BARNet: Boundary Aware Refinement Network for Crack Detection

Road crack is one of the prominent problems that can frequently occur in highways and main roads. The manual road crack evaluation is laborious, time-consuming, inaccurate, and it has several implementation issues. Conversely, the computer vision-based solution is very challenging due to the complex...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 23; no. 7; pp. 7343 - 7358
Main Authors Guo, Jing-Ming, Markoni, Herleeyandi, Lee, Jiann-Der
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Road crack is one of the prominent problems that can frequently occur in highways and main roads. The manual road crack evaluation is laborious, time-consuming, inaccurate, and it has several implementation issues. Conversely, the computer vision-based solution is very challenging due to the complex ambient conditions, including illumination, shadow, dust, and crack shape. Most of the cracks exist as irregular edge patterns and are the most important features for detection purpose. Recent advances in deep learning adopt a convolutional neural network as the base model to detect and localize crack with a single RGB image. Yet, this approach has an inaccurate boundary for crack localization, resulting in thicker and blurry edges. To overcome this problem, the study proposes a novel and robust road crack detection based on deep learning which also considers the original edge of the image as the additional feature. The main contribution of this work is adapting the original image gradient with the coarse crack detection result and refining it to produce more precise crack boundaries. Extensive experimental results have shown that the proposed method outperforms the former state-of-the-art methods in terms of the detection accuracy.
AbstractList Road crack is one of the prominent problems that can frequently occur in highways and main roads. The manual road crack evaluation is laborious, time-consuming, inaccurate, and it has several implementation issues. Conversely, the computer vision-based solution is very challenging due to the complex ambient conditions, including illumination, shadow, dust, and crack shape. Most of the cracks exist as irregular edge patterns and are the most important features for detection purpose. Recent advances in deep learning adopt a convolutional neural network as the base model to detect and localize crack with a single RGB image. Yet, this approach has an inaccurate boundary for crack localization, resulting in thicker and blurry edges. To overcome this problem, the study proposes a novel and robust road crack detection based on deep learning which also considers the original edge of the image as the additional feature. The main contribution of this work is adapting the original image gradient with the coarse crack detection result and refining it to produce more precise crack boundaries. Extensive experimental results have shown that the proposed method outperforms the former state-of-the-art methods in terms of the detection accuracy.
Author Markoni, Herleeyandi
Guo, Jing-Ming
Lee, Jiann-Der
Author_xml – sequence: 1
  givenname: Jing-Ming
  orcidid: 0000-0002-8041-6326
  surname: Guo
  fullname: Guo, Jing-Ming
  email: jmguo@seed.net.tw
  organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
– sequence: 2
  givenname: Herleeyandi
  orcidid: 0000-0002-6247-408X
  surname: Markoni
  fullname: Markoni, Herleeyandi
  email: herleeyandi@gmail.com
  organization: Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
– sequence: 3
  givenname: Jiann-Der
  orcidid: 0000-0002-3271-2219
  surname: Lee
  fullname: Lee, Jiann-Der
  email: jdlee@mail.cgu.edu.tw
  organization: Department of Electrical Engineering, Chang Gung University, Taoyuan City, Taiwan
BookMark eNp9kE1Lw0AQhhepYFv9AeIl4Dl1Zz-yWcFDW78KRaHW87JJJpB-ZOtmS_Hfm9DiwYMwMMPM-84Mz4D0alcjIddARwBU3y1ny48RowxGnCYauDwjfZAyjSmFpNfVTMSaSnpBBk2zartCAvTJw2S8eMNwH03cvi6s_47GB-sxWmBZ1bjFOkTt-OD8Oiqdj6be5uvoEQPmoXL1JTkv7abBq1Meks_np-X0NZ6_v8ym43mcM81DXCRoddqGKmiiOGdYspJqianKVIFFJrRQpWZKJQiWgaRa6DxDyQCZyAQfktvj3p13X3tsglm5va_bk4YlaaooVwm0KnVU5d41jcfS5FWw3Z_B22pjgJqOlelYmY6VObFqnfDHufPVtqXxr-fm6KkQ8VevuVaCC_4DWxt03w
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TITS_2023_3332995
crossref_primary_10_1038_s41598_024_81119_1
crossref_primary_10_3390_rs16101797
crossref_primary_10_1109_TITS_2024_3384018
crossref_primary_10_1109_TITS_2023_3331769
crossref_primary_10_1109_TITS_2022_3158670
crossref_primary_10_1109_TITS_2024_3401754
crossref_primary_10_3390_rs15082185
crossref_primary_10_1109_TITS_2023_3348812
crossref_primary_10_1109_TITS_2024_3495697
crossref_primary_10_3390_s23062935
crossref_primary_10_1109_TITS_2022_3154746
crossref_primary_10_1007_s00371_024_03409_z
crossref_primary_10_1016_j_istruc_2024_107073
crossref_primary_10_1109_TITS_2023_3334266
crossref_primary_10_1016_j_autcon_2024_105375
crossref_primary_10_1109_TITS_2022_3147669
crossref_primary_10_1016_j_autcon_2024_105354
crossref_primary_10_1016_j_aei_2025_103262
crossref_primary_10_1007_s43762_023_00104_y
crossref_primary_10_1061_JCCEE5_CPENG_5926
crossref_primary_10_1016_j_autcon_2023_105138
crossref_primary_10_1016_j_engappai_2024_108632
crossref_primary_10_3390_app132212270
crossref_primary_10_1098_rsta_2022_0172
crossref_primary_10_1109_TITS_2022_3141827
crossref_primary_10_1109_TITS_2022_3194213
crossref_primary_10_1016_j_jtte_2022_11_003
crossref_primary_10_3390_rs16162910
crossref_primary_10_1016_j_engappai_2024_109175
crossref_primary_10_1007_s11760_024_03478_6
crossref_primary_10_1109_TITS_2023_3325989
crossref_primary_10_1016_j_jobe_2023_107889
crossref_primary_10_1016_j_measurement_2023_113091
crossref_primary_10_1007_s11709_024_1071_5
crossref_primary_10_1109_TITS_2023_3286439
crossref_primary_10_1109_TITS_2023_3286934
Cites_doi 10.1109/ACCESS.2018.2829347
10.1109/JSTARS.2018.2865528
10.1109/TPAMI.2005.247
10.3390/coatings10020152
10.1007/978-3-319-24574-428
10.1109/CVPR.2018.00745
10.1109/EEESym.2012.6258749
10.1016/j.neucom.2019.01.036
10.1109/ICAMechS.2015.7287137
10.1109/ICIP.2006.313007
10.1109/CVPR.2016.90
10.1109/CIS.2008.208
10.1109/TITS.2016.2552248
10.1109/TITS.2019.2910595
10.5555/3045118.3045336
10.1109/CVPR.2017.243
10.23919/EUSIPCO.2017.8081563
10.1109/KAM.2008.29
10.1109/JSEN.2015.2469157
10.1109/ICCV.2015.164
10.1109/MIXDES.2015.7208590
10.23919/EUSIPCO.2018.8553322
10.1109/TIP.2018.2878966
10.1016/j.patrec.2011.11.004
10.23919/EUSIPCO.2017.8081564
10.1109/CVPR.2017.622
10.1109/SMC.2013.686
10.1109/ICIP.2014.7025156
10.1007/978-3-319-11656-3_18
10.1049/joe.2018.9191
10.1016/j.procs.2019.09.315
10.1109/TPAMI.2019.2922181
10.1109/TITS.2015.2482222
10.1109/CVPR.2015.7298965
10.1109/ACCESS.2019.2956191
10.1007/978-3-030-01234-2_1
10.23919/EUSIPCO.2018.8553388
10.1109/ACCESS.2019.2940767
10.1117/1.JEI.25.6.063004
10.1109/CVPR.2019.00172
10.1109/ACCESS.2018.2844100
10.1109/ICMA.2019.8816422
10.1109/ICCV.2017.322
10.1109/CVPR.2016.308
10.1109/CVPR.2019.00766
10.23919/EUSIPCO.2017.8081565
10.1109/TITS.2018.2856928
10.1109/ICIVC.2018.8492798
10.23919/EUSIPCO.2017.8081567
10.1109/ACSSC.2003.1292216
10.1109/CVPR.2019.00403
10.3390/ma13132960
10.1109/ICIP.2014.7025157
10.1109/CVPR.2019.00154
10.1109/CVPR.2016.91
10.1109/IJCNN.2017.7966101
10.1109/TPAMI.2018.2863285
10.23919/EUSIPCO.2018.8553368
10.1109/CVPR.2014.81
10.23919/EUSIPCO.2018.8553206
10.1109/TITS.2012.2208630
10.23919/EUSIPCO.2017.8081566
10.1109/TITS.2015.2477675
10.1109/ICCV.2015.169
10.1109/CVPR.2017.106
10.1109/TPAMI.2016.2577031
10.1109/ICIEA.2018.8397897
10.1109/CVPR.2019.00716
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2021.3069135
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 7358
ExternalDocumentID 10_1109_TITS_2021_3069135
9397434
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan and Chang Gung Memorial Hospital, Taiwan
  grantid: MOST 109-2221-E-011-123-MY3; CMRPD2G0121
  funderid: 10.13039/501100004663
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-d6ea98a987d067332ef2f095e87b7dedb4947f92776e1a2150949cbe521e24b43
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 06:10:51 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
Tue Jul 01 04:29:06 EDT 2025
Wed Aug 27 02:25:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d6ea98a987d067332ef2f095e87b7dedb4947f92776e1a2150949cbe521e24b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6247-408X
0000-0002-3271-2219
0000-0002-8041-6326
PQID 2688703761
PQPubID 75735
PageCount 16
ParticipantIDs ieee_primary_9397434
proquest_journals_2688703761
crossref_citationtrail_10_1109_TITS_2021_3069135
crossref_primary_10_1109_TITS_2021_3069135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
Lee (ref66)
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
Zhang (ref57)
ref2
ref1
ref39
ref38
Simonyan (ref36) 2014
ref71
ref70
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref24
  doi: 10.1109/ACCESS.2018.2829347
– ident: ref26
  doi: 10.1109/JSTARS.2018.2865528
– ident: ref14
  doi: 10.1109/TPAMI.2005.247
– ident: ref53
  doi: 10.3390/coatings10020152
– ident: ref70
  doi: 10.1007/978-3-319-24574-428
– ident: ref64
  doi: 10.1109/CVPR.2018.00745
– ident: ref18
  doi: 10.1109/EEESym.2012.6258749
– ident: ref61
  doi: 10.1016/j.neucom.2019.01.036
– ident: ref2
  doi: 10.1109/ICAMechS.2015.7287137
– ident: ref16
  doi: 10.1109/ICIP.2006.313007
– ident: ref38
  doi: 10.1109/CVPR.2016.90
– ident: ref17
  doi: 10.1109/CIS.2008.208
– ident: ref28
  doi: 10.1109/TITS.2016.2552248
– ident: ref52
  doi: 10.1109/TITS.2019.2910595
– ident: ref63
  doi: 10.5555/3045118.3045336
– ident: ref39
  doi: 10.1109/CVPR.2017.243
– ident: ref15
  doi: 10.23919/EUSIPCO.2017.8081563
– ident: ref3
  doi: 10.1109/KAM.2008.29
– ident: ref12
  doi: 10.1109/JSEN.2015.2469157
– start-page: 7354
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref57
  article-title: Self-attention generative adversarial networks
– ident: ref49
  doi: 10.1109/ICCV.2015.164
– ident: ref1
  doi: 10.1109/MIXDES.2015.7208590
– ident: ref32
  doi: 10.23919/EUSIPCO.2018.8553322
– ident: ref56
  doi: 10.1109/TIP.2018.2878966
– ident: ref21
  doi: 10.1016/j.patrec.2011.11.004
– ident: ref30
  doi: 10.23919/EUSIPCO.2017.8081564
– ident: ref50
  doi: 10.1109/CVPR.2017.622
– ident: ref13
  doi: 10.1109/SMC.2013.686
– ident: ref9
  doi: 10.1109/ICIP.2014.7025156
– ident: ref10
  doi: 10.1007/978-3-319-11656-3_18
– ident: ref5
  doi: 10.1049/joe.2018.9191
– ident: ref54
  doi: 10.1016/j.procs.2019.09.315
– ident: ref68
  doi: 10.1109/TPAMI.2019.2922181
– ident: ref7
  doi: 10.1109/TITS.2015.2482222
– ident: ref55
  doi: 10.1109/CVPR.2015.7298965
– ident: ref59
  doi: 10.1109/ACCESS.2019.2956191
– ident: ref65
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref6
  doi: 10.23919/EUSIPCO.2018.8553388
– ident: ref58
  doi: 10.1109/ACCESS.2019.2940767
– ident: ref33
  doi: 10.1117/1.JEI.25.6.063004
– ident: ref46
  doi: 10.1109/CVPR.2019.00172
– ident: ref25
  doi: 10.1109/ACCESS.2018.2844100
– ident: ref4
  doi: 10.1109/ICMA.2019.8816422
– ident: ref43
  doi: 10.1109/ICCV.2017.322
– ident: ref37
  doi: 10.1109/CVPR.2016.308
– ident: ref45
  doi: 10.1109/CVPR.2019.00766
– ident: ref19
  doi: 10.23919/EUSIPCO.2017.8081565
– ident: ref23
  doi: 10.1109/TITS.2018.2856928
– ident: ref8
  doi: 10.1109/ICIVC.2018.8492798
– ident: ref35
  doi: 10.23919/EUSIPCO.2017.8081567
– ident: ref71
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref47
  doi: 10.1109/CVPR.2019.00403
– ident: ref60
  doi: 10.3390/ma13132960
– ident: ref11
  doi: 10.1109/ICIP.2014.7025157
– ident: ref48
  doi: 10.1109/CVPR.2019.00154
– ident: ref44
  doi: 10.1109/CVPR.2016.91
– ident: ref51
  doi: 10.1109/IJCNN.2017.7966101
– ident: ref69
  doi: 10.1109/TPAMI.2018.2863285
– ident: ref34
  doi: 10.23919/EUSIPCO.2018.8553368
– ident: ref40
  doi: 10.1109/CVPR.2014.81
– ident: ref20
  doi: 10.23919/EUSIPCO.2018.8553206
– ident: ref29
  doi: 10.1109/TITS.2012.2208630
– ident: ref31
  doi: 10.23919/EUSIPCO.2017.8081566
– ident: ref22
  doi: 10.1109/TITS.2015.2477675
– ident: ref41
  doi: 10.1109/ICCV.2015.169
– ident: ref62
  doi: 10.1109/CVPR.2017.106
– ident: ref42
  doi: 10.1109/TPAMI.2016.2577031
– year: 2014
  ident: ref36
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– start-page: 562
  volume-title: Proc. Artif. Intell. Statist.
  ident: ref66
  article-title: Deeply-supervised nets
– ident: ref27
  doi: 10.1109/ICIEA.2018.8397897
– ident: ref67
  doi: 10.1109/CVPR.2019.00716
SSID ssj0014511
Score 2.5446703
Snippet Road crack is one of the prominent problems that can frequently occur in highways and main roads. The manual road crack evaluation is laborious,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7343
SubjectTerms Artificial neural networks
Computer vision
Convolution
Deep learning
edge adaptation layer
Edge detection
Feature extraction
Image edge detection
refinement layer
Roads
Roads & highways
spatial and channel analyzer
supervision
Support vector machines
Surface cracks
Title BARNet: Boundary Aware Refinement Network for Crack Detection
URI https://ieeexplore.ieee.org/document/9397434
https://www.proquest.com/docview/2688703761
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ6AJz34QiO-sgdPxkK73XZZEw-AGjWBA0LCrWm30wsGDJYY_fXObgsaNcakhx5mm83M7sx8nRfAWSYVxpn0nRaXgSMwdJ1Ye4FD6jJNuPCz0BaF9frh3Ug8jINxBS5WtTCIaJPPsGFebSw_nemF-VXWVGQ8hS-qUCXgVtRqrSIGps-W7Y3KhaPcYBnB9FzVHN4PHwkJcq9B_rHy7GS3Txtkh6r80MTWvNxuQW-5sSKrZNJY5ElDv3_r2fjfnW_DZulnsnZxMHaggtNd2PjSfbAGV532oI_5JevY0UrzN9Z-jefIBpgRkfkg6xdJ4ow8W9adx3rCrjG3yVvTPRjd3gy7d045TcHRZNJzJw0xVi16ZGqG0_gcM56Rg4UtmcgU00QoITPFpQzRi8kTIOCndIJk35GLRPj7sDadTfEAWCh0SjBDB4EmgIEibrmxp1Cp1OBd7tbBXfI30mWrcTPx4imykMNVkRFJZEQSlSKpw_lqyXPRZ-Mv4pph8Yqw5G4djpdCjMqb-BLxkNSoS2rUO_x91RGsc1PSYFNwj2Etny_whByNPDm1J-wDshvL6g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCBN6I8PTAhUhLHiWskhlJABdoOUCS2KHEuS1GLSioEv56zkxYECCFlyHCOrDv77rvcC-AwkwrjTPpOncvAERi6Tqy9wCF1mSZc-Floi8I63bD1IG4eg8cZOJ7WwiCiTT7Dmnm1sfx0qMfmV9mJIuMpfDELc2T3A6-o1prGDEynLdsdlQtHucEkhum56qR33bsnX5B7NULIyrOz3T6tkB2r8kMXWwNztQydydaKvJJ-bZwnNf3-rWvjf_e-Aksl0mSN4miswgwO1mDxS__BdTg7b9x1MT9l53a40uiNNV7jEbI7zIjIfJB1izRxRtiWNUex7rMLzG361mADHq4ue82WU85TcDQZ9dxJQ4xVnR6ZmvE0PseMZwSxsC4TmWKaCCVkpriUIXoxYQFy_ZROkCw8cpEIfxMqg-EAt4CFQqfkaOgg0ORioIjrbuwpVCo1Hi93q-BO-Bvpstm4mXnxFFmnw1WREUlkRBKVIqnC0XTJc9Fp4y_idcPiKWHJ3SrsToQYlXfxJeIhKVKXFKm3_fuqA5hv9TrtqH3dvd2BBW4KHGxC7i5U8tEY9wh25Mm-PW0fhMTPMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BARNet%3A+Boundary+Aware+Refinement+Network+for+Crack+Detection&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Jing-Ming%2C+Guo&rft.au=Markoni%2C+Herleeyandi&rft.au=Lee%2C+Jiann-Der&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=7&rft.spage=7343&rft_id=info:doi/10.1109%2FTITS.2021.3069135&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon