Simultaneous optimisation of support structure regions and part topology for additive manufacturing
Support structures are required to enable the build of additively manufactured parts. The supports reinforce overhanging regions on the part and/or counteract the thermally-induced residual stresses generated during printing. However, the optimal design of the part for its intended use case is decou...
Saved in:
Published in | Structural and multidisciplinary optimization Vol. 65; no. 11 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Support structures are required to enable the build of additively manufactured parts. The supports reinforce overhanging regions on the part and/or counteract the thermally-induced residual stresses generated during printing. However, the optimal design of the part for its intended use case is decoupled from the design of the support structures in a conventional design for additive manufacturing (DfAM) workflow. In this work, a novel methodology is presented that simultaneously optimises the part topology and its support structure regions. A two-model topology optimisation approach is considered. One model describes the combined part and support structure regions subject to a pseudo-gravity load and a second model describes the part subject to its intended application load cases. A novel load-aligned trunk and branch support structure is generated from the topology optimisation results. Generating the fine support features in a post-processing step avoids the computational expense of topology optimising the intricate supports directly. Thermo-mechanical simulations of a selective laser melting process confirms that this new approach to optimising support structures can reduce manufacturing process-induced deformation when benchmarked against a conventional DfAM workflow. |
---|---|
AbstractList | Support structures are required to enable the build of additively manufactured parts. The supports reinforce overhanging regions on the part and/or counteract the thermally-induced residual stresses generated during printing. However, the optimal design of the part for its intended use case is decoupled from the design of the support structures in a conventional design for additive manufacturing (DfAM) workflow. In this work, a novel methodology is presented that simultaneously optimises the part topology and its support structure regions. A two-model topology optimisation approach is considered. One model describes the combined part and support structure regions subject to a pseudo-gravity load and a second model describes the part subject to its intended application load cases. A novel load-aligned trunk and branch support structure is generated from the topology optimisation results. Generating the fine support features in a post-processing step avoids the computational expense of topology optimising the intricate supports directly. Thermo-mechanical simulations of a selective laser melting process confirms that this new approach to optimising support structures can reduce manufacturing process-induced deformation when benchmarked against a conventional DfAM workflow. |
ArticleNumber | 334 |
Author | Daynes, Stephen |
Author_xml | – sequence: 1 givenname: Stephen orcidid: 0000-0003-1373-8111 surname: Daynes fullname: Daynes, Stephen email: stephen.daynes@canterbury.ac.nz organization: Singapore Institute of Manufacturing Technology, Department of Mechanical Engineering, University of Canterbury |
BookMark | eNp9kEtLAzEQgIMo2Fb_gKeA59Vks8nuHqX4goIHFbyFNI-Sst3EJCu0v960KwoeepqBmW8e3xSc9q7XAFxhdIMRqm8jQpg2BSrLApGKVsXuBEwww7TAVdOc_ub1xzmYxrhGCDWoaidAvtrN0CXRazdE6HyyGxtFsq6HzsA4eO9CgjGFQaYhaBj0KtciFL2CXuRSct51brWFxgUolLLJfmm4Ef1gxB6x_eoCnBnRRX35E2fg_eH-bf5ULF4en-d3i0KWLUmFagijSFJtJFVa4ZZQxcqGiJaYpjUKGUaFYUuqTP6JyhYLkxkhlrQ0tK3JDFyPc31wn4OOia_dEPq8kpc1YYjRFrPc1YxdMrgYgzZc2nT4OAVhO44R3yvlo1KelfKDUr7LaPkP9cFuRNgeh8gIRb-XocPfVUeob9oDj1c |
CitedBy_id | crossref_primary_10_1016_j_matdes_2023_112183 crossref_primary_10_1108_RPJ_06_2024_0245 crossref_primary_10_1016_j_ijoes_2024_100803 crossref_primary_10_1080_17452759_2025_2466189 crossref_primary_10_1016_j_amf_2024_200136 crossref_primary_10_1016_j_ensm_2024_103560 |
Cites_doi | 10.1016/j.addma.2017.08.001 10.1109/TVCG.2019.2938946 10.1016/j.cad.2016.08.006 10.1016/j.euromechsol.2020.104170 10.3390/app11093828 10.1007/978-1-4613-0301-5_14 10.1016/j.addma.2020.101594 10.1038/nature23911 10.1007/s40964-018-0061-3 10.3390/jmmp2040064 10.1016/j.addma.2018.04.016 10.1016/j.matdes.2021.110320 10.1007/s40964-020-00109-7 10.1007/s00158-018-1953-z 10.1016/j.cma.2020.113385 10.1016/j.addma.2019.03.001 10.1016/j.finel.2011.03.007 10.1111/cgf.12437 10.1016/j.cja.2020.09.020 10.1007/s00158-018-2125-x 10.1016/j.jmatprotec.2016.08.006 10.1007/s00158-020-02607-2 10.1016/j.matdes.2020.108779 10.1016/j.cirp.2020.04.091 10.1016/j.addma.2017.11.008 10.1016/0010-4485(89)90059-6 10.1016/j.promfg.2018.02.099 10.1016/j.jmsy.2019.08.005 10.3390/jmmp3030068 10.1007/s11831-015-9151-2 10.1007/s10957-020-01685-y 10.1016/j.finel.2021.103708 10.1016/S0168-874X(03)00118-5 10.1007/s00158-020-02835-6 10.1016/j.addma.2020.101257 10.1007/s001580050176 10.1016/j.addma.2020.101246 10.1145/2816795.2818121 10.1007/s00170-020-04942-6 10.1016/j.addma.2020.101506 10.1016/j.cma.2003.10.008 10.1016/j.ipl.2007.07.002 10.1007/s00158-020-02551-1 10.1007/s00170-015-6994-5 10.1115/1.1388075 10.1007/s001580050179 10.1016/j.cma.2019.112812 10.1007/s40962-018-0229-0 10.1002/nme.6366 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00158-022-03454-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1615-1488 |
ExternalDocumentID | 10_1007_s00158_022_03454_z |
GrantInformation_xml | – fundername: Agency for Science, Technology and Research grantid: C210112041 – fundername: University of Canterbury |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c293t-d83650c5efc5ded1935d6283a93f89fd0f65af6b5df4885c91afd83aab52f5973 |
IEDL.DBID | BENPR |
ISSN | 1615-147X |
IngestDate | Sat Aug 23 13:12:00 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Jul 01 01:31:47 EDT 2025 Fri Feb 21 02:44:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Topology optimisation Additive manufacturing Support structures Lattice |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-d83650c5efc5ded1935d6283a93f89fd0f65af6b5df4885c91afd83aab52f5973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1373-8111 |
OpenAccessLink | https://link.springer.com/10.1007/s00158-022-03454-z |
PQID | 2736065916 |
PQPubID | 2043658 |
ParticipantIDs | proquest_journals_2736065916 crossref_citationtrail_10_1007_s00158_022_03454_z crossref_primary_10_1007_s00158_022_03454_z springer_journals_10_1007_s00158_022_03454_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221100 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Structural and multidisciplinary optimization |
PublicationTitleAbbrev | Struct Multidisc Optim |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Sigmund (CR37) 2001; 21 Daynes, Lifton, Lu, Wei, Feih (CR13) 2021; 86 Piegl (CR36) 1989; 21 Chen, Kostreva, Yang, Mees, Fisher, Jennings (CR10) 2000 Wang, Xia, Luo, Yan, Sun, Lü (CR44) 2020; 36 Fritz, Kim (CR15) 2020; 121 Ge, Kou (CR17) 2021; 11 Zhu, Zhang, Xia (CR51) 2016; 23 Bruggi, Taliercio (CR9) 2020; 187 Vanek, Galicia, Benes (CR39) 2014; 33 Wang, Wang (CR41) 2004; 193 Panesar, Abdi, Hickman, Ashcroft (CR35) 2018; 19 Zhou, Liu, Wei (CR50) 2020; 61 Yang, Zhao (CR46) 2015; 80 Mass, Amir (CR29) 2017; 18 Zhang, Wang, Zhang, Gomes, Bernard (CR48) 2020; 69 Daynes, Feih (CR12) 2022; 213 CR4 Amir, Amir (CR6) 2021; 63 Gisario, Kazarian, Martina, Mehrpouya (CR19) 2019; 53 Wang, Basu, Leiva (CR42) 2004; 40 Luo, Sigmund, Li, Liu (CR28) 2020; 372 Song, Feih, Zhai, Sun, Li, Maiti, Wei, Yang, Oancea, Romano, Brandt, Korsunsky (CR38) 2020; 193 Aage, Andreassen, Lazarov, Sigmund (CR1) 2017; 550 Wu, Wang, Gao (CR45) 2019; 27 Gronau, Moran (CR21) 2007; 104 Mugwagwa, Dimitrov, Matope, Yadroitsev (CR34) 2018; 21 Wang, Sama, Manogharan (CR43) 2019; 13 Hong, Zhang, Lifton, Daynes, Wei, Feih, Lu (CR22) 2021; 37 Zhang, Le, Panotopoulou, Whiting, Wang (CR47) 2015; 34 Eschenauer, Olhoff (CR14) 2001; 54 Berrocal, Fernández, González, Periñán, Tudela, Vilanova (CR8) 2019; 4 Mirzendehdel, Suresh (CR33) 2016; 81 Barroqueiro, Andrade-Campos, Valente (CR7) 2019; 3 Kelly, Reidsema, Bassandeh, Pearce, Lee (CR25) 2011; 47 Jihong, Han, Chuang, Lu, Shangqin, Zhang (CR24) 2021; 34 Liu, Song, Huang (CR27) 2020; 35 Zhou, Shyy, Thomas (CR49) 2001; 21 Gan, Wong (CR16) 2016; 238 Mezzadri, Bouriakov, Qian (CR31) 2018; 21 Miki, Nishiwaki (CR32) 2022; 203 Wang, Qian (CR40) 2020; 34 Giraldo-Londoño, Mirabella, Dalloro, Paulino (CR18) 2020; 363 CR20 Allaire, Bogosel (CR2) 2018; 58 Cheng, Liang, Bai, Chen, Lemon, To (CR11) 2019; 27 Li, Kim (CR26) 2018; 58 Matos, Rocha, Pereira (CR30) 2020; 107 Allaire, Bihr, Bogosel (CR3) 2020; 61 Al-Tamimi, Almeida, Bartolo (CR5) 2020; 5 Jiang, Xu, Stringer (CR23) 2018; 2 Y Mass (3454_CR29) 2017; 18 W Ge (3454_CR17) 2021; 11 X Chen (3454_CR10) 2000 T Miki (3454_CR32) 2022; 203 W Liu (3454_CR27) 2020; 35 N Aage (3454_CR1) 2017; 550 D Kelly (3454_CR25) 2011; 47 3454_CR20 Z Jihong (3454_CR24) 2021; 34 B Barroqueiro (3454_CR7) 2019; 3 S Daynes (3454_CR12) 2022; 213 M Zhou (3454_CR50) 2020; 61 J Wu (3454_CR45) 2019; 27 X Zhang (3454_CR47) 2015; 34 M Wang (3454_CR41) 2004; 193 L Piegl (3454_CR36) 1989; 21 J Zhu (3454_CR51) 2016; 23 L Wang (3454_CR42) 2004; 40 G Allaire (3454_CR2) 2018; 58 A Gisario (3454_CR19) 2019; 53 O Giraldo-Londoño (3454_CR18) 2020; 363 Y Wang (3454_CR44) 2020; 36 Y Luo (3454_CR28) 2020; 372 R Hong (3454_CR22) 2021; 37 O Sigmund (3454_CR37) 2001; 21 3454_CR4 M Bruggi (3454_CR9) 2020; 187 A Al-Tamimi (3454_CR5) 2020; 5 H Eschenauer (3454_CR14) 2001; 54 I Gronau (3454_CR21) 2007; 104 J Vanek (3454_CR39) 2014; 33 G Allaire (3454_CR3) 2020; 61 K Fritz (3454_CR15) 2020; 121 L Mugwagwa (3454_CR34) 2018; 21 M Matos (3454_CR30) 2020; 107 D Li (3454_CR26) 2018; 58 L Cheng (3454_CR11) 2019; 27 F Mezzadri (3454_CR31) 2018; 21 M Gan (3454_CR16) 2016; 238 C Wang (3454_CR40) 2020; 34 A Mirzendehdel (3454_CR33) 2016; 81 A Panesar (3454_CR35) 2018; 19 Y Zhang (3454_CR48) 2020; 69 S Yang (3454_CR46) 2015; 80 J Jiang (3454_CR23) 2018; 2 E Amir (3454_CR6) 2021; 63 L Berrocal (3454_CR8) 2019; 4 M Zhou (3454_CR49) 2001; 21 X Song (3454_CR38) 2020; 193 J Wang (3454_CR43) 2019; 13 S Daynes (3454_CR13) 2021; 86 |
References_xml | – volume: 18 start-page: 58 year: 2017 end-page: 73 ident: CR29 article-title: Topology optimization for additive manufacturing: accounting for overhang limitations using a virtual skeleton publication-title: Addit Manuf doi: 10.1016/j.addma.2017.08.001 – volume: 27 start-page: 43 issue: 1 year: 2019 end-page: 56 ident: CR45 article-title: Design and optimization of conforming lattice structures publication-title: IEEE Trans Visual Comput Graphics doi: 10.1109/TVCG.2019.2938946 – volume: 81 start-page: 1 year: 2016 end-page: 13 ident: CR33 article-title: Support structure constrained topology optimization for additive manufacturing publication-title: Comput Aided Des doi: 10.1016/j.cad.2016.08.006 – volume: 86 start-page: 104170 year: 2021 ident: CR13 article-title: Fracture toughness characteristics of additively manufactured Ti–6Al–4V lattices publication-title: Eur J Mech-A/Solids doi: 10.1016/j.euromechsol.2020.104170 – ident: CR4 – volume: 11 start-page: 3828 issue: 9 year: 2021 ident: CR17 article-title: Topology optimization of multi-materials compliant mechanisms publication-title: Appl Sci doi: 10.3390/app11093828 – start-page: 205 year: 2000 end-page: 219 ident: CR10 article-title: Methods of feasible directions: a review publication-title: Progress in optimization doi: 10.1007/978-1-4613-0301-5_14 – volume: 37 start-page: 101594 year: 2021 ident: CR22 article-title: Artificial neural network-based geometry compensation to improve the printing accuracy of selective laser melting fabricated sub-millimetre overhang trusses publication-title: Addit Manuf doi: 10.1016/j.addma.2020.101594 – volume: 550 start-page: 84 issue: 7674 year: 2017 end-page: 86 ident: CR1 article-title: Giga-voxel computational morphogenesis for structural design publication-title: Nature doi: 10.1038/nature23911 – volume: 4 start-page: 83 issue: 2 year: 2019 end-page: 95 ident: CR8 article-title: Topology optimization and additive manufacturing for aerospace components publication-title: Prog Addit Manuf doi: 10.1007/s40964-018-0061-3 – volume: 2 start-page: 64 issue: 4 year: 2018 ident: CR23 article-title: Support structures for additive manufacturing: a review publication-title: J Manuf Mater Process doi: 10.3390/jmmp2040064 – volume: 21 start-page: 666 year: 2018 end-page: 682 ident: CR31 article-title: Topology optimization of self-supporting support structures for additive manufacturing publication-title: Addit Manuf doi: 10.1016/j.addma.2018.04.016 – volume: 213 start-page: 110320 year: 2022 ident: CR12 article-title: Bio-inspired lattice structure optimisation with strain trajectory aligned trusses publication-title: Mater Des doi: 10.1016/j.matdes.2021.110320 – volume: 5 start-page: 95 issue: 2 year: 2020 end-page: 110 ident: CR5 article-title: Structural optimisation for medical implants through additive manufacturing publication-title: Prog Addit Manuf doi: 10.1007/s40964-020-00109-7 – volume: 58 start-page: 1081 issue: 3 year: 2018 end-page: 1094 ident: CR26 article-title: Multi-material topology optimization for practical lightweight design publication-title: Struct Multidisc Optim doi: 10.1007/s00158-018-1953-z – volume: 372 start-page: 113385 year: 2020 ident: CR28 article-title: Additive manufacturing oriented topology optimization of structures with self-supported enclosed voids publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113385 – volume: 27 start-page: 290 year: 2019 end-page: 304 ident: CR11 article-title: On utilizing topology optimization to design support structure to prevent residual stress induced build failure in laser powder bed metal additive manufacturing publication-title: Addit Manuf doi: 10.1016/j.addma.2019.03.001 – volume: 47 start-page: 867 issue: 8 year: 2011 end-page: 876 ident: CR25 article-title: On interpreting load paths and identifying a load bearing topology from finite element analysis publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2011.03.007 – volume: 33 start-page: 117 issue: 5 year: 2014 end-page: 125 ident: CR39 article-title: Clever support: Efficient support structure generation for digital fabrication publication-title: Comput Graphics Forum doi: 10.1111/cgf.12437 – volume: 34 start-page: 91 issue: 1 year: 2021 end-page: 110 ident: CR24 article-title: A review of topology optimization for additive manufacturing: status and challenges publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2020.09.020 – volume: 58 start-page: 2493 issue: 6 year: 2018 end-page: 2515 ident: CR2 article-title: Optimizing supports for additive manufacturing publication-title: Struct Multidisc Optim doi: 10.1007/s00158-018-2125-x – volume: 238 start-page: 474 year: 2016 end-page: 484 ident: CR16 article-title: Practical support structures for selective laser melting publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2016.08.006 – volume: 61 start-page: 2423 issue: 6 year: 2020 end-page: 2435 ident: CR50 article-title: Topology optimization of easy-removal support structures for additive manufacturing publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02607-2 – volume: 193 start-page: 108779 year: 2020 ident: CR38 article-title: Advances in additive manufacturing process simulation: residual stresses and distortion predictions in complex metallic components publication-title: Mater Des doi: 10.1016/j.matdes.2020.108779 – volume: 69 start-page: 117 issue: 1 year: 2020 end-page: 120 ident: CR48 article-title: Bio-inspired generative design for support structure generation and optimization in Additive Manufacturing (AM) publication-title: CIRP Ann doi: 10.1016/j.cirp.2020.04.091 – volume: 19 start-page: 81 year: 2018 end-page: 94 ident: CR35 article-title: Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing publication-title: Addit Manuf doi: 10.1016/j.addma.2017.11.008 – volume: 21 start-page: 509 issue: 8 year: 1989 end-page: 518 ident: CR36 article-title: Modifying the shape of rational B-splines Part 1: curves publication-title: Comput Aid Design doi: 10.1016/0010-4485(89)90059-6 – volume: 21 start-page: 92 year: 2018 end-page: 99 ident: CR34 article-title: Influence of process parameters on residual stress related distortions in selective laser melting publication-title: Procedia Manuf doi: 10.1016/j.promfg.2018.02.099 – volume: 53 start-page: 124 year: 2019 end-page: 149 ident: CR19 article-title: Metal additive manufacturing in the commercial aviation industry: a review publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2019.08.005 – volume: 3 start-page: 68 issue: 3 year: 2019 ident: CR7 article-title: Designing self supported SLM structures via topology optimization publication-title: J Manuf Mater Process doi: 10.3390/jmmp3030068 – volume: 23 start-page: 595 issue: 4 year: 2016 end-page: 622 ident: CR51 article-title: Topology optimization in aircraft and aerospace structures design publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-015-9151-2 – volume: 187 start-page: 654 issue: 3 year: 2020 end-page: 682 ident: CR9 article-title: Hierarchical infills for additive manufacturing through a multiscale approach publication-title: J Optim Theory Appl doi: 10.1007/s10957-020-01685-y – volume: 203 start-page: 103708 year: 2022 ident: CR32 article-title: Topology optimization of the support structure for heat dissipation in additive manufacturing publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2021.103708 – volume: 40 start-page: 879 issue: 8 year: 2004 end-page: 893 ident: CR42 article-title: Automobile body reinforcement by finite element optimization publication-title: Finite Elem Anal Des doi: 10.1016/S0168-874X(03)00118-5 – volume: 63 start-page: 2589 issue: 6 year: 2021 end-page: 2612 ident: CR6 article-title: Concurrent high-resolution topology optimization of structures and their supports for additive manufacturing publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02835-6 – volume: 35 start-page: 101257 year: 2020 ident: CR27 article-title: Maximizing mechanical properties and minimizing support material of PolyJet fabricated 3D lattice structures publication-title: Addit Manuf doi: 10.1016/j.addma.2020.101257 – volume: 21 start-page: 120 issue: 2 year: 2001 end-page: 127 ident: CR37 article-title: A 99 line topology optimization code written in Matlab publication-title: Struct Multidisc Optim doi: 10.1007/s001580050176 – volume: 34 start-page: 101246 year: 2020 ident: CR40 article-title: Simultaneous optimization of build orientation and topology for additive manufacturin publication-title: Addit Manuf doi: 10.1016/j.addma.2020.101246 – volume: 34 start-page: 1 issue: 6 year: 2015 end-page: 12 ident: CR47 article-title: Perceptual models of preference in 3D printing direction publication-title: ACM Trans Graphics (TOG) doi: 10.1145/2816795.2818121 – volume: 107 start-page: 1993 issue: 5 year: 2020 end-page: 2005 ident: CR30 article-title: Improving additive manufacturing performance by build orientation optimization publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-04942-6 – volume: 36 start-page: 101506 year: 2020 ident: CR44 article-title: Self-supporting topology optimization method for selective laser melting publication-title: Addit Manuf doi: 10.1016/j.addma.2020.101506 – volume: 193 start-page: 469 issue: 6–8 year: 2004 end-page: 496 ident: CR41 article-title: “Color” level sets: a multi-phase method for structural topology optimization with multiple materials publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2003.10.008 – volume: 104 start-page: 205 issue: 6 year: 2007 end-page: 210 ident: CR21 article-title: Optimal implementations of UPGMA and other common clustering algorithms publication-title: Inf Process Lett doi: 10.1016/j.ipl.2007.07.002 – volume: 61 start-page: 2377 issue: 6 year: 2020 end-page: 2399 ident: CR3 article-title: Support optimization in additive manufacturing for geometric and thermo-mechanical constraints publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02551-1 – volume: 80 start-page: 327 issue: 1 year: 2015 end-page: 342 ident: CR46 article-title: Additive manufacturing-enabled design theory and methodology: a critical review publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-6994-5 – volume: 54 start-page: 331 issue: 4 year: 2001 end-page: 390 ident: CR14 article-title: Topology optimization of continuum structures: a review publication-title: Appl Mech Rev doi: 10.1115/1.1388075 – volume: 21 start-page: 152 issue: 2 year: 2001 end-page: 158 ident: CR49 article-title: Checkerboard and minimum member size control in topology optimization publication-title: Struct Multidisc Optim doi: 10.1007/s001580050179 – volume: 363 start-page: 112812 year: 2020 ident: CR18 article-title: Multi-material thermomechanical topology optimization with applications to additive manufacturing: design of main composite part and its support structure publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2019.112812 – volume: 13 start-page: 2 issue: 1 year: 2019 end-page: 17 ident: CR43 article-title: Re-thinking design methodology for castings: 3D sand-printing and topology optimization publication-title: Int J Metalcast doi: 10.1007/s40962-018-0229-0 – volume: 121 start-page: 3442 issue: 15 year: 2020 end-page: 3481 ident: CR15 article-title: Simultaneous topology and build orientation optimization for minimization of additive manufacturing cost and time publication-title: Int J Numer Meth Eng doi: 10.1002/nme.6366 – ident: CR20 – volume: 58 start-page: 1081 issue: 3 year: 2018 ident: 3454_CR26 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-018-1953-z – volume: 193 start-page: 469 issue: 6–8 year: 2004 ident: 3454_CR41 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2003.10.008 – volume: 47 start-page: 867 issue: 8 year: 2011 ident: 3454_CR25 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2011.03.007 – volume: 121 start-page: 3442 issue: 15 year: 2020 ident: 3454_CR15 publication-title: Int J Numer Meth Eng doi: 10.1002/nme.6366 – volume: 27 start-page: 43 issue: 1 year: 2019 ident: 3454_CR45 publication-title: IEEE Trans Visual Comput Graphics doi: 10.1109/TVCG.2019.2938946 – volume: 61 start-page: 2423 issue: 6 year: 2020 ident: 3454_CR50 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02607-2 – volume: 61 start-page: 2377 issue: 6 year: 2020 ident: 3454_CR3 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02551-1 – volume: 4 start-page: 83 issue: 2 year: 2019 ident: 3454_CR8 publication-title: Prog Addit Manuf doi: 10.1007/s40964-018-0061-3 – volume: 35 start-page: 101257 year: 2020 ident: 3454_CR27 publication-title: Addit Manuf doi: 10.1016/j.addma.2020.101257 – volume: 21 start-page: 152 issue: 2 year: 2001 ident: 3454_CR49 publication-title: Struct Multidisc Optim doi: 10.1007/s001580050179 – volume: 34 start-page: 91 issue: 1 year: 2021 ident: 3454_CR24 publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2020.09.020 – volume: 23 start-page: 595 issue: 4 year: 2016 ident: 3454_CR51 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-015-9151-2 – volume: 193 start-page: 108779 year: 2020 ident: 3454_CR38 publication-title: Mater Des doi: 10.1016/j.matdes.2020.108779 – start-page: 205 volume-title: Progress in optimization year: 2000 ident: 3454_CR10 doi: 10.1007/978-1-4613-0301-5_14 – volume: 21 start-page: 666 year: 2018 ident: 3454_CR31 publication-title: Addit Manuf doi: 10.1016/j.addma.2018.04.016 – volume: 36 start-page: 101506 year: 2020 ident: 3454_CR44 publication-title: Addit Manuf doi: 10.1016/j.addma.2020.101506 – volume: 363 start-page: 112812 year: 2020 ident: 3454_CR18 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2019.112812 – volume: 107 start-page: 1993 issue: 5 year: 2020 ident: 3454_CR30 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-020-04942-6 – volume: 13 start-page: 2 issue: 1 year: 2019 ident: 3454_CR43 publication-title: Int J Metalcast doi: 10.1007/s40962-018-0229-0 – volume: 86 start-page: 104170 year: 2021 ident: 3454_CR13 publication-title: Eur J Mech-A/Solids doi: 10.1016/j.euromechsol.2020.104170 – volume: 372 start-page: 113385 year: 2020 ident: 3454_CR28 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113385 – volume: 54 start-page: 331 issue: 4 year: 2001 ident: 3454_CR14 publication-title: Appl Mech Rev doi: 10.1115/1.1388075 – volume: 213 start-page: 110320 year: 2022 ident: 3454_CR12 publication-title: Mater Des doi: 10.1016/j.matdes.2021.110320 – volume: 69 start-page: 117 issue: 1 year: 2020 ident: 3454_CR48 publication-title: CIRP Ann doi: 10.1016/j.cirp.2020.04.091 – volume: 21 start-page: 509 issue: 8 year: 1989 ident: 3454_CR36 publication-title: Comput Aid Design doi: 10.1016/0010-4485(89)90059-6 – volume: 27 start-page: 290 year: 2019 ident: 3454_CR11 publication-title: Addit Manuf doi: 10.1016/j.addma.2019.03.001 – volume: 550 start-page: 84 issue: 7674 year: 2017 ident: 3454_CR1 publication-title: Nature doi: 10.1038/nature23911 – ident: 3454_CR4 – volume: 34 start-page: 1 issue: 6 year: 2015 ident: 3454_CR47 publication-title: ACM Trans Graphics (TOG) doi: 10.1145/2816795.2818121 – volume: 18 start-page: 58 year: 2017 ident: 3454_CR29 publication-title: Addit Manuf doi: 10.1016/j.addma.2017.08.001 – volume: 5 start-page: 95 issue: 2 year: 2020 ident: 3454_CR5 publication-title: Prog Addit Manuf doi: 10.1007/s40964-020-00109-7 – volume: 11 start-page: 3828 issue: 9 year: 2021 ident: 3454_CR17 publication-title: Appl Sci doi: 10.3390/app11093828 – volume: 2 start-page: 64 issue: 4 year: 2018 ident: 3454_CR23 publication-title: J Manuf Mater Process doi: 10.3390/jmmp2040064 – volume: 21 start-page: 120 issue: 2 year: 2001 ident: 3454_CR37 publication-title: Struct Multidisc Optim doi: 10.1007/s001580050176 – volume: 104 start-page: 205 issue: 6 year: 2007 ident: 3454_CR21 publication-title: Inf Process Lett doi: 10.1016/j.ipl.2007.07.002 – volume: 81 start-page: 1 year: 2016 ident: 3454_CR33 publication-title: Comput Aided Des doi: 10.1016/j.cad.2016.08.006 – volume: 19 start-page: 81 year: 2018 ident: 3454_CR35 publication-title: Addit Manuf doi: 10.1016/j.addma.2017.11.008 – volume: 80 start-page: 327 issue: 1 year: 2015 ident: 3454_CR46 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-6994-5 – volume: 238 start-page: 474 year: 2016 ident: 3454_CR16 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2016.08.006 – ident: 3454_CR20 – volume: 53 start-page: 124 year: 2019 ident: 3454_CR19 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2019.08.005 – volume: 187 start-page: 654 issue: 3 year: 2020 ident: 3454_CR9 publication-title: J Optim Theory Appl doi: 10.1007/s10957-020-01685-y – volume: 37 start-page: 101594 year: 2021 ident: 3454_CR22 publication-title: Addit Manuf doi: 10.1016/j.addma.2020.101594 – volume: 203 start-page: 103708 year: 2022 ident: 3454_CR32 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2021.103708 – volume: 3 start-page: 68 issue: 3 year: 2019 ident: 3454_CR7 publication-title: J Manuf Mater Process doi: 10.3390/jmmp3030068 – volume: 58 start-page: 2493 issue: 6 year: 2018 ident: 3454_CR2 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-018-2125-x – volume: 40 start-page: 879 issue: 8 year: 2004 ident: 3454_CR42 publication-title: Finite Elem Anal Des doi: 10.1016/S0168-874X(03)00118-5 – volume: 63 start-page: 2589 issue: 6 year: 2021 ident: 3454_CR6 publication-title: Struct Multidisc Optim doi: 10.1007/s00158-020-02835-6 – volume: 34 start-page: 101246 year: 2020 ident: 3454_CR40 publication-title: Addit Manuf doi: 10.1016/j.addma.2020.101246 – volume: 33 start-page: 117 issue: 5 year: 2014 ident: 3454_CR39 publication-title: Comput Graphics Forum doi: 10.1111/cgf.12437 – volume: 21 start-page: 92 year: 2018 ident: 3454_CR34 publication-title: Procedia Manuf doi: 10.1016/j.promfg.2018.02.099 |
SSID | ssj0008049 |
Score | 2.3959763 |
Snippet | Support structures are required to enable the build of additively manufactured parts. The supports reinforce overhanging regions on the part and/or counteract... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Additive manufacturing Aircraft Airplane engines Compliance Computational Mathematics and Numerical Analysis Engineering Engineering Design Laser beam melting Research Paper Residual stress Theoretical and Applied Mechanics Topology optimization Vertical loads Workflow |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEIAHrRc9iE-sVsnBmwa6TbLdPRaxiKAXLfS25AmC3RbbHuyvd5LNblVU8LxJDjOTzDebmQnAJWdaMfQ8VCXSUM4xQFFoSdShL8R4xGZG-f8dD4_p3Yjfj8U4FoXN62z3-koynNRNsZt37xn12eddxgWnq03YEj52Ryse9QbN-ZtV0OtRhia8P46lMj-v8dUdrRnz27Vo8DbDPdiNmEgGlV73YcOWB7DzqXngIeinF58NKEuLwTuZ4tafxNQcMnVkvpx5siZVf9jlmyX-CQY0MSJLQ2ZoMGRRvY_wTpBbic8r8icfmchy6asdQvniEYyGt883dzQ-mUA1-u0FNRlD5NLCOi2MNUhnwqRIEDJnLsud6bpUSJcqYRzuXKHzRDqcI6USPYexBTuGVjkt7QkQBBWtcTwSEuN9magsl4lFmmBaCG27bUhqyRU69hP3z1q8Fk0n5CDtAqVdBGkXqzZcNXNmVTeNP0d3aoUUcWfNC8St1N8FJ2kbrmslrT__vtrp_4afwXbP20koO-xAC7Vlz5E_FuoimNsHmv_Tkw priority: 102 providerName: Springer Nature |
Title | Simultaneous optimisation of support structure regions and part topology for additive manufacturing |
URI | https://link.springer.com/article/10.1007/s00158-022-03454-z https://www.proquest.com/docview/2736065916 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ6oXPRgfEYUyR686UZKu6WcDBDQaCRGJcFTs91HYiKlChzk1zvTLqAmemkP-zjMzM58szsPgLPAV4mPlocnntQ8CNBBSVCSuEVbiP6IiXRC9x33_fBmENwOxdBduE1cWOVCJ-aKWo8V3ZFfopkN6Q3QC6-yd05do-h11bXQWIcSquAIna9Su9t_eFzq4qgAwARruBc0hi5tJk-eI7gQcYpmr_mBCPj8p2la4c1fT6S55entwLaDjKxV8HgX1ky6B1vfCgnug3p6pchAmRp05NkY1cDIhemwsWWTWUYomxW1YmcfhlE7BhQ3JlPNMhQeNi16JXwyxLCMYoxIC7KRTGeU-ZCnMh7AoNd97txw1z6BK7ThU64jH-GXEsYqoY1GpCZ0iGhCNn0bNa2u2VBIGyZCWzzFQjU9aXGNlImoW_Qz_EPYSMepOQKGoEUpnI9oyQ8a0kuipvQMIgtfCaFMrQzegnKxcrXFqcXFW7ysipxTO0Zqxzm143kZzpdrsqKyxr-zKwuGxO6UTeKVTJThYsGk1fDfux3_v9sJbNZJLvKUwwpsIHfMKWKPaVKF9ah3XYVSq9du9-l__XLXrTqxw9FO2MHvoN76AobD3VI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RcKAcqkJbNW1afKCnYjUb28vuAaGqJYTnBZBy23r9kCrBbtrNqkp-FL-RmX0kBQlunP04zHye-WzPA2BbCpMK9Dw8DbTlUuIFJUUkcY--EO8jLrIpvXecnYejK3k8VuMVuG1zYSissrWJlaG2uaE38m_oZkP6AwzC_ckfTl2j6He1baFRw-LEzf7hla3YO_qJ-v0yGAwPLn-MeNNVgBt0bVNuI4GsxCjnjbLOIoFRNkQnq2Pho9jbvg-V9mGqrEdwKxMH2uMarVM18Ei_Be77AlalEDGdqGh4uLD8UU23iUTxQO6OmySdKlWPyEnEKXa-L6SSfH7fES7Z7YMP2crPDV_Dq4agsu81ojZgxWWbsP5f2cI3YC5-UxyizlxeFixHo3PTBAWx3LOinBCnZ3Vl2vKvY9T8AcHNdGbZBKHKpnVnhhlDxswooolsLrvRWUl5FlXi5Fu4ehaxvoNOlmfuPTCkSMbgfORmQu7qII1iHTjkMcIoZVy_C0ErucQ0lcypocZ1sqjBXEk7QWknlbSTeRe-LtZM6joeT87utQpJmjNdJEsEdmGnVdJy-PHdPjy92xasjS7PTpPTo_OTj_ByQBipkh170EFNuU_Ieqbp5wpqDH49N7bvAFRkFFk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQfQgPrFaNQdvGtrtJtvdo1RLfRVBC72FPEGw28VuD_bXO9lXq6jgeZMcZiaZb3bmm0HonPpK-uB5iPSEJpRCgCLBkogFXwjxiAm1dP87HgdBf0jvRmy0xOLPqt3LlGTOaXBdmuK0mWjbrIhvztWHxFWit3zKKJmvojWIVLJEbTfoVm9xmANgB2uIRzujgjbz8xlfXdMCb35LkWaep7eNtgrIiK9yHe-gFRPvos2lRoJ7SD2_uspAERsI5PEEnoFxUaaDJxZPZ4lD2TjvFTt7N9iNYwBzwyLWOAHjwWk-K-EDA4bFrsbIvYJ4LOKZYz5kVMZ9NOzdvHT7pBifQBT48JTo0Af4pZiximmjAakxHQCaEJFvw8jqlg2YsIFk2sItZiryhIU9QkjWthBn-AeoFk9ic4gwgBalYD2gJZ92hCfDSHgGkIWvGFOmVUdeKTmuit7ibsTFG6-6ImfS5iBtnkmbz-vootqT5J01_lzdKBXCi1s25QC9ApcX9oI6uiyVtPj8-2lH_1t-htafrnv84XZwf4w22s5kMjZiA9VAceYEYEkqTzPL-wQMsdqs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+optimisation+of+support+structure+regions+and+part+topology+for+additive+manufacturing&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Daynes%2C+Stephen&rft.date=2022-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=65&rft.issue=11&rft_id=info:doi/10.1007%2Fs00158-022-03454-z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |