Robust Adaptive Learning-Based Path Tracking Control of Autonomous Vehicles Under Uncertain Driving Environments
This paper investigates the path tracking control problem of autonomous vehicles subject to modelling uncertainties and external disturbances. The problem is approached by employing a 2-degree of freedom vehicle model, which is reformulated into a newly defined parametric form with the system uncert...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 23; no. 11; pp. 20798 - 20809 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates the path tracking control problem of autonomous vehicles subject to modelling uncertainties and external disturbances. The problem is approached by employing a 2-degree of freedom vehicle model, which is reformulated into a newly defined parametric form with the system uncertainties being lumped into an unknown parametric vector. On top of the parametric system representation, a novel robust adaptive learning control (RALC) approach is then developed, which estimates the system uncertainties through iterative learning while treating the external disturbances by adopting a robust term. It is shown that the proposed approach is able to improve the lateral tracking performance gradually through learning from previous control experiences, despite only partial knowledge of the vehicle dynamics being available. It is noteworthy that a novel technique targeting at the non-square input distribution matrix is employed so as to deal with the under-actuation property of the vehicle dynamics, which extends the adaptive learning control theory from square systems to non-square systems. Moreover, the convergence properties of the RALC algorithm are analysed under the framework of Lyapunov-like theory by virtue of the composite energy function and the <inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>-norm. The effectiveness of the proposed control scheme is verified by representative simulation examples and comparisons with existing methods. |
---|---|
AbstractList | This paper investigates the path tracking control problem of autonomous vehicles subject to modelling uncertainties and external disturbances. The problem is approached by employing a 2-degree of freedom vehicle model, which is reformulated into a newly defined parametric form with the system uncertainties being lumped into an unknown parametric vector. On top of the parametric system representation, a novel robust adaptive learning control (RALC) approach is then developed, which estimates the system uncertainties through iterative learning while treating the external disturbances by adopting a robust term. It is shown that the proposed approach is able to improve the lateral tracking performance gradually through learning from previous control experiences, despite only partial knowledge of the vehicle dynamics being available. It is noteworthy that a novel technique targeting at the non-square input distribution matrix is employed so as to deal with the under-actuation property of the vehicle dynamics, which extends the adaptive learning control theory from square systems to non-square systems. Moreover, the convergence properties of the RALC algorithm are analysed under the framework of Lyapunov-like theory by virtue of the composite energy function and the <inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>-norm. The effectiveness of the proposed control scheme is verified by representative simulation examples and comparisons with existing methods. This paper investigates the path tracking control problem of autonomous vehicles subject to modelling uncertainties and external disturbances. The problem is approached by employing a 2-degree of freedom vehicle model, which is reformulated into a newly defined parametric form with the system uncertainties being lumped into an unknown parametric vector. On top of the parametric system representation, a novel robust adaptive learning control (RALC) approach is then developed, which estimates the system uncertainties through iterative learning while treating the external disturbances by adopting a robust term. It is shown that the proposed approach is able to improve the lateral tracking performance gradually through learning from previous control experiences, despite only partial knowledge of the vehicle dynamics being available. It is noteworthy that a novel technique targeting at the non-square input distribution matrix is employed so as to deal with the under-actuation property of the vehicle dynamics, which extends the adaptive learning control theory from square systems to non-square systems. Moreover, the convergence properties of the RALC algorithm are analysed under the framework of Lyapunov-like theory by virtue of the composite energy function and the [Formula Omitted]-norm. The effectiveness of the proposed control scheme is verified by representative simulation examples and comparisons with existing methods. |
Author | Jiang, Jingjing Liu, Chengyuan Li, Xuefang Chen, Boli |
Author_xml | – sequence: 1 givenname: Xuefang orcidid: 0000-0003-3898-6509 surname: Li fullname: Li, Xuefang email: lixuef25@mail.sysu.edu.cn organization: School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Chengyuan orcidid: 0000-0003-1891-4647 surname: Liu fullname: Liu, Chengyuan email: c.liu10@lboro.ac.uk organization: Aeronautical and Automotive Engineering Department, Loughborough University, Loughborough, U.K – sequence: 3 givenname: Boli orcidid: 0000-0002-1553-1336 surname: Chen fullname: Chen, Boli email: boli.chen@ucl.ac.uk organization: Department of Electronic and Electrical Engineering, University College London, London, U.K – sequence: 4 givenname: Jingjing orcidid: 0000-0001-7754-9147 surname: Jiang fullname: Jiang, Jingjing email: j.jiang2@lboro.ac.uk organization: Aeronautical and Automotive Engineering Department, Loughborough University, Loughborough, U.K |
BookMark | eNp9kE1LAzEQhoNUsFV_gHgJeN6az83usdb6AQVFq9clzc5qapvUJFvw37tLxYMHLzPDyzwz8IzQwHkHCJ1RMqaUlJeL-8XzmBHGxpyqvFTkAA2plEVGCM0H_cxEVhJJjtAoxlWXCknpEG2f_LKNCU9qvU12B3gOOjjr3rIrHaHGjzq940XQ5qPL8NS7FPwa-wZP2uSd3_g24ld4t2YNEb-4GkJXDYSkrcPXwe56bOZ2Nni3AZfiCTps9DrC6U8_Ri83s8X0Lps_3N5PJ_PMsJKnrJZQ5roUguQFlCBoIzlhmi8lMJMrwiTjJq9Vo5asbngDS84NEXUtci1FQ_kxutjf3Qb_2UJM1cq3wXUvK6a44IWiBem26H7LBB9jgKbaBrvR4auipOrFVr3Yqhdb_YjtGPWHMTbpZHs32q7_Jc_3pAWA30-lKkQhGP8GuG6JJQ |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1109_TITS_2023_3339708 crossref_primary_10_1177_09596518231199208 crossref_primary_10_3390_act13030101 crossref_primary_10_1109_TITS_2024_3462495 crossref_primary_10_1016_j_isatra_2024_12_030 crossref_primary_10_1007_s11432_023_3845_6 crossref_primary_10_1109_TVT_2024_3412530 crossref_primary_10_3390_s23010405 crossref_primary_10_1080_00423114_2024_2387044 crossref_primary_10_3390_machines12110764 crossref_primary_10_1049_cth2_12749 crossref_primary_10_1088_1742_6596_2865_1_012053 crossref_primary_10_1016_j_cnsns_2025_108803 crossref_primary_10_1109_TITS_2023_3321415 crossref_primary_10_1109_TSMC_2024_3373408 crossref_primary_10_1016_j_jfranklin_2024_107024 crossref_primary_10_1088_1361_6501_ad5ddc crossref_primary_10_1002_rnc_7752 |
Cites_doi | 10.1109/TITS.2015.2486815 10.1109/TVT.2020.3014628 10.1016/j.conengprac.2018.04.007 10.23919/ACC.1993.4793094 10.1109/TCYB.2019.2942105 10.1002/rob.4620010203 10.1049/iet-its.2019.0411 10.1109/TITS.2016.2614705 10.1109/TITS.2015.2498841 10.1007/s11432-019-2680-1 10.1109/TVT.2015.2391184 10.1109/TITS.2019.2958352 10.1109/TIV.2016.2578706 10.1109/TAC.2005.849249 10.1016/S0005-1098(02)00003-1 10.1109/TCST.2014.2317772 10.1109/TITS.2018.2815678 10.1016/j.automatica.2007.12.004 10.1007/978-3-319-05371-4_3 10.1109/TIV.2018.2804173 10.1109/TCST.2007.894653 10.1109/TAC.2007.902731 10.1109/TITS.2003.811644 10.1109/TVT.2019.2907696 10.1109/MCS.2006.1636313 10.1109/TIE.2017.2739680 10.1109/TITS.2019.2901817 10.1109/TITS.2019.2962338 10.1109/TVT.2020.2998065 10.1109/TFUZZ.2017.2698370 10.1016/j.automatica.2018.04.011 10.1016/j.conengprac.2018.02.002 10.1109/TITS.2008.2011697 10.1007/978-1-4612-0571-5_4 10.1109/TAC.2005.854613 10.1109/TFUZZ.2018.2856187 10.1002/rnc.3601 10.1016/j.automatica.2014.05.002 10.1007/s10846-016-0442-0 10.1109/TSMC.2017.2712561 10.1109/9.746269 10.1016/j.conengprac.2014.09.015 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2022.3176970 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore (IEEE/IET Electronic Library - IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 20809 |
ExternalDocumentID | 10_1109_TITS_2022_3176970 9784842 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62003376 funderid: 10.13039/501100001809 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2022A1515010881 funderid: 10.13039/501100003453 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-d5e96a944068e9e41f5302a3b5e2c6702523c6d7f7b2df3feb33c04dd46a54f13 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Mon Jun 30 04:24:57 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Tue Jul 01 04:29:09 EDT 2025 Wed Aug 27 02:18:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-d5e96a944068e9e41f5302a3b5e2c6702523c6d7f7b2df3feb33c04dd46a54f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1891-4647 0000-0002-1553-1336 0000-0001-7754-9147 0000-0003-3898-6509 |
PQID | 2734387180 |
PQPubID | 75735 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TITS_2022_3176970 proquest_journals_2734387180 ieee_primary_9784842 crossref_primary_10_1109_TITS_2022_3176970 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref10 ref2 zhang (ref25) 2020 ref1 ref17 ref38 ref16 ref19 ref18 rajamani (ref39) 2011 li (ref28) 2018 ref46 ref24 ref23 ref26 ref47 ref20 ref42 ref41 xu (ref45) 2005; 50 ref22 ref44 ref21 ref43 ref27 ref29 ref8 ref7 ref9 ref4 ref3 xu (ref32) 2003 ref6 ref5 ref40 |
References_xml | – ident: ref19 doi: 10.1109/TITS.2015.2486815 – ident: ref27 doi: 10.1109/TVT.2020.3014628 – ident: ref40 doi: 10.1016/j.conengprac.2018.04.007 – year: 2011 ident: ref39 publication-title: Vehicle Dynamics and Control – ident: ref47 doi: 10.23919/ACC.1993.4793094 – year: 2020 ident: ref25 article-title: Model-reference reinforcement learning control of autonomous surface vehicles with uncertainties publication-title: arXiv 2003 13839 – ident: ref33 doi: 10.1109/TCYB.2019.2942105 – ident: ref31 doi: 10.1002/rob.4620010203 – ident: ref36 doi: 10.1049/iet-its.2019.0411 – ident: ref7 doi: 10.1109/TITS.2016.2614705 – ident: ref2 doi: 10.1109/TITS.2015.2498841 – ident: ref35 doi: 10.1007/s11432-019-2680-1 – ident: ref14 doi: 10.1109/TVT.2015.2391184 – ident: ref3 doi: 10.1109/TITS.2019.2958352 – ident: ref6 doi: 10.1109/TIV.2016.2578706 – ident: ref44 doi: 10.1109/TAC.2005.849249 – ident: ref43 doi: 10.1016/S0005-1098(02)00003-1 – ident: ref11 doi: 10.1109/TCST.2014.2317772 – ident: ref1 doi: 10.1109/TITS.2018.2815678 – ident: ref46 doi: 10.1016/j.automatica.2007.12.004 – ident: ref23 doi: 10.1007/978-3-319-05371-4_3 – ident: ref5 doi: 10.1109/TIV.2018.2804173 – ident: ref21 doi: 10.1109/TCST.2007.894653 – ident: ref10 doi: 10.1109/TAC.2007.902731 – ident: ref18 doi: 10.1109/TITS.2003.811644 – ident: ref41 doi: 10.1109/TVT.2019.2907696 – ident: ref29 doi: 10.1109/MCS.2006.1636313 – ident: ref9 doi: 10.1109/TIE.2017.2739680 – ident: ref4 doi: 10.1109/TITS.2019.2901817 – ident: ref24 doi: 10.1109/TITS.2019.2962338 – ident: ref38 doi: 10.1109/TVT.2020.2998065 – year: 2018 ident: ref28 article-title: Reinforcement learning and deep learning based lateral control for autonomous driving publication-title: arXiv 1810 12778 – ident: ref16 doi: 10.1109/TFUZZ.2017.2698370 – ident: ref34 doi: 10.1016/j.automatica.2018.04.011 – ident: ref17 doi: 10.1016/j.conengprac.2018.02.002 – ident: ref22 doi: 10.1109/TITS.2008.2011697 – ident: ref30 doi: 10.1007/978-1-4612-0571-5_4 – volume: 50 start-page: 1349 year: 2005 ident: ref45 article-title: On initial conditions in iterative learning control publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2005.854613 – ident: ref8 doi: 10.1109/TITS.2015.2486815 – ident: ref12 doi: 10.1109/TFUZZ.2018.2856187 – ident: ref13 doi: 10.1002/rnc.3601 – ident: ref37 doi: 10.1016/j.automatica.2014.05.002 – ident: ref20 doi: 10.1007/s10846-016-0442-0 – ident: ref26 doi: 10.1109/TSMC.2017.2712561 – year: 2003 ident: ref32 publication-title: Linear and Nonlinear Iterative Learning Control – ident: ref42 doi: 10.1109/9.746269 – ident: ref15 doi: 10.1016/j.conengprac.2014.09.015 |
SSID | ssj0014511 |
Score | 2.4813156 |
Snippet | This paper investigates the path tracking control problem of autonomous vehicles subject to modelling uncertainties and external disturbances. The problem is... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 20798 |
SubjectTerms | Actuation Adaptation models Adaptive control Adaptive learning Adaptive learning control Algorithms Autonomous vehicles Control theory Convergence convergence analysis Disturbances Iterative methods Learning Path tracking Robust control Robustness Tracking control trajectory tracking Uncertainty Vehicle dynamics |
Title | Robust Adaptive Learning-Based Path Tracking Control of Autonomous Vehicles Under Uncertain Driving Environments |
URI | https://ieeexplore.ieee.org/document/9784842 https://www.proquest.com/docview/2734387180 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3rwVcX6Yg-exNQ8No891mqpQkW0Sm8h-1JRmmKTi7_emU1aiop4CTnshoVvszPf7Mw3hJxw31cRrNDJFIZuokA4ScaNk6G5FcJjwsVC4eFtNHhkN-Nw3CBni1oYrbVNPtMdfLV3-SqXJYbKUA2WJQwO3BUgblWt1uLGAHW2rDaqzxzuhvMbTM_l56Pr0QMwQd8HghpHHPsSL9kg21Tlx0lszUt_gwznC6uySt46ZSE68vObZuN_V75J1ms_k3arjbFFGnqyTdaW1AdbZHqfi3JW0K7Kpnjo0Vpr9dm5ANOm6B04hxRsmcRoOu1VOe00N7RbFlgKkZcz-qRfbF4dtf2T4CmrFAN6-fGKoQp6tVRIt0Me-1ej3sCpGzA4EryAwlGh5lHGGRj9RHPNPIM9hrJAhNqXUQzukh_ISMUmFr4ygQFiHkiXKcWiLGTGC3ZJc5JP9B6hiWKhFECOuGEsFgZoGTeB5xkee0oZr03cOSSprNXJsUnGe2pZistTRDFFFNMaxTY5XUyZVtIcfw1uISqLgTUgbXI4xz2tf95Zioo_ARDJxN3_fdYBWcVvVyWJh6RZfJT6CHyTQhzbTfkFvu_hVw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB1FcGg5AIUiArTdQ08Ip157_bHHNIBCSxCioeJmeb_aqiiOiH3pr-_M2okiWlW9WD7syivNet-82Zk3AO9lFJkUVxiUhkI3aayCvJQuKAluleJChVQoPLlJx_fi00Py0IOzVS2MtdYnn9kBvfq7fFPphkJlpAYrcoEH7ibifsLbaq3VnQEpbXl11EgEMkyWd5g8lB-mV9MvyAWjCClqlkrqTLyGQr6tyh9nsQeYyx2YLJfW5pX8HDS1Guhfz1Qb_3ftu7DdeZps2G6NV9Czsz3YWtMf3If5XaWaRc2GppzTscc6tdVvwUcEN8Nu0T1kiGaa4uls1Ga1s8qxYVNTMUTVLNhX-91n1jHfQQmfuk0yYOdPPyhYwS7WSulew_3lxXQ0DroWDIFGP6AOTGJlWkqBsJ9baQV31GWojFViI51m6DBFsU5N5jIVGRc7pOaxDoUxIi0T4Xh8ABuzamYPgeVGJFohPZJOiEw5JGbSxZw7mXFjHO9DuDRJoTt9cmqT8Vh4nhLKgqxYkBWLzop9OF1NmbfiHP8avE9WWQ3sDNKHk6Xdi-73XRSk-RMjlczDo7_PegcvxtPJdXF9dfP5GF7Sd9oCxRPYqJ8a-wY9lVq99Rv0N6dS5KA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Adaptive+Learning-Based+Path+Tracking+Control+of+Autonomous+Vehicles+Under+Uncertain+Driving+Environments&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Li%2C+Xuefang&rft.au=Liu%2C+Chengyuan&rft.au=Chen%2C+Boli&rft.au=Jiang%2C+Jingjing&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=11&rft.spage=20798&rft_id=info:doi/10.1109%2FTITS.2022.3176970&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |