BARNet: Boundary Aware Refinement Network for Crack Detection
Road crack is one of the prominent problems that can frequently occur in highways and main roads. The manual road crack evaluation is laborious, time-consuming, inaccurate, and it has several implementation issues. Conversely, the computer vision-based solution is very challenging due to the complex...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 23; no. 7; pp. 7343 - 7358 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Road crack is one of the prominent problems that can frequently occur in highways and main roads. The manual road crack evaluation is laborious, time-consuming, inaccurate, and it has several implementation issues. Conversely, the computer vision-based solution is very challenging due to the complex ambient conditions, including illumination, shadow, dust, and crack shape. Most of the cracks exist as irregular edge patterns and are the most important features for detection purpose. Recent advances in deep learning adopt a convolutional neural network as the base model to detect and localize crack with a single RGB image. Yet, this approach has an inaccurate boundary for crack localization, resulting in thicker and blurry edges. To overcome this problem, the study proposes a novel and robust road crack detection based on deep learning which also considers the original edge of the image as the additional feature. The main contribution of this work is adapting the original image gradient with the coarse crack detection result and refining it to produce more precise crack boundaries. Extensive experimental results have shown that the proposed method outperforms the former state-of-the-art methods in terms of the detection accuracy. |
---|---|
AbstractList | Road crack is one of the prominent problems that can frequently occur in highways and main roads. The manual road crack evaluation is laborious, time-consuming, inaccurate, and it has several implementation issues. Conversely, the computer vision-based solution is very challenging due to the complex ambient conditions, including illumination, shadow, dust, and crack shape. Most of the cracks exist as irregular edge patterns and are the most important features for detection purpose. Recent advances in deep learning adopt a convolutional neural network as the base model to detect and localize crack with a single RGB image. Yet, this approach has an inaccurate boundary for crack localization, resulting in thicker and blurry edges. To overcome this problem, the study proposes a novel and robust road crack detection based on deep learning which also considers the original edge of the image as the additional feature. The main contribution of this work is adapting the original image gradient with the coarse crack detection result and refining it to produce more precise crack boundaries. Extensive experimental results have shown that the proposed method outperforms the former state-of-the-art methods in terms of the detection accuracy. |
Author | Markoni, Herleeyandi Guo, Jing-Ming Lee, Jiann-Der |
Author_xml | – sequence: 1 givenname: Jing-Ming orcidid: 0000-0002-8041-6326 surname: Guo fullname: Guo, Jing-Ming email: jmguo@seed.net.tw organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan – sequence: 2 givenname: Herleeyandi orcidid: 0000-0002-6247-408X surname: Markoni fullname: Markoni, Herleeyandi email: herleeyandi@gmail.com organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan – sequence: 3 givenname: Jiann-Der orcidid: 0000-0002-3271-2219 surname: Lee fullname: Lee, Jiann-Der email: jdlee@mail.cgu.edu.tw organization: Department of Electrical Engineering, Chang Gung University, Taoyuan City, Taiwan |
BookMark | eNp9kE1Lw0AQhhepYFv9AeIl4Dl1Zz-yWcFDW78KRaHW87JJJpB-ZOtmS_Hfm9DiwYMwMMPM-84Mz4D0alcjIddARwBU3y1ny48RowxGnCYauDwjfZAyjSmFpNfVTMSaSnpBBk2zartCAvTJw2S8eMNwH03cvi6s_47GB-sxWmBZ1bjFOkTt-OD8Oiqdj6be5uvoEQPmoXL1JTkv7abBq1Meks_np-X0NZ6_v8ym43mcM81DXCRoddqGKmiiOGdYspJqianKVIFFJrRQpWZKJQiWgaRa6DxDyQCZyAQfktvj3p13X3tsglm5va_bk4YlaaooVwm0KnVU5d41jcfS5FWw3Z_B22pjgJqOlelYmY6VObFqnfDHufPVtqXxr-fm6KkQ8VevuVaCC_4DWxt03w |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1109_TITS_2023_3332995 crossref_primary_10_1038_s41598_024_81119_1 crossref_primary_10_3390_rs16101797 crossref_primary_10_1109_TITS_2024_3384018 crossref_primary_10_1109_TITS_2023_3331769 crossref_primary_10_1109_TITS_2022_3158670 crossref_primary_10_1109_TITS_2024_3401754 crossref_primary_10_3390_rs15082185 crossref_primary_10_1109_TITS_2023_3348812 crossref_primary_10_1109_TITS_2024_3495697 crossref_primary_10_3390_s23062935 crossref_primary_10_1109_TITS_2022_3154746 crossref_primary_10_1007_s00371_024_03409_z crossref_primary_10_1016_j_istruc_2024_107073 crossref_primary_10_1109_TITS_2023_3334266 crossref_primary_10_1016_j_autcon_2024_105375 crossref_primary_10_1109_TITS_2022_3147669 crossref_primary_10_1016_j_autcon_2024_105354 crossref_primary_10_1016_j_aei_2025_103262 crossref_primary_10_1007_s43762_023_00104_y crossref_primary_10_1061_JCCEE5_CPENG_5926 crossref_primary_10_1016_j_autcon_2023_105138 crossref_primary_10_1016_j_engappai_2024_108632 crossref_primary_10_3390_app132212270 crossref_primary_10_1098_rsta_2022_0172 crossref_primary_10_1109_TITS_2022_3141827 crossref_primary_10_1109_TITS_2022_3194213 crossref_primary_10_1016_j_jtte_2022_11_003 crossref_primary_10_3390_rs16162910 crossref_primary_10_1016_j_engappai_2024_109175 crossref_primary_10_1007_s11760_024_03478_6 crossref_primary_10_1109_TITS_2023_3325989 crossref_primary_10_1016_j_jobe_2023_107889 crossref_primary_10_1016_j_measurement_2023_113091 crossref_primary_10_1007_s11709_024_1071_5 crossref_primary_10_1109_TITS_2023_3286439 crossref_primary_10_1109_TITS_2023_3286934 |
Cites_doi | 10.1109/ACCESS.2018.2829347 10.1109/JSTARS.2018.2865528 10.1109/TPAMI.2005.247 10.3390/coatings10020152 10.1007/978-3-319-24574-428 10.1109/CVPR.2018.00745 10.1109/EEESym.2012.6258749 10.1016/j.neucom.2019.01.036 10.1109/ICAMechS.2015.7287137 10.1109/ICIP.2006.313007 10.1109/CVPR.2016.90 10.1109/CIS.2008.208 10.1109/TITS.2016.2552248 10.1109/TITS.2019.2910595 10.5555/3045118.3045336 10.1109/CVPR.2017.243 10.23919/EUSIPCO.2017.8081563 10.1109/KAM.2008.29 10.1109/JSEN.2015.2469157 10.1109/ICCV.2015.164 10.1109/MIXDES.2015.7208590 10.23919/EUSIPCO.2018.8553322 10.1109/TIP.2018.2878966 10.1016/j.patrec.2011.11.004 10.23919/EUSIPCO.2017.8081564 10.1109/CVPR.2017.622 10.1109/SMC.2013.686 10.1109/ICIP.2014.7025156 10.1007/978-3-319-11656-3_18 10.1049/joe.2018.9191 10.1016/j.procs.2019.09.315 10.1109/TPAMI.2019.2922181 10.1109/TITS.2015.2482222 10.1109/CVPR.2015.7298965 10.1109/ACCESS.2019.2956191 10.1007/978-3-030-01234-2_1 10.23919/EUSIPCO.2018.8553388 10.1109/ACCESS.2019.2940767 10.1117/1.JEI.25.6.063004 10.1109/CVPR.2019.00172 10.1109/ACCESS.2018.2844100 10.1109/ICMA.2019.8816422 10.1109/ICCV.2017.322 10.1109/CVPR.2016.308 10.1109/CVPR.2019.00766 10.23919/EUSIPCO.2017.8081565 10.1109/TITS.2018.2856928 10.1109/ICIVC.2018.8492798 10.23919/EUSIPCO.2017.8081567 10.1109/ACSSC.2003.1292216 10.1109/CVPR.2019.00403 10.3390/ma13132960 10.1109/ICIP.2014.7025157 10.1109/CVPR.2019.00154 10.1109/CVPR.2016.91 10.1109/IJCNN.2017.7966101 10.1109/TPAMI.2018.2863285 10.23919/EUSIPCO.2018.8553368 10.1109/CVPR.2014.81 10.23919/EUSIPCO.2018.8553206 10.1109/TITS.2012.2208630 10.23919/EUSIPCO.2017.8081566 10.1109/TITS.2015.2477675 10.1109/ICCV.2015.169 10.1109/CVPR.2017.106 10.1109/TPAMI.2016.2577031 10.1109/ICIEA.2018.8397897 10.1109/CVPR.2019.00716 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2021.3069135 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 7358 |
ExternalDocumentID | 10_1109_TITS_2021_3069135 9397434 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan and Chang Gung Memorial Hospital, Taiwan grantid: MOST 109-2221-E-011-123-MY3; CMRPD2G0121 funderid: 10.13039/501100004663 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-d6ea98a987d067332ef2f095e87b7dedb4947f92776e1a2150949cbe521e24b43 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Mon Jun 30 06:10:51 EDT 2025 Thu Apr 24 23:09:07 EDT 2025 Tue Jul 01 04:29:06 EDT 2025 Wed Aug 27 02:25:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-d6ea98a987d067332ef2f095e87b7dedb4947f92776e1a2150949cbe521e24b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6247-408X 0000-0002-3271-2219 0000-0002-8041-6326 |
PQID | 2688703761 |
PQPubID | 75735 |
PageCount | 16 |
ParticipantIDs | ieee_primary_9397434 proquest_journals_2688703761 crossref_citationtrail_10_1109_TITS_2021_3069135 crossref_primary_10_1109_TITS_2021_3069135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 Lee (ref66) ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref31 ref30 ref33 ref32 Zhang (ref57) ref2 ref1 ref39 ref38 Simonyan (ref36) 2014 ref71 ref70 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref24 doi: 10.1109/ACCESS.2018.2829347 – ident: ref26 doi: 10.1109/JSTARS.2018.2865528 – ident: ref14 doi: 10.1109/TPAMI.2005.247 – ident: ref53 doi: 10.3390/coatings10020152 – ident: ref70 doi: 10.1007/978-3-319-24574-428 – ident: ref64 doi: 10.1109/CVPR.2018.00745 – ident: ref18 doi: 10.1109/EEESym.2012.6258749 – ident: ref61 doi: 10.1016/j.neucom.2019.01.036 – ident: ref2 doi: 10.1109/ICAMechS.2015.7287137 – ident: ref16 doi: 10.1109/ICIP.2006.313007 – ident: ref38 doi: 10.1109/CVPR.2016.90 – ident: ref17 doi: 10.1109/CIS.2008.208 – ident: ref28 doi: 10.1109/TITS.2016.2552248 – ident: ref52 doi: 10.1109/TITS.2019.2910595 – ident: ref63 doi: 10.5555/3045118.3045336 – ident: ref39 doi: 10.1109/CVPR.2017.243 – ident: ref15 doi: 10.23919/EUSIPCO.2017.8081563 – ident: ref3 doi: 10.1109/KAM.2008.29 – ident: ref12 doi: 10.1109/JSEN.2015.2469157 – start-page: 7354 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref57 article-title: Self-attention generative adversarial networks – ident: ref49 doi: 10.1109/ICCV.2015.164 – ident: ref1 doi: 10.1109/MIXDES.2015.7208590 – ident: ref32 doi: 10.23919/EUSIPCO.2018.8553322 – ident: ref56 doi: 10.1109/TIP.2018.2878966 – ident: ref21 doi: 10.1016/j.patrec.2011.11.004 – ident: ref30 doi: 10.23919/EUSIPCO.2017.8081564 – ident: ref50 doi: 10.1109/CVPR.2017.622 – ident: ref13 doi: 10.1109/SMC.2013.686 – ident: ref9 doi: 10.1109/ICIP.2014.7025156 – ident: ref10 doi: 10.1007/978-3-319-11656-3_18 – ident: ref5 doi: 10.1049/joe.2018.9191 – ident: ref54 doi: 10.1016/j.procs.2019.09.315 – ident: ref68 doi: 10.1109/TPAMI.2019.2922181 – ident: ref7 doi: 10.1109/TITS.2015.2482222 – ident: ref55 doi: 10.1109/CVPR.2015.7298965 – ident: ref59 doi: 10.1109/ACCESS.2019.2956191 – ident: ref65 doi: 10.1007/978-3-030-01234-2_1 – ident: ref6 doi: 10.23919/EUSIPCO.2018.8553388 – ident: ref58 doi: 10.1109/ACCESS.2019.2940767 – ident: ref33 doi: 10.1117/1.JEI.25.6.063004 – ident: ref46 doi: 10.1109/CVPR.2019.00172 – ident: ref25 doi: 10.1109/ACCESS.2018.2844100 – ident: ref4 doi: 10.1109/ICMA.2019.8816422 – ident: ref43 doi: 10.1109/ICCV.2017.322 – ident: ref37 doi: 10.1109/CVPR.2016.308 – ident: ref45 doi: 10.1109/CVPR.2019.00766 – ident: ref19 doi: 10.23919/EUSIPCO.2017.8081565 – ident: ref23 doi: 10.1109/TITS.2018.2856928 – ident: ref8 doi: 10.1109/ICIVC.2018.8492798 – ident: ref35 doi: 10.23919/EUSIPCO.2017.8081567 – ident: ref71 doi: 10.1109/ACSSC.2003.1292216 – ident: ref47 doi: 10.1109/CVPR.2019.00403 – ident: ref60 doi: 10.3390/ma13132960 – ident: ref11 doi: 10.1109/ICIP.2014.7025157 – ident: ref48 doi: 10.1109/CVPR.2019.00154 – ident: ref44 doi: 10.1109/CVPR.2016.91 – ident: ref51 doi: 10.1109/IJCNN.2017.7966101 – ident: ref69 doi: 10.1109/TPAMI.2018.2863285 – ident: ref34 doi: 10.23919/EUSIPCO.2018.8553368 – ident: ref40 doi: 10.1109/CVPR.2014.81 – ident: ref20 doi: 10.23919/EUSIPCO.2018.8553206 – ident: ref29 doi: 10.1109/TITS.2012.2208630 – ident: ref31 doi: 10.23919/EUSIPCO.2017.8081566 – ident: ref22 doi: 10.1109/TITS.2015.2477675 – ident: ref41 doi: 10.1109/ICCV.2015.169 – ident: ref62 doi: 10.1109/CVPR.2017.106 – ident: ref42 doi: 10.1109/TPAMI.2016.2577031 – year: 2014 ident: ref36 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – start-page: 562 volume-title: Proc. Artif. Intell. Statist. ident: ref66 article-title: Deeply-supervised nets – ident: ref27 doi: 10.1109/ICIEA.2018.8397897 – ident: ref67 doi: 10.1109/CVPR.2019.00716 |
SSID | ssj0014511 |
Score | 2.5446703 |
Snippet | Road crack is one of the prominent problems that can frequently occur in highways and main roads. The manual road crack evaluation is laborious,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7343 |
SubjectTerms | Artificial neural networks Computer vision Convolution Deep learning edge adaptation layer Edge detection Feature extraction Image edge detection refinement layer Roads Roads & highways spatial and channel analyzer supervision Support vector machines Surface cracks |
Title | BARNet: Boundary Aware Refinement Network for Crack Detection |
URI | https://ieeexplore.ieee.org/document/9397434 https://www.proquest.com/docview/2688703761 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ6AJz34QiO-sgdPxkK73XZZEw-AGjWBA0LCrWm30wsGDJYY_fXObgsaNcakhx5mm83M7sx8nRfAWSYVxpn0nRaXgSMwdJ1Ye4FD6jJNuPCz0BaF9frh3Ug8jINxBS5WtTCIaJPPsGFebSw_nemF-VXWVGQ8hS-qUCXgVtRqrSIGps-W7Y3KhaPcYBnB9FzVHN4PHwkJcq9B_rHy7GS3Txtkh6r80MTWvNxuQW-5sSKrZNJY5ElDv3_r2fjfnW_DZulnsnZxMHaggtNd2PjSfbAGV532oI_5JevY0UrzN9Z-jefIBpgRkfkg6xdJ4ow8W9adx3rCrjG3yVvTPRjd3gy7d045TcHRZNJzJw0xVi16ZGqG0_gcM56Rg4UtmcgU00QoITPFpQzRi8kTIOCndIJk35GLRPj7sDadTfEAWCh0SjBDB4EmgIEibrmxp1Cp1OBd7tbBXfI30mWrcTPx4imykMNVkRFJZEQSlSKpw_lqyXPRZ-Mv4pph8Yqw5G4djpdCjMqb-BLxkNSoS2rUO_x91RGsc1PSYFNwj2Etny_whByNPDm1J-wDshvL6g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6I8PTAhUhLHiWskhlJABdoOUCS2KHEuS1GLSioEv56zkxYECCFlyHCOrDv77rvcC-AwkwrjTPpOncvAERi6Tqy9wCF1mSZc-Floi8I63bD1IG4eg8cZOJ7WwiCiTT7Dmnm1sfx0qMfmV9mJIuMpfDELc2T3A6-o1prGDEynLdsdlQtHucEkhum56qR33bsnX5B7NULIyrOz3T6tkB2r8kMXWwNztQydydaKvJJ-bZwnNf3-rWvjf_e-Aksl0mSN4miswgwO1mDxS__BdTg7b9x1MT9l53a40uiNNV7jEbI7zIjIfJB1izRxRtiWNUex7rMLzG361mADHq4ue82WU85TcDQZ9dxJQ4xVnR6ZmvE0PseMZwSxsC4TmWKaCCVkpriUIXoxYQFy_ZROkCw8cpEIfxMqg-EAt4CFQqfkaOgg0ORioIjrbuwpVCo1Hi93q-BO-Bvpstm4mXnxFFmnw1WREUlkRBKVIqnC0XTJc9Fp4y_idcPiKWHJ3SrsToQYlXfxJeIhKVKXFKm3_fuqA5hv9TrtqH3dvd2BBW4KHGxC7i5U8tEY9wh25Mm-PW0fhMTPMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BARNet%3A+Boundary+Aware+Refinement+Network+for+Crack+Detection&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Jing-Ming%2C+Guo&rft.au=Markoni%2C+Herleeyandi&rft.au=Lee%2C+Jiann-Der&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=7&rft.spage=7343&rft_id=info:doi/10.1109%2FTITS.2021.3069135&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |