Robust Adaptive Learning-Based Path Tracking Control of Autonomous Vehicles Under Uncertain Driving Environments

This paper investigates the path tracking control problem of autonomous vehicles subject to modelling uncertainties and external disturbances. The problem is approached by employing a 2-degree of freedom vehicle model, which is reformulated into a newly defined parametric form with the system uncert...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 23; no. 11; pp. 20798 - 20809
Main Authors Li, Xuefang, Liu, Chengyuan, Chen, Boli, Jiang, Jingjing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates the path tracking control problem of autonomous vehicles subject to modelling uncertainties and external disturbances. The problem is approached by employing a 2-degree of freedom vehicle model, which is reformulated into a newly defined parametric form with the system uncertainties being lumped into an unknown parametric vector. On top of the parametric system representation, a novel robust adaptive learning control (RALC) approach is then developed, which estimates the system uncertainties through iterative learning while treating the external disturbances by adopting a robust term. It is shown that the proposed approach is able to improve the lateral tracking performance gradually through learning from previous control experiences, despite only partial knowledge of the vehicle dynamics being available. It is noteworthy that a novel technique targeting at the non-square input distribution matrix is employed so as to deal with the under-actuation property of the vehicle dynamics, which extends the adaptive learning control theory from square systems to non-square systems. Moreover, the convergence properties of the RALC algorithm are analysed under the framework of Lyapunov-like theory by virtue of the composite energy function and the <inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>-norm. The effectiveness of the proposed control scheme is verified by representative simulation examples and comparisons with existing methods.
AbstractList This paper investigates the path tracking control problem of autonomous vehicles subject to modelling uncertainties and external disturbances. The problem is approached by employing a 2-degree of freedom vehicle model, which is reformulated into a newly defined parametric form with the system uncertainties being lumped into an unknown parametric vector. On top of the parametric system representation, a novel robust adaptive learning control (RALC) approach is then developed, which estimates the system uncertainties through iterative learning while treating the external disturbances by adopting a robust term. It is shown that the proposed approach is able to improve the lateral tracking performance gradually through learning from previous control experiences, despite only partial knowledge of the vehicle dynamics being available. It is noteworthy that a novel technique targeting at the non-square input distribution matrix is employed so as to deal with the under-actuation property of the vehicle dynamics, which extends the adaptive learning control theory from square systems to non-square systems. Moreover, the convergence properties of the RALC algorithm are analysed under the framework of Lyapunov-like theory by virtue of the composite energy function and the <inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>-norm. The effectiveness of the proposed control scheme is verified by representative simulation examples and comparisons with existing methods.
This paper investigates the path tracking control problem of autonomous vehicles subject to modelling uncertainties and external disturbances. The problem is approached by employing a 2-degree of freedom vehicle model, which is reformulated into a newly defined parametric form with the system uncertainties being lumped into an unknown parametric vector. On top of the parametric system representation, a novel robust adaptive learning control (RALC) approach is then developed, which estimates the system uncertainties through iterative learning while treating the external disturbances by adopting a robust term. It is shown that the proposed approach is able to improve the lateral tracking performance gradually through learning from previous control experiences, despite only partial knowledge of the vehicle dynamics being available. It is noteworthy that a novel technique targeting at the non-square input distribution matrix is employed so as to deal with the under-actuation property of the vehicle dynamics, which extends the adaptive learning control theory from square systems to non-square systems. Moreover, the convergence properties of the RALC algorithm are analysed under the framework of Lyapunov-like theory by virtue of the composite energy function and the [Formula Omitted]-norm. The effectiveness of the proposed control scheme is verified by representative simulation examples and comparisons with existing methods.
Author Jiang, Jingjing
Liu, Chengyuan
Li, Xuefang
Chen, Boli
Author_xml – sequence: 1
  givenname: Xuefang
  orcidid: 0000-0003-3898-6509
  surname: Li
  fullname: Li, Xuefang
  email: lixuef25@mail.sysu.edu.cn
  organization: School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Chengyuan
  orcidid: 0000-0003-1891-4647
  surname: Liu
  fullname: Liu, Chengyuan
  email: c.liu10@lboro.ac.uk
  organization: Aeronautical and Automotive Engineering Department, Loughborough University, Loughborough, U.K
– sequence: 3
  givenname: Boli
  orcidid: 0000-0002-1553-1336
  surname: Chen
  fullname: Chen, Boli
  email: boli.chen@ucl.ac.uk
  organization: Department of Electronic and Electrical Engineering, University College London, London, U.K
– sequence: 4
  givenname: Jingjing
  orcidid: 0000-0001-7754-9147
  surname: Jiang
  fullname: Jiang, Jingjing
  email: j.jiang2@lboro.ac.uk
  organization: Aeronautical and Automotive Engineering Department, Loughborough University, Loughborough, U.K
BookMark eNp9kE1LAzEQhoNUsFV_gHgJeN6az83usdb6AQVFq9clzc5qapvUJFvw37tLxYMHLzPDyzwz8IzQwHkHCJ1RMqaUlJeL-8XzmBHGxpyqvFTkAA2plEVGCM0H_cxEVhJJjtAoxlWXCknpEG2f_LKNCU9qvU12B3gOOjjr3rIrHaHGjzq940XQ5qPL8NS7FPwa-wZP2uSd3_g24ld4t2YNEb-4GkJXDYSkrcPXwe56bOZ2Nni3AZfiCTps9DrC6U8_Ri83s8X0Lps_3N5PJ_PMsJKnrJZQ5roUguQFlCBoIzlhmi8lMJMrwiTjJq9Vo5asbngDS84NEXUtci1FQ_kxutjf3Qb_2UJM1cq3wXUvK6a44IWiBem26H7LBB9jgKbaBrvR4auipOrFVr3Yqhdb_YjtGPWHMTbpZHs32q7_Jc_3pAWA30-lKkQhGP8GuG6JJQ
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TITS_2023_3339708
crossref_primary_10_1177_09596518231199208
crossref_primary_10_3390_act13030101
crossref_primary_10_1109_TITS_2024_3462495
crossref_primary_10_1016_j_isatra_2024_12_030
crossref_primary_10_1007_s11432_023_3845_6
crossref_primary_10_1109_TVT_2024_3412530
crossref_primary_10_3390_s23010405
crossref_primary_10_1080_00423114_2024_2387044
crossref_primary_10_3390_machines12110764
crossref_primary_10_1049_cth2_12749
crossref_primary_10_1088_1742_6596_2865_1_012053
crossref_primary_10_1016_j_cnsns_2025_108803
crossref_primary_10_1109_TITS_2023_3321415
crossref_primary_10_1109_TSMC_2024_3373408
crossref_primary_10_1016_j_jfranklin_2024_107024
crossref_primary_10_1088_1361_6501_ad5ddc
crossref_primary_10_1002_rnc_7752
Cites_doi 10.1109/TITS.2015.2486815
10.1109/TVT.2020.3014628
10.1016/j.conengprac.2018.04.007
10.23919/ACC.1993.4793094
10.1109/TCYB.2019.2942105
10.1002/rob.4620010203
10.1049/iet-its.2019.0411
10.1109/TITS.2016.2614705
10.1109/TITS.2015.2498841
10.1007/s11432-019-2680-1
10.1109/TVT.2015.2391184
10.1109/TITS.2019.2958352
10.1109/TIV.2016.2578706
10.1109/TAC.2005.849249
10.1016/S0005-1098(02)00003-1
10.1109/TCST.2014.2317772
10.1109/TITS.2018.2815678
10.1016/j.automatica.2007.12.004
10.1007/978-3-319-05371-4_3
10.1109/TIV.2018.2804173
10.1109/TCST.2007.894653
10.1109/TAC.2007.902731
10.1109/TITS.2003.811644
10.1109/TVT.2019.2907696
10.1109/MCS.2006.1636313
10.1109/TIE.2017.2739680
10.1109/TITS.2019.2901817
10.1109/TITS.2019.2962338
10.1109/TVT.2020.2998065
10.1109/TFUZZ.2017.2698370
10.1016/j.automatica.2018.04.011
10.1016/j.conengprac.2018.02.002
10.1109/TITS.2008.2011697
10.1007/978-1-4612-0571-5_4
10.1109/TAC.2005.854613
10.1109/TFUZZ.2018.2856187
10.1002/rnc.3601
10.1016/j.automatica.2014.05.002
10.1007/s10846-016-0442-0
10.1109/TSMC.2017.2712561
10.1109/9.746269
10.1016/j.conengprac.2014.09.015
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3176970
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 20809
ExternalDocumentID 10_1109_TITS_2022_3176970
9784842
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62003376
  funderid: 10.13039/501100001809
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2022A1515010881
  funderid: 10.13039/501100003453
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-d5e96a944068e9e41f5302a3b5e2c6702523c6d7f7b2df3feb33c04dd46a54f13
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 04:24:57 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Tue Jul 01 04:29:09 EDT 2025
Wed Aug 27 02:18:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d5e96a944068e9e41f5302a3b5e2c6702523c6d7f7b2df3feb33c04dd46a54f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1891-4647
0000-0002-1553-1336
0000-0001-7754-9147
0000-0003-3898-6509
PQID 2734387180
PQPubID 75735
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TITS_2022_3176970
proquest_journals_2734387180
ieee_primary_9784842
crossref_primary_10_1109_TITS_2022_3176970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref10
ref2
zhang (ref25) 2020
ref1
ref17
ref38
ref16
ref19
ref18
rajamani (ref39) 2011
li (ref28) 2018
ref46
ref24
ref23
ref26
ref47
ref20
ref42
ref41
xu (ref45) 2005; 50
ref22
ref44
ref21
ref43
ref27
ref29
ref8
ref7
ref9
ref4
ref3
xu (ref32) 2003
ref6
ref5
ref40
References_xml – ident: ref19
  doi: 10.1109/TITS.2015.2486815
– ident: ref27
  doi: 10.1109/TVT.2020.3014628
– ident: ref40
  doi: 10.1016/j.conengprac.2018.04.007
– year: 2011
  ident: ref39
  publication-title: Vehicle Dynamics and Control
– ident: ref47
  doi: 10.23919/ACC.1993.4793094
– year: 2020
  ident: ref25
  article-title: Model-reference reinforcement learning control of autonomous surface vehicles with uncertainties
  publication-title: arXiv 2003 13839
– ident: ref33
  doi: 10.1109/TCYB.2019.2942105
– ident: ref31
  doi: 10.1002/rob.4620010203
– ident: ref36
  doi: 10.1049/iet-its.2019.0411
– ident: ref7
  doi: 10.1109/TITS.2016.2614705
– ident: ref2
  doi: 10.1109/TITS.2015.2498841
– ident: ref35
  doi: 10.1007/s11432-019-2680-1
– ident: ref14
  doi: 10.1109/TVT.2015.2391184
– ident: ref3
  doi: 10.1109/TITS.2019.2958352
– ident: ref6
  doi: 10.1109/TIV.2016.2578706
– ident: ref44
  doi: 10.1109/TAC.2005.849249
– ident: ref43
  doi: 10.1016/S0005-1098(02)00003-1
– ident: ref11
  doi: 10.1109/TCST.2014.2317772
– ident: ref1
  doi: 10.1109/TITS.2018.2815678
– ident: ref46
  doi: 10.1016/j.automatica.2007.12.004
– ident: ref23
  doi: 10.1007/978-3-319-05371-4_3
– ident: ref5
  doi: 10.1109/TIV.2018.2804173
– ident: ref21
  doi: 10.1109/TCST.2007.894653
– ident: ref10
  doi: 10.1109/TAC.2007.902731
– ident: ref18
  doi: 10.1109/TITS.2003.811644
– ident: ref41
  doi: 10.1109/TVT.2019.2907696
– ident: ref29
  doi: 10.1109/MCS.2006.1636313
– ident: ref9
  doi: 10.1109/TIE.2017.2739680
– ident: ref4
  doi: 10.1109/TITS.2019.2901817
– ident: ref24
  doi: 10.1109/TITS.2019.2962338
– ident: ref38
  doi: 10.1109/TVT.2020.2998065
– year: 2018
  ident: ref28
  article-title: Reinforcement learning and deep learning based lateral control for autonomous driving
  publication-title: arXiv 1810 12778
– ident: ref16
  doi: 10.1109/TFUZZ.2017.2698370
– ident: ref34
  doi: 10.1016/j.automatica.2018.04.011
– ident: ref17
  doi: 10.1016/j.conengprac.2018.02.002
– ident: ref22
  doi: 10.1109/TITS.2008.2011697
– ident: ref30
  doi: 10.1007/978-1-4612-0571-5_4
– volume: 50
  start-page: 1349
  year: 2005
  ident: ref45
  article-title: On initial conditions in iterative learning control
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2005.854613
– ident: ref8
  doi: 10.1109/TITS.2015.2486815
– ident: ref12
  doi: 10.1109/TFUZZ.2018.2856187
– ident: ref13
  doi: 10.1002/rnc.3601
– ident: ref37
  doi: 10.1016/j.automatica.2014.05.002
– ident: ref20
  doi: 10.1007/s10846-016-0442-0
– ident: ref26
  doi: 10.1109/TSMC.2017.2712561
– year: 2003
  ident: ref32
  publication-title: Linear and Nonlinear Iterative Learning Control
– ident: ref42
  doi: 10.1109/9.746269
– ident: ref15
  doi: 10.1016/j.conengprac.2014.09.015
SSID ssj0014511
Score 2.4813156
Snippet This paper investigates the path tracking control problem of autonomous vehicles subject to modelling uncertainties and external disturbances. The problem is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20798
SubjectTerms Actuation
Adaptation models
Adaptive control
Adaptive learning
Adaptive learning control
Algorithms
Autonomous vehicles
Control theory
Convergence
convergence analysis
Disturbances
Iterative methods
Learning
Path tracking
Robust control
Robustness
Tracking control
trajectory tracking
Uncertainty
Vehicle dynamics
Title Robust Adaptive Learning-Based Path Tracking Control of Autonomous Vehicles Under Uncertain Driving Environments
URI https://ieeexplore.ieee.org/document/9784842
https://www.proquest.com/docview/2734387180
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3rwVcX6Yg-exNQ8No891mqpQkW0Sm8h-1JRmmKTi7_emU1aiop4CTnshoVvszPf7Mw3hJxw31cRrNDJFIZuokA4ScaNk6G5FcJjwsVC4eFtNHhkN-Nw3CBni1oYrbVNPtMdfLV3-SqXJYbKUA2WJQwO3BUgblWt1uLGAHW2rDaqzxzuhvMbTM_l56Pr0QMwQd8HghpHHPsSL9kg21Tlx0lszUt_gwznC6uySt46ZSE68vObZuN_V75J1ms_k3arjbFFGnqyTdaW1AdbZHqfi3JW0K7Kpnjo0Vpr9dm5ANOm6B04hxRsmcRoOu1VOe00N7RbFlgKkZcz-qRfbF4dtf2T4CmrFAN6-fGKoQp6tVRIt0Me-1ej3sCpGzA4EryAwlGh5lHGGRj9RHPNPIM9hrJAhNqXUQzukh_ISMUmFr4ygQFiHkiXKcWiLGTGC3ZJc5JP9B6hiWKhFECOuGEsFgZoGTeB5xkee0oZr03cOSSprNXJsUnGe2pZistTRDFFFNMaxTY5XUyZVtIcfw1uISqLgTUgbXI4xz2tf95Zioo_ARDJxN3_fdYBWcVvVyWJh6RZfJT6CHyTQhzbTfkFvu_hVw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB1FcGg5AIUiArTdQ08Ip157_bHHNIBCSxCioeJmeb_aqiiOiH3pr-_M2okiWlW9WD7syivNet-82Zk3AO9lFJkUVxiUhkI3aayCvJQuKAluleJChVQoPLlJx_fi00Py0IOzVS2MtdYnn9kBvfq7fFPphkJlpAYrcoEH7ibifsLbaq3VnQEpbXl11EgEMkyWd5g8lB-mV9MvyAWjCClqlkrqTLyGQr6tyh9nsQeYyx2YLJfW5pX8HDS1Guhfz1Qb_3ftu7DdeZps2G6NV9Czsz3YWtMf3If5XaWaRc2GppzTscc6tdVvwUcEN8Nu0T1kiGaa4uls1Ga1s8qxYVNTMUTVLNhX-91n1jHfQQmfuk0yYOdPPyhYwS7WSulew_3lxXQ0DroWDIFGP6AOTGJlWkqBsJ9baQV31GWojFViI51m6DBFsU5N5jIVGRc7pOaxDoUxIi0T4Xh8ABuzamYPgeVGJFohPZJOiEw5JGbSxZw7mXFjHO9DuDRJoTt9cmqT8Vh4nhLKgqxYkBWLzop9OF1NmbfiHP8avE9WWQ3sDNKHk6Xdi-73XRSk-RMjlczDo7_PegcvxtPJdXF9dfP5GF7Sd9oCxRPYqJ8a-wY9lVq99Rv0N6dS5KA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Adaptive+Learning-Based+Path+Tracking+Control+of+Autonomous+Vehicles+Under+Uncertain+Driving+Environments&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Li%2C+Xuefang&rft.au=Liu%2C+Chengyuan&rft.au=Chen%2C+Boli&rft.au=Jiang%2C+Jingjing&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=11&rft.spage=20798&rft_id=info:doi/10.1109%2FTITS.2022.3176970&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon