Multitarget Multiple-Instance Learning for Hyperspectral Target Detection
In remote sensing, it is often challenging to acquire or collect a large data set that is accurately labeled. This difficulty is usually due to several issues, including but not limited to the study site's spatial area and accessibility, errors in the global positioning system (GPS), and mixed...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 14 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0196-2892 1558-0644 |
DOI | 10.1109/TGRS.2021.3060966 |
Cover
Abstract | In remote sensing, it is often challenging to acquire or collect a large data set that is accurately labeled. This difficulty is usually due to several issues, including but not limited to the study site's spatial area and accessibility, errors in the global positioning system (GPS), and mixed pixels caused by an image's spatial resolution. We propose an approach, with two variations, that estimates multiple-target signatures from training samples with imprecise labels: multitarget multiple-instance adaptive cosine estimator (MTMI-ACE) and multitarget multiple-instance spectral match filter (MTMI-SMF). The proposed methods address the abovementioned problems by directly considering the multiple-instance, imprecisely labeled data set. They learn a dictionary of target signatures that optimizes detection against a background using the adaptive cosine estimator (ACE) and spectral match filter (SMF). Experiments were conducted to test the proposed algorithms using a simulated hyperspectral data set, the MUUFL Gulfport hyperspectral data set collected over the University of Southern Mississippi-Gulfpark Campus, and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data set collected over Santa Barbara County, CA, USA. Both simulated and real hyperspectral target detection experiments show that the proposed algorithms are effective at learning target signatures and performing target detection. |
---|---|
AbstractList | In remote sensing, it is often challenging to acquire or collect a large data set that is accurately labeled. This difficulty is usually due to several issues, including but not limited to the study site's spatial area and accessibility, errors in the global positioning system (GPS), and mixed pixels caused by an image's spatial resolution. We propose an approach, with two variations, that estimates multiple-target signatures from training samples with imprecise labels: multitarget multiple-instance adaptive cosine estimator (MTMI-ACE) and multitarget multiple-instance spectral match filter (MTMI-SMF). The proposed methods address the abovementioned problems by directly considering the multiple-instance, imprecisely labeled data set. They learn a dictionary of target signatures that optimizes detection against a background using the adaptive cosine estimator (ACE) and spectral match filter (SMF). Experiments were conducted to test the proposed algorithms using a simulated hyperspectral data set, the MUUFL Gulfport hyperspectral data set collected over the University of Southern Mississippi-Gulfpark Campus, and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data set collected over Santa Barbara County, CA, USA. Both simulated and real hyperspectral target detection experiments show that the proposed algorithms are effective at learning target signatures and performing target detection. |
Author | Gader, Paul Bocinsky, James McCurley, Connor Kroeger, Nicholas Shats, Daniel Zare, Alina Meerdink, Susan |
Author_xml | – sequence: 1 givenname: Susan orcidid: 0000-0001-7859-0248 surname: Meerdink fullname: Meerdink, Susan email: susan-meerdink@uiowa.edu organization: Department of Geographical and Sustainability Sciences, The University of Iowa, Iowa, IA, USA – sequence: 2 givenname: James surname: Bocinsky fullname: Bocinsky, James organization: Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA – sequence: 3 givenname: Alina orcidid: 0000-0002-4847-7604 surname: Zare fullname: Zare, Alina email: azare@ece.ufl.edu organization: Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA – sequence: 4 givenname: Nicholas orcidid: 0000-0002-2330-2015 surname: Kroeger fullname: Kroeger, Nicholas organization: Department of Computer and Information Science Engineering, University of Florida, Gainesville, FL, USA – sequence: 5 givenname: Connor surname: McCurley fullname: McCurley, Connor organization: Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA – sequence: 6 givenname: Daniel surname: Shats fullname: Shats, Daniel organization: Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA – sequence: 7 givenname: Paul surname: Gader fullname: Gader, Paul organization: Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA |
BookMark | eNp9kMtOwzAQRS1UJNrCByA2kVin2I4f8RIV-pCKkKCsLScdV6mCE2x30b8nIRULFmgWMxrdM487QSPXOEDoluAZIVg9bJdv7zOKKZllWGAlxAUaE87zFAvGRmiMiRIpzRW9QpMQDhgTxokco_XLsY5VNH4PMfmp2xrStQvRuBKSDRjvKrdPbOOT1akFH1ooozd1sh2YJ4hdo2rcNbq0pg5wc85T9LF43s5X6eZ1uZ4_btKSqiymO0PkjgshOS9A5jsCYKwhuS0FK2jGpcqpZawoGBeFkVSoDGNmrTC5Agkym6L7YW7rm68jhKgPzdG7bqWmAstcii46lRxUpW9C8GB12X3Z39kdX9WaYN37pnvfdO-bPvvWkeQP2frq0_jTv8zdwFQA8KtXmeRM4uwbY9B7OA |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_TGRS_2024_3432883 crossref_primary_10_1016_j_patcog_2024_110257 crossref_primary_10_3390_su141912597 crossref_primary_10_1016_j_ecoinf_2023_102432 crossref_primary_10_1109_JSTARS_2025_3547347 crossref_primary_10_1109_TGRS_2022_3176856 crossref_primary_10_1038_s41598_024_54547_2 crossref_primary_10_1109_TGRS_2022_3207766 crossref_primary_10_1109_TGRS_2023_3291439 crossref_primary_10_1109_TGRS_2022_3214523 crossref_primary_10_1109_TGRS_2023_3339718 |
Cites_doi | 10.1109/TNNLS.2019.2900465 10.1016/j.isprsjprs.2018.08.012 10.1109/78.782198 10.1016/j.rse.2019.111308 10.1109/TGRS.2015.2406334 10.1016/B978-1-4832-1451-1.50030-5 10.1117/12.850303 10.1109/IGARSS.2017.8127120 10.1109/LGRS.2007.895727 10.1109/79.974727 10.1016/j.rse.2008.11.007 10.1109/ICPR.2010.273 10.1016/j.rse.2015.06.012 10.1109/TPAMI.2017.2756632 10.1109/LSP.2008.917805 10.1109/78.890324 10.1016/S0004-3702(96)00034-3 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2021.3060966 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 14 |
ExternalDocumentID | 10_1109_TGRS_2021_3060966 9375470 |
Genre | orig-research |
GrantInformation_xml | – fundername: Harris Corporation – fundername: DARPA Advanced Plant Technologies Grant (SENTINEL: SENsing Threats In Natural Environments Using Ligand-Receptor Modules) funderid: 10.13039/100000185 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c293t-da17d566755be78d1eeafa18fc64b2357982f44bb456ba72693004ff6a89e7e73 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Tue Aug 26 15:40:31 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 Tue Jul 01 01:34:26 EDT 2025 Wed Aug 27 05:11:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-da17d566755be78d1eeafa18fc64b2357982f44bb456ba72693004ff6a89e7e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4847-7604 0000-0001-7859-0248 0000-0002-2330-2015 |
PQID | 2607876767 |
PQPubID | 85465 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TGRS_2021_3060966 crossref_primary_10_1109_TGRS_2021_3060966 proquest_journals_2607876767 ieee_primary_9375470 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 Green (ref23) 1998 ref15 ref14 ref20 Zhang (ref9); 2 ref11 ref22 ref10 ref2 Bocinsky (ref8) 2019 ref1 ref17 ref16 ref19 ref7 Glenn (ref21) 2016 Maron (ref3) ref4 MacQueen (ref18); 1 ref6 ref5 |
References_xml | – ident: ref4 doi: 10.1109/TNNLS.2019.2900465 – start-page: 570 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref3 article-title: A framework for multiple-instance learning – ident: ref6 doi: 10.1016/j.isprsjprs.2018.08.012 – ident: ref14 doi: 10.1109/78.782198 – volume: 2 start-page: 1073 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref9 article-title: EM-DD: An improved multiple-instance learning technique – ident: ref19 doi: 10.1016/j.rse.2019.111308 – year: 1998 ident: ref23 article-title: AVIRIS radiometric laboratory calibration, inflight validation and a focused sensitivity analysis in 1998 – ident: ref13 doi: 10.1109/TGRS.2015.2406334 – ident: ref10 doi: 10.1016/B978-1-4832-1451-1.50030-5 – ident: ref16 doi: 10.1117/12.850303 – volume: 1 start-page: 281 volume-title: Proc. 5th Berkeley Symp. Math. Statist. Probab. ident: ref18 article-title: Some methods for classification and analysis of multivariate observations – ident: ref7 doi: 10.1109/IGARSS.2017.8127120 – ident: ref12 doi: 10.1109/LGRS.2007.895727 – ident: ref1 doi: 10.1109/79.974727 – year: 2019 ident: ref8 article-title: Learning multiple target concepts from uncertain, ambiguous data using the adaptive cosine estimator and spectral match filter – ident: ref20 doi: 10.1016/j.rse.2008.11.007 – ident: ref11 doi: 10.1109/ICPR.2010.273 – volume-title: Bullwinkle: Scoring Code for Sub-Pixel Targets (Version 1.0) [Software] year: 2016 ident: ref21 – ident: ref22 doi: 10.1016/j.rse.2015.06.012 – ident: ref5 doi: 10.1109/TPAMI.2017.2756632 – ident: ref17 doi: 10.1109/LSP.2008.917805 – ident: ref15 doi: 10.1109/78.890324 – ident: ref2 doi: 10.1016/S0004-3702(96)00034-3 |
SSID | ssj0014517 |
Score | 2.4719744 |
Snippet | In remote sensing, it is often challenging to acquire or collect a large data set that is accurately labeled. This difficulty is usually due to several issues,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptive cosine estimator (ACE) Algorithms Colleges & universities Datasets Detection Dictionaries Global Positioning System Global positioning systems GPS hyperspectral Hyperspectral imaging Imaging spectrometers Infrared imaging Infrared spectrometers Libraries Machine learning multiple instance multiple target Object detection Positioning systems Remote sensing Signatures Spatial discrimination Spatial resolution spectral matched filter target characterization Target detection Training Training data |
Title | Multitarget Multiple-Instance Learning for Hyperspectral Target Detection |
URI | https://ieeexplore.ieee.org/document/9375470 https://www.proquest.com/docview/2607876767 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGJCQ48NhADAbqgRMiW99pjwgYG9I4wCbtVjWpywHUoa278Otx0qziJcSth6SNYqf-HNufAc49B70gkj65JRgxxYDFVDSLIVnPWNIJ8zWX3vghHE79-1kwa8BlXQuDiDr5DHvqUcfys7lcqauyfqz6tXJy0DdIzaparTpiQF8xpdEhIyfCNRFMx477k7vHJ_IEXadH-Jgge_jFBummKj_-xNq8DHZhvF5YlVXy0luVoiffv3E2_nfle7BjcKZ1VSnGPjSwaMH2J_bBFmzq7E-5bMOoKsPVSeHW2KQYspFGjhItw8H6bBHAtYbkuFb1mQt6_6Sac4OlTukqDmA6uJ1cD5npscAkGfqSZanDM4J0PAgE8ihzENM8daJchr5QVDhx5Oa-LwQBLZFyV3VOtP08D9MoRo7cO4RmMS_wCKwAkbBnJnJBMDC1PYF2JD0pglSGXGLWAXu964k0BOSqD8Zroh0RO06UoBIlqMQIqgMX9ZS3in3jr8FttfH1QLPnHeiuRZuY87lMyIsjFVJkdce_zzqBLVcVOujLli40y8UKTwl-lOJM690HZoXVng |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VRQgYeLQgCgUyMCHS5v0YEVBSaDpAK3WLYufCAEpRmy78es6OW_ESYstgO5bP9n3nu_sO4Nw20XYD7pBZgoEuGLB04c3SkbRnyOmEOZJLLx560di5n7iTGlyucmEQUQafYUd8Sl9-NuUL8VTWDUW9Vp8M9DXS-45bZWutfAb0H5Uc7elkRljKh2kaYXd09_hEtqBldgghE2j3vmghWVblx10sFUxvB-Ll1Kq4kpfOomQd_v6NtfG_c9-FbYU0tatqa-xBDYsGbH3iH2zAuoz_5PMm9KtEXBkWrsUqyFDvS-zIUVMsrM8aQVwtItO1ytCc0fijqs8NljKoq9iHce92dB3pqsqCzknVl3qWmn5GoM53XYZ-kJmIaZ6aQc49hwkynDCwcsdhjKAWS31L1E40nDz30iBEH337AOrFtMBD0FxEQp8ZyxkBwdSwGRoBtzlzU-75HLMWGMtVT7iiIBeVMF4TaYoYYSIElQhBJUpQLbhYdXmr-Df-atwUC79qqNa8Be2laBN1QucJ2XF0Vwm6uqPfe53BRjSKB8mgP3w4hk1LpD3Ip5c21MvZAk8IjJTsVO7BD75x2Os |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multitarget+Multiple-Instance+Learning+for+Hyperspectral+Target+Detection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Meerdink%2C+Susan&rft.au=Bocinsky%2C+James&rft.au=Zare%2C+Alina&rft.au=Kroeger%2C+Nicholas&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2021.3060966&rft.externalDocID=9375470 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |