that estimates multiple-target signatures from training samples with imprecise labels: multitarget multiple-instance adaptive cosine estimator (MTMI-ACE) and multitarget multiple-instance spectral match filter (MTMI-SMF). The proposed methods address the abovementioned problems by directly considering the multiple-instance, imprecisely labeled data set. They learn a dictionary of target signatures that optimizes detection against a background using the adaptive cosine estimator (ACE) and spectral match filter (SMF). Experiments were conducted to test the proposed algorithms using a simulated hyperspectral data set, the MUUFL Gulfport hyperspectral data set collected over the University of Southern Mississippi-Gulfpark Campus, and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data set collected over Santa Barbara County, CA, USA. Both simulated and real hyperspectral target detection experiments show that the proposed algorithms are effective at learning target signatures and performing target detection.
Author Gader, Paul
Bocinsky, James
McCurley, Connor
Kroeger, Nicholas
Shats, Daniel
Zare, Alina
Meerdink, Susan
Author_xml – sequence: 1
  givenname: Susan
  orcidid: 0000-0001-7859-0248
  surname: Meerdink
  fullname: Meerdink, Susan
  email: susan-meerdink@uiowa.edu
  organization: Department of Geographical and Sustainability Sciences, The University of Iowa, Iowa, IA, USA
– sequence: 2
  givenname: James
  surname: Bocinsky
  fullname: Bocinsky, James
  organization: Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
– sequence: 3
  givenname: Alina
  orcidid: 0000-0002-4847-7604
  surname: Zare
  fullname: Zare, Alina
  email: azare@ece.ufl.edu
  organization: Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
– sequence: 4
  givenname: Nicholas
  orcidid: 0000-0002-2330-2015
  surname: Kroeger
  fullname: Kroeger, Nicholas
  organization: Department of Computer and Information Science Engineering, University of Florida, Gainesville, FL, USA
– sequence: 5
  givenname: Connor
  surname: McCurley
  fullname: McCurley, Connor
  organization: Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
– sequence: 6
  givenname: Daniel
  surname: Shats
  fullname: Shats, Daniel
  organization: Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
– sequence: 7
  givenname: Paul
  surname: Gader
  fullname: Gader, Paul
  organization: Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
BookMark eNp9kMtOwzAQRS1UJNrCByA2kVin2I4f8RIV-pCKkKCsLScdV6mCE2x30b8nIRULFmgWMxrdM487QSPXOEDoluAZIVg9bJdv7zOKKZllWGAlxAUaE87zFAvGRmiMiRIpzRW9QpMQDhgTxokco_XLsY5VNH4PMfmp2xrStQvRuBKSDRjvKrdPbOOT1akFH1ooozd1sh2YJ4hdo2rcNbq0pg5wc85T9LF43s5X6eZ1uZ4_btKSqiymO0PkjgshOS9A5jsCYKwhuS0FK2jGpcqpZawoGBeFkVSoDGNmrTC5Agkym6L7YW7rm68jhKgPzdG7bqWmAstcii46lRxUpW9C8GB12X3Z39kdX9WaYN37pnvfdO-bPvvWkeQP2frq0_jTv8zdwFQA8KtXmeRM4uwbY9B7OA
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2024_3432883
crossref_primary_10_1016_j_patcog_2024_110257
crossref_primary_10_3390_su141912597
crossref_primary_10_1016_j_ecoinf_2023_102432
crossref_primary_10_1109_JSTARS_2025_3547347
crossref_primary_10_1109_TGRS_2022_3176856
crossref_primary_10_1038_s41598_024_54547_2
crossref_primary_10_1109_TGRS_2022_3207766
crossref_primary_10_1109_TGRS_2023_3291439
crossref_primary_10_1109_TGRS_2022_3214523
crossref_primary_10_1109_TGRS_2023_3339718
Cites_doi 10.1109/TNNLS.2019.2900465
10.1016/j.isprsjprs.2018.08.012
10.1109/78.782198
10.1016/j.rse.2019.111308
10.1109/TGRS.2015.2406334
10.1016/B978-1-4832-1451-1.50030-5
10.1117/12.850303
10.1109/IGARSS.2017.8127120
10.1109/LGRS.2007.895727
10.1109/79.974727
10.1016/j.rse.2008.11.007
10.1109/ICPR.2010.273
10.1016/j.rse.2015.06.012
10.1109/TPAMI.2017.2756632
10.1109/LSP.2008.917805
10.1109/78.890324
10.1016/S0004-3702(96)00034-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3060966
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 14
ExternalDocumentID 10_1109_TGRS_2021_3060966
9375470
Genre orig-research
GrantInformation_xml – fundername: Harris Corporation
– fundername: DARPA Advanced Plant Technologies Grant (SENTINEL: SENsing Threats In Natural Environments Using Ligand-Receptor Modules)
  funderid: 10.13039/100000185
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-da17d566755be78d1eeafa18fc64b2357982f44bb456ba72693004ff6a89e7e73
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Tue Aug 26 15:40:31 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Tue Jul 01 01:34:26 EDT 2025
Wed Aug 27 05:11:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-da17d566755be78d1eeafa18fc64b2357982f44bb456ba72693004ff6a89e7e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4847-7604
0000-0001-7859-0248
0000-0002-2330-2015
PQID 2607876767
PQPubID 85465
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2021_3060966
crossref_primary_10_1109_TGRS_2021_3060966
proquest_journals_2607876767
ieee_primary_9375470
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Green (ref23) 1998
ref15
ref14
ref20
Zhang (ref9); 2
ref11
ref22
ref10
ref2
Bocinsky (ref8) 2019
ref1
ref17
ref16
ref19
ref7
Glenn (ref21) 2016
Maron (ref3)
ref4
MacQueen (ref18); 1
ref6
ref5
References_xml – ident: ref4
  doi: 10.1109/TNNLS.2019.2900465
– start-page: 570
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref3
  article-title: A framework for multiple-instance learning
– ident: ref6
  doi: 10.1016/j.isprsjprs.2018.08.012
– ident: ref14
  doi: 10.1109/78.782198
– volume: 2
  start-page: 1073
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref9
  article-title: EM-DD: An improved multiple-instance learning technique
– ident: ref19
  doi: 10.1016/j.rse.2019.111308
– year: 1998
  ident: ref23
  article-title: AVIRIS radiometric laboratory calibration, inflight validation and a focused sensitivity analysis in 1998
– ident: ref13
  doi: 10.1109/TGRS.2015.2406334
– ident: ref10
  doi: 10.1016/B978-1-4832-1451-1.50030-5
– ident: ref16
  doi: 10.1117/12.850303
– volume: 1
  start-page: 281
  volume-title: Proc. 5th Berkeley Symp. Math. Statist. Probab.
  ident: ref18
  article-title: Some methods for classification and analysis of multivariate observations
– ident: ref7
  doi: 10.1109/IGARSS.2017.8127120
– ident: ref12
  doi: 10.1109/LGRS.2007.895727
– ident: ref1
  doi: 10.1109/79.974727
– year: 2019
  ident: ref8
  article-title: Learning multiple target concepts from uncertain, ambiguous data using the adaptive cosine estimator and spectral match filter
– ident: ref20
  doi: 10.1016/j.rse.2008.11.007
– ident: ref11
  doi: 10.1109/ICPR.2010.273
– volume-title: Bullwinkle: Scoring Code for Sub-Pixel Targets (Version 1.0) [Software]
  year: 2016
  ident: ref21
– ident: ref22
  doi: 10.1016/j.rse.2015.06.012
– ident: ref5
  doi: 10.1109/TPAMI.2017.2756632
– ident: ref17
  doi: 10.1109/LSP.2008.917805
– ident: ref15
  doi: 10.1109/78.890324
– ident: ref2
  doi: 10.1016/S0004-3702(96)00034-3
SSID ssj0014517
Score 2.4719744
Snippet In remote sensing, it is often challenging to acquire or collect a large data set that is accurately labeled. This difficulty is usually due to several issues,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive cosine estimator (ACE)
Algorithms
Colleges & universities
Datasets
Detection
Dictionaries
Global Positioning System
Global positioning systems
GPS
hyperspectral
Hyperspectral imaging
Imaging spectrometers
Infrared imaging
Infrared spectrometers
Libraries
Machine learning
multiple instance
multiple target
Object detection
Positioning systems
Remote sensing
Signatures
Spatial discrimination
Spatial resolution
spectral matched filter
target characterization
Target detection
Training
Training data
Title Multitarget Multiple-Instance Learning for Hyperspectral Target Detection
URI https://ieeexplore.ieee.org/document/9375470
https://www.proquest.com/docview/2607876767
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGJCQ48NhADAbqgRMiW99pjwgYG9I4wCbtVjWpywHUoa278Otx0qziJcSth6SNYqf-HNufAc49B70gkj65JRgxxYDFVDSLIVnPWNIJ8zWX3vghHE79-1kwa8BlXQuDiDr5DHvqUcfys7lcqauyfqz6tXJy0DdIzaparTpiQF8xpdEhIyfCNRFMx477k7vHJ_IEXadH-Jgge_jFBummKj_-xNq8DHZhvF5YlVXy0luVoiffv3E2_nfle7BjcKZ1VSnGPjSwaMH2J_bBFmzq7E-5bMOoKsPVSeHW2KQYspFGjhItw8H6bBHAtYbkuFb1mQt6_6Sac4OlTukqDmA6uJ1cD5npscAkGfqSZanDM4J0PAgE8ihzENM8daJchr5QVDhx5Oa-LwQBLZFyV3VOtP08D9MoRo7cO4RmMS_wCKwAkbBnJnJBMDC1PYF2JD0pglSGXGLWAXu964k0BOSqD8Zroh0RO06UoBIlqMQIqgMX9ZS3in3jr8FttfH1QLPnHeiuRZuY87lMyIsjFVJkdce_zzqBLVcVOujLli40y8UKTwl-lOJM690HZoXVng
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VRQgYeLQgCgUyMCHS5v0YEVBSaDpAK3WLYufCAEpRmy78es6OW_ESYstgO5bP9n3nu_sO4Nw20XYD7pBZgoEuGLB04c3SkbRnyOmEOZJLLx560di5n7iTGlyucmEQUQafYUd8Sl9-NuUL8VTWDUW9Vp8M9DXS-45bZWutfAb0H5Uc7elkRljKh2kaYXd09_hEtqBldgghE2j3vmghWVblx10sFUxvB-Ll1Kq4kpfOomQd_v6NtfG_c9-FbYU0tatqa-xBDYsGbH3iH2zAuoz_5PMm9KtEXBkWrsUqyFDvS-zIUVMsrM8aQVwtItO1ytCc0fijqs8NljKoq9iHce92dB3pqsqCzknVl3qWmn5GoM53XYZ-kJmIaZ6aQc49hwkynDCwcsdhjKAWS31L1E40nDz30iBEH337AOrFtMBD0FxEQp8ZyxkBwdSwGRoBtzlzU-75HLMWGMtVT7iiIBeVMF4TaYoYYSIElQhBJUpQLbhYdXmr-Df-atwUC79qqNa8Be2laBN1QucJ2XF0Vwm6uqPfe53BRjSKB8mgP3w4hk1LpD3Ip5c21MvZAk8IjJTsVO7BD75x2Os
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multitarget+Multiple-Instance+Learning+for+Hyperspectral+Target+Detection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Meerdink%2C+Susan&rft.au=Bocinsky%2C+James&rft.au=Zare%2C+Alina&rft.au=Kroeger%2C+Nicholas&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2021.3060966&rft.externalDocID=9375470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon