A Cooperative Memetic Algorithm With Learning-Based Agent for Energy-Aware Distributed Hybrid Flow-Shop Scheduling
With increasing environmental awareness and energy requirement, sustainable manufacturing has attracted growing attention. Meanwhile, distributed manufacturing systems have become emerging due to the development of globalization. This article addresses the energy-aware distributed hybrid flow-shop s...
Saved in:
Published in | IEEE transactions on evolutionary computation Vol. 26; no. 3; pp. 461 - 475 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1089-778X 1941-0026 |
DOI | 10.1109/TEVC.2021.3106168 |
Cover
Loading…
Abstract | With increasing environmental awareness and energy requirement, sustainable manufacturing has attracted growing attention. Meanwhile, distributed manufacturing systems have become emerging due to the development of globalization. This article addresses the energy-aware distributed hybrid flow-shop scheduling (EADHFSP) with minimization of makespan and energy consumption simultaneously. We present a mixed-integer linear programming model and propose a cooperative memetic algorithm (CMA) with a reinforcement learning (RL)-based policy agent. First, an encoding scheme and a reasonable decoding method are designed, considering the tradeoff between two conflicting objectives. Second, two problem-specific heuristics are presented for hybrid initialization to generate diverse solutions. Third, solutions are refined with appropriate improvement operator selected by the RL-based policy agent. Meanwhile, an effective solution selection method based on the decomposition strategy is utilized to balance the convergence and diversity. Fourth, an intensification search with multiple problem-specific operators is incorporated to further enhance the exploitation capability. Moreover, two energy-saving strategies are designed for improving the nondominated solutions. The effect of parameter setting is investigated and extensive numerical tests are carried out. The comparative results demonstrate that the special designs are effective and the CMA is superior to the existing algorithms in solving the EADHFSP. |
---|---|
AbstractList | With increasing environmental awareness and energy requirement, sustainable manufacturing has attracted growing attention. Meanwhile, distributed manufacturing systems have become emerging due to the development of globalization. This article addresses the energy-aware distributed hybrid flow-shop scheduling (EADHFSP) with minimization of makespan and energy consumption simultaneously. We present a mixed-integer linear programming model and propose a cooperative memetic algorithm (CMA) with a reinforcement learning (RL)-based policy agent. First, an encoding scheme and a reasonable decoding method are designed, considering the tradeoff between two conflicting objectives. Second, two problem-specific heuristics are presented for hybrid initialization to generate diverse solutions. Third, solutions are refined with appropriate improvement operator selected by the RL-based policy agent. Meanwhile, an effective solution selection method based on the decomposition strategy is utilized to balance the convergence and diversity. Fourth, an intensification search with multiple problem-specific operators is incorporated to further enhance the exploitation capability. Moreover, two energy-saving strategies are designed for improving the nondominated solutions. The effect of parameter setting is investigated and extensive numerical tests are carried out. The comparative results demonstrate that the special designs are effective and the CMA is superior to the existing algorithms in solving the EADHFSP. |
Author | Wang, Jing-Jing Wang, Ling |
Author_xml | – sequence: 1 givenname: Jing-Jing orcidid: 0000-0003-3385-7572 surname: Wang fullname: Wang, Jing-Jing email: wjj18@mails.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 2 givenname: Ling orcidid: 0000-0003-1226-2801 surname: Wang fullname: Wang, Ling email: wangling@mail.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China |
BookMark | eNp9kMtOwzAQRS0EEs8PQGwssU7x2HnYy1DKQypiwXMXOfGkNUrj4rig_j2uiliwYDMzi3PvSOeQ7PauR0JOgY0AmLp4mryMR5xxGAlgOeRyhxyASiFhjOe78WZSJUUh3_bJ4TC8MwZpBuqA-JKOnVui18F-Ir3HBQbb0LKbOW_DfEFf46RT1L63_Sy51AMaWs6wD7R1nk569LN1Un5pj_TKDsHbehUicruuvTX0unNfyePcLeljM0ez6mLJMdlrdTfgyc8-Is_Xk6fxbTJ9uLkbl9Ok4UqExBSNgtRokwPKDETLtTI8a2pWMORGmaxt06KpkWdK1iJvUUiTMxBKQpobLo7I-bZ36d3HCodQvbuV7-PLiucF4yyNbKSKLdV4Nwwe26qxIcpwffDadhWwaiO42giuNoKrH8ExCX-SS28X2q__zZxtMxYRf3mVgRSyEN8inojV |
CODEN | ITEVF5 |
CitedBy_id | crossref_primary_10_1080_00207543_2024_2356628 crossref_primary_10_32604_cmc_2024_055244 crossref_primary_10_1016_j_engappai_2024_109915 crossref_primary_10_1109_TETCI_2022_3174915 crossref_primary_10_1016_j_asoc_2024_112461 crossref_primary_10_1109_TCYB_2024_3381084 crossref_primary_10_1109_TASE_2023_3326301 crossref_primary_10_1016_j_swevo_2024_101479 crossref_primary_10_1109_TCYB_2023_3336656 crossref_primary_10_1109_TSMC_2024_3488205 crossref_primary_10_1109_TSMC_2024_3449413 crossref_primary_10_1016_j_engappai_2024_109907 crossref_primary_10_1016_j_swevo_2023_101373 crossref_primary_10_3390_sym15040786 crossref_primary_10_1109_TETCI_2024_3369314 crossref_primary_10_1360_SST_2023_0341 crossref_primary_10_1016_j_knosys_2023_110808 crossref_primary_10_1109_TSMC_2024_3518625 crossref_primary_10_47813_2782_5280_2024_3_4_0301_0312 crossref_primary_10_1016_j_aei_2024_102401 crossref_primary_10_1007_s10462_024_10706_5 crossref_primary_10_1016_j_swevo_2024_101625 crossref_primary_10_1109_TSMC_2024_3407724 crossref_primary_10_1016_j_swevo_2023_101409 crossref_primary_10_1016_j_cor_2024_106785 crossref_primary_10_3390_app14198712 crossref_primary_10_1080_00207543_2023_2252523 crossref_primary_10_1016_j_jmsy_2024_11_017 crossref_primary_10_1016_j_jclepro_2024_143771 crossref_primary_10_1109_TASE_2023_3349167 crossref_primary_10_1016_j_engappai_2024_108569 crossref_primary_10_1016_j_asoc_2024_111593 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1109_TASE_2024_3422473 crossref_primary_10_2478_jaiscr_2024_0006 crossref_primary_10_1109_TASE_2024_3365518 crossref_primary_10_1016_j_swevo_2024_101694 crossref_primary_10_3390_math12132007 crossref_primary_10_1016_j_knosys_2023_111295 crossref_primary_10_23919_CSMS_2024_0003 crossref_primary_10_1109_TEVC_2022_3175832 crossref_primary_10_1016_j_cie_2024_109995 crossref_primary_10_1016_j_eswa_2024_124952 crossref_primary_10_1177_00202940241245241 crossref_primary_10_1016_j_cie_2024_109917 crossref_primary_10_1016_j_future_2024_107494 crossref_primary_10_3390_pr12010143 crossref_primary_10_1016_j_engappai_2025_110098 crossref_primary_10_1016_j_swevo_2024_101600 crossref_primary_10_1016_j_swevo_2024_101602 crossref_primary_10_1080_23311916_2023_2206074 crossref_primary_10_1016_j_swevo_2024_101680 crossref_primary_10_1016_j_eswa_2025_126523 crossref_primary_10_1016_j_swevo_2024_101681 crossref_primary_10_1016_j_cie_2025_110917 crossref_primary_10_1016_j_engappai_2023_107818 crossref_primary_10_1016_j_eswa_2022_119151 crossref_primary_10_1109_TASE_2023_3327792 crossref_primary_10_1016_j_eswa_2025_126526 crossref_primary_10_1007_s00521_022_07714_3 crossref_primary_10_1016_j_cirpj_2022_11_003 crossref_primary_10_1109_TSMC_2022_3219380 crossref_primary_10_1080_0305215X_2024_2328188 crossref_primary_10_1016_j_rcim_2023_102605 crossref_primary_10_1109_TEVC_2022_3219238 crossref_primary_10_23919_CSMS_2022_0025 crossref_primary_10_1038_s41598_022_19215_3 crossref_primary_10_1080_23302674_2025_2467782 crossref_primary_10_23919_CSMS_2023_0021 crossref_primary_10_1016_j_swevo_2023_101399 crossref_primary_10_1080_00207543_2024_2442549 crossref_primary_10_1016_j_eswa_2023_120261 crossref_primary_10_1109_TII_2023_3282313 crossref_primary_10_1016_j_eij_2023_05_008 crossref_primary_10_23919_CSMS_2021_0027 crossref_primary_10_1016_j_aei_2023_102307 crossref_primary_10_3390_buildings15050742 crossref_primary_10_1109_TII_2022_3218645 crossref_primary_10_1016_j_jclepro_2022_135738 crossref_primary_10_1016_j_asoc_2024_112124 crossref_primary_10_1109_TSMC_2024_3510384 crossref_primary_10_1016_j_swevo_2024_101669 crossref_primary_10_1016_j_swevo_2024_101549 crossref_primary_10_1016_j_jii_2024_100620 crossref_primary_10_1016_j_swevo_2024_101544 crossref_primary_10_1016_j_cie_2025_110983 crossref_primary_10_1016_j_swevo_2023_101321 crossref_primary_10_1016_j_swevo_2023_101320 crossref_primary_10_1016_j_compeleceng_2024_109780 crossref_primary_10_1016_j_swevo_2024_101668 crossref_primary_10_3390_sym15040836 crossref_primary_10_1109_TEVC_2023_3281810 crossref_primary_10_3390_pr13030728 crossref_primary_10_3390_electronics12061358 crossref_primary_10_1016_j_ejor_2022_08_009 crossref_primary_10_1016_j_swevo_2024_101814 crossref_primary_10_1016_j_jmsy_2024_10_018 crossref_primary_10_1016_j_eswa_2024_125690 crossref_primary_10_1016_j_swevo_2024_101778 crossref_primary_10_1016_j_swevo_2024_101771 crossref_primary_10_1016_j_rcim_2023_102707 crossref_primary_10_1016_j_swevo_2024_101772 crossref_primary_10_1016_j_eswa_2023_121570 crossref_primary_10_1080_0305215X_2024_2410844 crossref_primary_10_3390_pr11030755 crossref_primary_10_1016_j_engappai_2024_108634 crossref_primary_10_1109_TASE_2024_3371940 crossref_primary_10_1038_s41598_025_93582_5 crossref_primary_10_32604_cmes_2022_019730 crossref_primary_10_1109_TEVC_2023_3237336 crossref_primary_10_1016_j_cor_2024_106563 crossref_primary_10_1016_j_eij_2023_100424 crossref_primary_10_1016_j_eswa_2023_122434 crossref_primary_10_1016_j_swevo_2024_101764 crossref_primary_10_3390_pr13010174 crossref_primary_10_1016_j_eswa_2024_124194 |
Cites_doi | 10.1109/TSMCB.2006.883265 10.1016/j.eswa.2018.07.055 10.1016/j.omega.2018.01.001 10.1016/j.cie.2019.07.036 10.1016/j.jclepro.2018.02.224 10.1016/j.eswa.2014.06.023 10.1080/19397030802257236 10.1016/j.ijpe.2013.05.004 10.1109/TEVC.2005.851275 10.1080/00401706.1992.10484904 10.1016/j.jmsy.2011.08.004 10.1016/j.neucom.2020.01.114 10.1109/SFCS.1995.492493 10.1109/TEVC.2017.2664665 10.1109/TSMC.2019.2916088 10.1109/TSMC.2015.2416127 10.1109/TETCI.2020.3022372 10.1016/j.cor.2009.11.001 10.1007/s10479-012-1294-z 10.1080/0305215X.2013.827673 10.1016/j.ejor.2004.05.017 10.1109/TEVC.2007.892759 10.1016/j.cor.2009.06.019 10.1016/j.jclepro.2018.02.004 10.1109/TASE.2012.2204874 10.1016/j.jclepro.2015.09.097 10.1109/TEVC.2011.2132725 10.1016/j.cor.2021.105400 10.1016/j.ijpe.2013.01.028 10.1109/TSMCB.2006.883272 10.1080/00207540701450013 10.1016/j.ejor.2015.05.019 10.1109/4235.996017 10.1007/s00170-013-4819-y 10.1016/j.cor.2009.04.017 10.1016/j.eswa.2017.09.032 10.1016/j.swevo.2019.05.007 10.1016/j.swevo.2016.06.002 10.1016/0305-0483(83)90088-9 10.1016/j.cor.2019.05.002 10.1016/j.omega.2013.12.004 10.1080/00207540903121065 10.1007/s40747-019-00122-6 10.2307/2582115 10.1109/TSMC.2017.2788879 10.1007/s10845-015-1084-y 10.1016/j.cirp.2012.03.084 10.1016/j.ejor.2014.05.024 10.1109/MCI.2010.936309 10.1007/978-3-642-48318-9 10.1016/j.cie.2020.106638 10.1109/TEVC.2003.810758 10.1109/TCYB.2020.3026571 10.1109/TSMC.2016.2616347 10.1016/j.cirp.2010.03.048 10.1016/j.cor.2013.06.011 10.1007/s10845-014-0890-y 10.1007/3-540-44719-9_15 10.1016/j.ejor.2016.09.055 10.1016/j.omega.2018.03.004 10.1016/j.engappai.2020.103540 10.1016/j.cor.2018.07.025 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TEVC.2021.3106168 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0026 |
EndPage | 475 |
ExternalDocumentID | 10_1109_TEVC_2021_3106168 9518387 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars of China grantid: 61525304 – fundername: National Natural Science Foundation of China grantid: 61873328 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-d7c914dad61e8513f2a9d25cb070e2d9d5ff47cbe2598b36fe38d601398146d23 |
IEDL.DBID | RIE |
ISSN | 1089-778X |
IngestDate | Mon Jun 30 04:45:42 EDT 2025 Thu Apr 24 22:55:43 EDT 2025 Tue Jul 01 01:56:23 EDT 2025 Wed Aug 27 02:36:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-d7c914dad61e8513f2a9d25cb070e2d9d5ff47cbe2598b36fe38d601398146d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3385-7572 0000-0003-1226-2801 |
PQID | 2670204139 |
PQPubID | 85418 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2021_3106168 crossref_primary_10_1109_TEVC_2021_3106168 ieee_primary_9518387 proquest_journals_2670204139 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on evolutionary computation |
PublicationTitleAbbrev | TEVC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Sutton (ref46) 2018 ref17 ref16 ref19 ref18 Montgomery (ref65) 2005 Vaswani (ref56) ref45 Knowles (ref63) ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 Lu (ref51) ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 Nazari (ref50) ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref68 ref23 ref67 ref26 ref25 Bello (ref49) ref20 ref64 ref22 ref66 ref21 ref28 ref27 ref29 da Fonseca (ref69) 2001 ref60 ref62 ref61 |
References_xml | – ident: ref44 doi: 10.1109/TSMCB.2006.883265 – volume-title: Design and Analysis of Experiments year: 2005 ident: ref65 – ident: ref18 doi: 10.1016/j.eswa.2018.07.055 – ident: ref8 doi: 10.1016/j.omega.2018.01.001 – ident: ref23 doi: 10.1016/j.cie.2019.07.036 – ident: ref25 doi: 10.1016/j.jclepro.2018.02.224 – ident: ref35 doi: 10.1016/j.eswa.2014.06.023 – ident: ref4 doi: 10.1080/19397030802257236 – ident: ref29 doi: 10.1016/j.ijpe.2013.05.004 – ident: ref61 doi: 10.1109/TEVC.2005.851275 – ident: ref66 doi: 10.1080/00401706.1992.10484904 – ident: ref6 doi: 10.1016/j.jmsy.2011.08.004 – ident: ref60 doi: 10.1016/j.neucom.2020.01.114 – ident: ref5 doi: 10.1109/SFCS.1995.492493 – ident: ref47 doi: 10.1109/TEVC.2017.2664665 – ident: ref24 doi: 10.1109/TSMC.2019.2916088 – ident: ref37 doi: 10.1109/TSMC.2015.2416127 – ident: ref41 doi: 10.1109/TETCI.2020.3022372 – ident: ref14 doi: 10.1016/j.cor.2009.11.001 – ident: ref7 doi: 10.1007/s10479-012-1294-z – ident: ref31 doi: 10.1080/0305215X.2013.827673 – ident: ref52 doi: 10.1016/j.ejor.2004.05.017 – ident: ref59 doi: 10.1109/TEVC.2007.892759 – ident: ref28 doi: 10.1016/j.cor.2009.06.019 – ident: ref13 doi: 10.1016/j.jclepro.2018.02.004 – ident: ref15 doi: 10.1109/TASE.2012.2204874 – ident: ref10 doi: 10.1016/j.jclepro.2015.09.097 – ident: ref43 doi: 10.1109/TEVC.2011.2132725 – ident: ref48 doi: 10.1016/j.cor.2021.105400 – ident: ref22 doi: 10.1016/j.ijpe.2013.01.028 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref49 article-title: Neural combinatorial optimization with reinforcement learning – ident: ref45 doi: 10.1109/TSMCB.2006.883272 – start-page: 711 volume-title: Proc. Congr. Evol. Comput. ident: ref63 article-title: On metrics for comparing non-dominated sets – ident: ref2 doi: 10.1080/00207540701450013 – start-page: 5998 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref56 article-title: Attention is all you need – ident: ref9 doi: 10.1016/j.ejor.2015.05.019 – ident: ref67 doi: 10.1109/4235.996017 – ident: ref20 doi: 10.1007/s00170-013-4819-y – ident: ref16 doi: 10.1016/j.cor.2009.04.017 – ident: ref38 doi: 10.1016/j.eswa.2017.09.032 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref51 article-title: A learning-based iterative method for solving vehicle routing problems – ident: ref64 doi: 10.1016/j.swevo.2019.05.007 – ident: ref33 doi: 10.1016/j.swevo.2016.06.002 – ident: ref54 doi: 10.1016/0305-0483(83)90088-9 – ident: ref53 doi: 10.1016/j.cor.2019.05.002 – ident: ref21 doi: 10.1016/j.omega.2013.12.004 – ident: ref26 doi: 10.1080/00207540903121065 – ident: ref1 doi: 10.1007/s40747-019-00122-6 – ident: ref17 doi: 10.2307/2582115 – ident: ref34 doi: 10.1109/TSMC.2017.2788879 – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: ref46 – ident: ref36 doi: 10.1007/s10845-015-1084-y – ident: ref12 doi: 10.1016/j.cirp.2012.03.084 – ident: ref30 doi: 10.1016/j.ejor.2014.05.024 – ident: ref42 doi: 10.1109/MCI.2010.936309 – ident: ref57 doi: 10.1007/978-3-642-48318-9 – start-page: 9839 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS) ident: ref50 article-title: Reinforcement learning for solving the vehicle routing problem – ident: ref40 doi: 10.1016/j.cie.2020.106638 – ident: ref68 doi: 10.1109/TEVC.2003.810758 – ident: ref62 doi: 10.1109/TCYB.2020.3026571 – ident: ref58 doi: 10.1109/TSMC.2016.2616347 – ident: ref3 doi: 10.1016/j.cirp.2010.03.048 – ident: ref11 doi: 10.1016/j.cor.2013.06.011 – ident: ref27 doi: 10.1007/s10845-014-0890-y – start-page: 213 volume-title: Evolutionary Multi-Criterion Optimization (EMO) year: 2001 ident: ref69 article-title: Inferential performance assessment of stochastic optimizers and the attainment function doi: 10.1007/3-540-44719-9_15 – ident: ref55 doi: 10.1016/j.ejor.2016.09.055 – ident: ref32 doi: 10.1016/j.omega.2018.03.004 – ident: ref39 doi: 10.1016/j.engappai.2020.103540 – ident: ref19 doi: 10.1016/j.cor.2018.07.025 |
SSID | ssj0014519 |
Score | 2.6686833 |
Snippet | With increasing environmental awareness and energy requirement, sustainable manufacturing has attracted growing attention. Meanwhile, distributed manufacturing... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 461 |
SubjectTerms | Algorithms Cooperative memetic algorithm (CMA) distributed hybrid flow shop Energy consumption Energy management energy-aware scheduling (EAS) Globalization Integer programming Job shop scheduling Job shops Linear programming Machine learning Manufacturing Memetics Mixed integer Parallel machines policy agent Power demand Processor scheduling Production facilities reinforcement learning (RL) |
Title | A Cooperative Memetic Algorithm With Learning-Based Agent for Energy-Aware Distributed Hybrid Flow-Shop Scheduling |
URI | https://ieeexplore.ieee.org/document/9518387 https://www.proquest.com/docview/2670204139 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9pAEB4FTu0hz1YhIdEeeoqyBL_to0NAqBK9FFpulvdhiEIwIkZR8uszs15QlFZVL5Yl78q2Znbnm939vgH45kWiCEQkeCATk6AUPJaFxzEWiwQnQ8fLie88-hEOJ_73aTDdg-sdF0ZrbQ6f6Q7dmr18VcoNLZXdIBqIvThqQAMTt5qrtdsxIJmU-jB9gogxntodTKeb3Iz7v3qYCboOJqgYvkhV9V0MMkVV_piJTXgZHMBo-2H1qZKHzqYSHfn6QbPxf7_8EPYtzmRp7RhHsKeXx3CwreHA7JA-hs_vBAlPYJ2yXlmudC0Hzkb6kTiOLF3MyvV9NX9kv_HKrCbrjN9iCFQsJXYWQ_DL-oZIyNPnfK3ZHUnyUjUtbDJ8IWIYGyzKZ_5zXq7w_XOMcUSF_wKTQX_cG3JblYFLhAYVVxFa1Ve5Ch2NcM0r3DxRbiAFTh7aVYkKisKPpNCYWMXCCwvtxSokpEmrjcr1vkJzWS71KbAQH_voLdKRiBRcmQg_jzQpzDki7waiBd2tnTJpJcupcsYiM6lLN8nItBmZNrOmbcHVrsuq1uv4V-MTMtWuobVSC9pbZ8jsiH7K3DAiHjH-xtnfe53DJ5eoEWaFpg3Nar3RFwhYKnFpPPUN_Ormpg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7xOAAHoNCKUAp76KliQ_y2jyYkCi3h0gC5Wd6HSUWIo-AIwa_vzHoTobaquFiWvCvbmtmdb3b3-wbgqxeJIhCR4IFMTIJS8FgWHsdYLBKcDB0vJ75z_zrs3fjfh8FwBU6XXBittTl8ppt0a_byVSnntFR2hmgg9uJoFdYDIuPWbK3lngEJpdTH6RPEjPHQ7mE6reRs0LltYy7oOpiiYgAjXdU3UciUVflrLjYBprsD_cWn1edKHprzSjTl6x-qje_99l3YtkiTpbVrfIAVPdmDnUUVB2YH9R5svZEk3IdZytplOdW1IDjr60diObJ0fF_OflWjR3aHV2ZVWe_5OQZBxVLiZzGEv6xjqIQ8fc5nml2QKC_V08ImvReihrHuuHzmP0flFN8_wihHZPiPcNPtDNo9busycIngoOIqQrv6KlehoxGweYWbJ8oNpMDpQ7sqUUFR-JEUGlOrWHhhob1YhYQ1ab1Rud4nWJuUE30ALMTHPvqLdCRiBVcmws8jTRpzjshbgWhAa2GnTFrRcqqdMc5M8tJKMjJtRqbNrGkb8G3ZZVordvyv8T6ZatnQWqkBRwtnyOyYfsrcMCImMf7G4b97ncBGb9C_yq4ur398hk2XiBJmveYI1qrZXH9B-FKJY-O1vwEo9Onu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cooperative+Memetic+Algorithm+With+Learning-Based+Agent+for+Energy-Aware+Distributed+Hybrid+Flow-Shop+Scheduling&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wang%2C+Jing-Jing&rft.au=Wang%2C+Ling&rft.date=2022-06-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=26&rft.issue=3&rft.spage=461&rft.epage=475&rft_id=info:doi/10.1109%2FTEVC.2021.3106168&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2021_3106168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |