An Adiabatic Capacitive Artificial Neuron With RRAM-Based Threshold Detection for Energy-Efficient Neuromorphic Computing
In the quest for low power, bio-inspired computation both memristive and memcapacitive-based Artificial Neural Networks (ANN) have been the subjects of increasing focus for hardware implementation of neuromorphic computing. One step further, regenerative capacitive neural networks, which call for th...
Saved in:
Published in | IEEE transactions on circuits and systems. I, Regular papers Vol. 69; no. 9; pp. 3512 - 3525 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the quest for low power, bio-inspired computation both memristive and memcapacitive-based Artificial Neural Networks (ANN) have been the subjects of increasing focus for hardware implementation of neuromorphic computing. One step further, regenerative capacitive neural networks, which call for the use of adiabatic computing, offer a tantalising route towards even lower energy consumption, especially when combined with 'memimpedace' elements. Here, we present an artificial neuron featuring adiabatic synapse capacitors to produce membrane potentials for the somas of neurons; the latter implemented via dynamic latched comparators augmented with Resistive Random-Access Memory (RRAM) devices. Our initial 4-bit adiabatic capacitive neuron proof-of-concept example shows 90% synaptic energy saving. At 4 synapses/soma we already witness an overall 35% energy reduction. Furthermore, the impact of process and temperature on the 4-bit adiabatic synapse shows a maximum energy variation of 30% at <inline-formula> <tex-math notation="LaTeX">100^{o}C </tex-math></inline-formula> across the corners without any functionality loss. Finally, the efficacy of our adiabatic approach to ANN is tested for 512 & 1024 synapse/neuron for worst and best case synapse loading conditions and variable equalising capacitance's quantifying the expected trade-off between equalisation capacitance and range of optimal power-clock frequencies vs. loading (i.e. the percentage of active synapses). |
---|---|
AbstractList | In the quest for low power, bio-inspired computation both memristive and memcapacitive-based Artificial Neural Networks (ANN) have been the subjects of increasing focus for hardware implementation of neuromorphic computing. One step further, regenerative capacitive neural networks, which call for the use of adiabatic computing, offer a tantalising route towards even lower energy consumption, especially when combined with ‘memimpedace’ elements. Here, we present an artificial neuron featuring adiabatic synapse capacitors to produce membrane potentials for the somas of neurons; the latter implemented via dynamic latched comparators augmented with Resistive Random-Access Memory (RRAM) devices. Our initial 4-bit adiabatic capacitive neuron proof-of-concept example shows 90% synaptic energy saving. At 4 synapses/soma we already witness an overall 35% energy reduction. Furthermore, the impact of process and temperature on the 4-bit adiabatic synapse shows a maximum energy variation of 30% at [Formula Omitted] across the corners without any functionality loss. Finally, the efficacy of our adiabatic approach to ANN is tested for 512 & 1024 synapse/neuron for worst and best case synapse loading conditions and variable equalising capacitance’s quantifying the expected trade-off between equalisation capacitance and range of optimal power-clock frequencies vs. loading (i.e. the percentage of active synapses). In the quest for low power, bio-inspired computation both memristive and memcapacitive-based Artificial Neural Networks (ANN) have been the subjects of increasing focus for hardware implementation of neuromorphic computing. One step further, regenerative capacitive neural networks, which call for the use of adiabatic computing, offer a tantalising route towards even lower energy consumption, especially when combined with 'memimpedace' elements. Here, we present an artificial neuron featuring adiabatic synapse capacitors to produce membrane potentials for the somas of neurons; the latter implemented via dynamic latched comparators augmented with Resistive Random-Access Memory (RRAM) devices. Our initial 4-bit adiabatic capacitive neuron proof-of-concept example shows 90% synaptic energy saving. At 4 synapses/soma we already witness an overall 35% energy reduction. Furthermore, the impact of process and temperature on the 4-bit adiabatic synapse shows a maximum energy variation of 30% at <inline-formula> <tex-math notation="LaTeX">100^{o}C </tex-math></inline-formula> across the corners without any functionality loss. Finally, the efficacy of our adiabatic approach to ANN is tested for 512 & 1024 synapse/neuron for worst and best case synapse loading conditions and variable equalising capacitance's quantifying the expected trade-off between equalisation capacitance and range of optimal power-clock frequencies vs. loading (i.e. the percentage of active synapses). |
Author | Maheshwari, Sachin Prodromakis, Themistoklis Papavassiliou, Christos Serb, Alexander |
Author_xml | – sequence: 1 givenname: Sachin orcidid: 0000-0002-9192-2961 surname: Maheshwari fullname: Maheshwari, Sachin email: maheshwari.sachin@ed.ac.uk organization: Centre for Electronics Frontiers, School of Engineering, The University of Edinburgh, Edinburgh, U.K – sequence: 2 givenname: Alexander orcidid: 0000-0002-8034-2398 surname: Serb fullname: Serb, Alexander email: aserb@ed.ac.uk organization: Centre for Electronics Frontiers, School of Engineering, The University of Edinburgh, Edinburgh, U.K – sequence: 3 givenname: Christos orcidid: 0000-0002-8003-2146 surname: Papavassiliou fullname: Papavassiliou, Christos email: c.papavas@imperial.ac.uk organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K – sequence: 4 givenname: Themistoklis orcidid: 0000-0002-6267-6909 surname: Prodromakis fullname: Prodromakis, Themistoklis email: t.prodromakis@ed.ac.uk organization: Centre for Electronics Frontiers, School of Engineering, The University of Edinburgh, Edinburgh, U.K |
BookMark | eNp9kM9PwjAUgBuDiYD-AcZLE8_D_thYe5yISoKaIMbj0nWvUALr7IoJ_71bIB48eHo9fF9f3jdAvcpVgNA1JSNKibxbTt5nI0YYG3EqWJKmZ6hPk0RERJBxr3vHMhKciQs0aJoNIUwSTvvokFU4K60qVLAaT1SttA32G3DmgzVWW7XFr7D3rsKfNqzxYpG9RPeqgRIv1x6atduW-AEC6GBbxjiPpxX41SGamk6HKhz9nfP1ulvhdvU-2Gp1ic6N2jZwdZpD9PE4XU6eo_nb02ySzSPNJA9RGRsDkrGCJFCAAErSghHQJJZCJyIVqhBlUUgdG2gZVjAdx0byFjIJB8OH6Pb4b-3d1x6akG_c3lftypylRIxjzhlvqfRIae-axoPJ2w6quyl4Zbc5JXnXOe86513n_NS5Nekfs_Z2p_zhX-fm6FgA-OVlKmXCBf8BNiGMhA |
CODEN | ITCSCH |
CitedBy_id | crossref_primary_10_1038_s44335_024_00013_1 crossref_primary_10_1109_TED_2025_3526104 crossref_primary_10_1063_5_0163068 |
Cites_doi | 10.1109/ISCAS51556.2021.9401142 10.1002/adma.201604310 10.1016/j.vlsi.2018.04.002 10.1109/ISCAS48785.2022.9937701 10.1145/359576.359579 10.1016/j.vlsi.2020.06.007 10.1109/IECBES.2018.8626714 10.1007/s00429-021-02347-z 10.1002/cta.3101 10.1049/el.2013.2463 10.3389/fnins.2015.00141 10.1109/ISCAS.2007.378651 10.1016/S0045-7906(97)00043-8 10.1109/ISCAS.2018.8351250 10.3389/fnins.2016.00482 10.1038/s41467-018-05677-5 10.1109/PHYCMP.1992.615554 10.1109/PATMOS.2016.7833684 10.1109/MWSCAS.2019.8885023 10.1109/ISCAS.2014.6865269 10.1109/NER.2011.5910490 10.1109/TNANO.2015.2438017 10.1109/TED.2021.3101996 10.1007/978-94-007-2345-0 10.1109/TCSI.2019.2902475 10.1088/0957-4484/26/22/225201 10.1109/PESC.1995.474793 10.1109/ICRC.2017.8123661 10.1109/VLSID.2014.88 10.1109/PRIME.2016.7519499 10.1109/TEC.2006.874230 10.1007/BF02478259 10.1007/978-81-322-3703-7_6 10.1038/s41928-021-00649-y 10.1109/31.68299 10.3390/mi12050551 10.1109/TCAD.2018.2791468 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCSI.2022.3182577 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0806 |
EndPage | 3525 |
ExternalDocumentID | 10_1109_TCSI_2022_3182577 9799538 |
Genre | orig-research |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council (EPSRC) Programme Grant Functional Oxides for Reconfigurable Technologies (FORTE) grantid: EP/R024642/1 funderid: 10.13039/501100000266 – fundername: Royal Academy of Engineering (RAEng) Chair in Emerging Technologies grantid: CiET1819/2/93 funderid: 10.13039/501100000287 |
GroupedDBID | 0R~ 29I 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF M43 O9- OCL PZZ RIA RIE RNS VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c293t-d4ffe922b05ebe8e107b20ec0498c5878ab8dbb9c4feb052b2c44f93b20f53ef3 |
IEDL.DBID | RIE |
ISSN | 1549-8328 |
IngestDate | Mon Jun 30 03:06:14 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Tue Jul 01 04:15:17 EDT 2025 Wed Aug 27 02:29:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-d4ffe922b05ebe8e107b20ec0498c5878ab8dbb9c4feb052b2c44f93b20f53ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6267-6909 0000-0002-8003-2146 0000-0002-8034-2398 0000-0002-9192-2961 |
PQID | 2708643323 |
PQPubID | 85411 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2708643323 ieee_primary_9799538 crossref_citationtrail_10_1109_TCSI_2022_3182577 crossref_primary_10_1109_TCSI_2022_3182577 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems. I, Regular papers |
PublicationTitleAbbrev | TCSI |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref37 ref14 ref36 Ge (ref17) 2019 Tran (ref19) 2017 ref31 ref30 Mead (ref1) 1989 ref11 ref33 ref10 ref32 ref2 ref39 ref16 ref38 ref18 Younis (ref35) 1994 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 Purves (ref5) 2001 ref9 ref4 ref3 ref6 ref40 |
References_xml | – ident: ref29 doi: 10.1109/ISCAS51556.2021.9401142 – ident: ref8 doi: 10.1002/adma.201604310 – volume-title: Memcapacitive cross-bar array for determining a dot product year: 2019 ident: ref17 – ident: ref26 doi: 10.1016/j.vlsi.2018.04.002 – volume-title: Circuits Within the Cerebellum year: 2001 ident: ref5 – ident: ref42 doi: 10.1109/ISCAS48785.2022.9937701 – ident: ref2 doi: 10.1145/359576.359579 – ident: ref27 doi: 10.1016/j.vlsi.2020.06.007 – ident: ref32 doi: 10.1109/IECBES.2018.8626714 – ident: ref4 doi: 10.1007/s00429-021-02347-z – ident: ref40 doi: 10.1002/cta.3101 – ident: ref15 doi: 10.1049/el.2013.2463 – volume-title: arXiv:1704.05921 year: 2017 ident: ref19 article-title: Memcapacitive devices in logic and crossbar applications – ident: ref3 doi: 10.3389/fnins.2015.00141 – ident: ref28 doi: 10.1109/ISCAS.2007.378651 – ident: ref9 doi: 10.1016/S0045-7906(97)00043-8 – ident: ref30 doi: 10.1109/ISCAS.2018.8351250 – ident: ref12 doi: 10.3389/fnins.2016.00482 – ident: ref16 doi: 10.1038/s41467-018-05677-5 – ident: ref22 doi: 10.1109/PHYCMP.1992.615554 – ident: ref25 doi: 10.1109/PATMOS.2016.7833684 – ident: ref14 doi: 10.1109/MWSCAS.2019.8885023 – ident: ref6 doi: 10.1109/ISCAS.2014.6865269 – ident: ref7 doi: 10.1109/NER.2011.5910490 – ident: ref36 doi: 10.1109/TNANO.2015.2438017 – ident: ref39 doi: 10.1109/TED.2021.3101996 – ident: ref21 doi: 10.1007/978-94-007-2345-0 – ident: ref13 doi: 10.1109/TCSI.2019.2902475 – year: 1994 ident: ref35 article-title: Asymptotically zero energy computing using splitlevel charge recovery logic – ident: ref20 doi: 10.1088/0957-4484/26/22/225201 – ident: ref23 doi: 10.1109/PESC.1995.474793 – ident: ref33 doi: 10.1109/ICRC.2017.8123661 – ident: ref34 doi: 10.1109/VLSID.2014.88 – volume-title: Analog VLSI and Neural Systems year: 1989 ident: ref1 – ident: ref24 doi: 10.1109/PRIME.2016.7519499 – ident: ref41 doi: 10.1109/TEC.2006.874230 – ident: ref31 doi: 10.1007/BF02478259 – ident: ref10 doi: 10.1007/978-81-322-3703-7_6 – ident: ref18 doi: 10.1038/s41928-021-00649-y – ident: ref11 doi: 10.1109/31.68299 – ident: ref37 doi: 10.3390/mi12050551 – ident: ref38 doi: 10.1109/TCAD.2018.2791468 |
SSID | ssj0029031 |
Score | 2.3799102 |
Snippet | In the quest for low power, bio-inspired computation both memristive and memcapacitive-based Artificial Neural Networks (ANN) have been the subjects of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3512 |
SubjectTerms | Adiabatic Adiabatic flow Artificial neural networks Capacitance Capacitors Comparators Energy conservation Energy consumption energy-efficient Memory devices memristor MOS devices Neural networks Neuromorphic computing Power management Random access memory RLC circuits RRAM Switches Synapses Transistors |
Title | An Adiabatic Capacitive Artificial Neuron With RRAM-Based Threshold Detection for Energy-Efficient Neuromorphic Computing |
URI | https://ieeexplore.ieee.org/document/9799538 https://www.proquest.com/docview/2708643323 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGTnDgNRCDgXLghMjWpenaHMfYNJDGYWxit2pJE4GADrHuAL8eJ-0mXkLcerCbSHZqf7XzGeAUo0ZkmmpKW4oHlCeIWaeGtahSkvkKQ27TDe0b3LT6Y349CSYlOF_dhdFau-YzXbePrpafzNTC_ipr2BIUHtA1WEPglt_VWoEr4fk5NyoXFL00KiqYTU80Rp3bK0SCjCFARUAUhl9ikBuq8uNL7MJLbwsGy43lXSWP9UUm6-r9G2fjf3e-DZtFnknauWPsQEmnu7DxiX2wAm_tlLTtv1dL2ko6GDWVayRySjmxBHHcHSm5e8juyXDYHtALjHoJGaEHzG3hilzqzDVzpQSzX9J1Nwlp1_FS4I5y_ecZGtMu4SZI4Np7MO51R50-LSYxUIXpQEYTbowWjEkvQKNHGjGjZJ5WCC8iFURhNJVRIqVQ3GiUYZIpzo3wUcgEvjb-PpTTWaoPgKjQNK0O5klTHkoj7FTAluB-ZKGUFFXwlraJVUFTbqdlPMUOrngituaMrTnjwpxVOFupvOQcHX8JV6x5VoKFZapQWzpAXJziecxCBHyW4M0__F3rCNbtu_OesxqUs9eFPsYkJZMnzjs_AEZa43s |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIADr4EYzxw4ITK6NF2b4xibxmM7jCG4VUuaCAR0iHUH-PU4aTfxEuLWg61EslP7i53PAIcYNSJTVQNaUzygPEHMOjCsRpWSzFcYcqtuaF-nW2vf8Iu74G4GjqdvYbTWrvlMV-ynq-UnQzW2V2UntgSFB3QW5jHuByx_rTWFV8Lzc3ZULij6aVTUMKueOOk3rs8RCzKGEBUhURh-iUJurMqPf7ELMK0V6Ey2lveVPFbGmayo92-sjf_d-yosF5kmqeeusQYzOl2HpU_8gyV4q6ekbm9fLW0raWDcVK6VyCnl1BLEsXek5PYhuye9Xr1DTzHuJaSPPjCypStypjPXzpUSzH9J070lpE3HTIE7yvWfh2hOu4SbIYFrb8BNq9lvtGkxi4EqTAgymnBjtGBMegGaPdKIGiXztEKAEakgCqOBjBIpheJGowyTTHFuhI9CJvC18TdhLh2meguICk3V6mCmNOChNMLOBawJ7kcWTElRBm9im1gVROV2XsZT7ACLJ2JrztiaMy7MWYajqcpLztLxl3DJmmcqWFimDLsTB4iLczyKWYiQz1K8-du_ax3AQrvfuYqvzruXO7Bo18k70HZhLnsd6z1MWTK57zz1A00F5sU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adiabatic+Capacitive+Artificial+Neuron+With+RRAM-Based+Threshold+Detection+for+Energy-Efficient+Neuromorphic+Computing&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Maheshwari%2C+Sachin&rft.au=Serb%2C+Alexander&rft.au=Papavassiliou%2C+Christos&rft.au=Prodromakis%2C+Themistoklis&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1549-8328&rft.volume=69&rft.issue=9&rft.spage=3512&rft.epage=3525&rft_id=info:doi/10.1109%2FTCSI.2022.3182577&rft.externalDocID=9799538 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon |