An Adiabatic Capacitive Artificial Neuron With RRAM-Based Threshold Detection for Energy-Efficient Neuromorphic Computing

In the quest for low power, bio-inspired computation both memristive and memcapacitive-based Artificial Neural Networks (ANN) have been the subjects of increasing focus for hardware implementation of neuromorphic computing. One step further, regenerative capacitive neural networks, which call for th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. I, Regular papers Vol. 69; no. 9; pp. 3512 - 3525
Main Authors Maheshwari, Sachin, Serb, Alexander, Papavassiliou, Christos, Prodromakis, Themistoklis
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the quest for low power, bio-inspired computation both memristive and memcapacitive-based Artificial Neural Networks (ANN) have been the subjects of increasing focus for hardware implementation of neuromorphic computing. One step further, regenerative capacitive neural networks, which call for the use of adiabatic computing, offer a tantalising route towards even lower energy consumption, especially when combined with 'memimpedace' elements. Here, we present an artificial neuron featuring adiabatic synapse capacitors to produce membrane potentials for the somas of neurons; the latter implemented via dynamic latched comparators augmented with Resistive Random-Access Memory (RRAM) devices. Our initial 4-bit adiabatic capacitive neuron proof-of-concept example shows 90% synaptic energy saving. At 4 synapses/soma we already witness an overall 35% energy reduction. Furthermore, the impact of process and temperature on the 4-bit adiabatic synapse shows a maximum energy variation of 30% at <inline-formula> <tex-math notation="LaTeX">100^{o}C </tex-math></inline-formula> across the corners without any functionality loss. Finally, the efficacy of our adiabatic approach to ANN is tested for 512 & 1024 synapse/neuron for worst and best case synapse loading conditions and variable equalising capacitance's quantifying the expected trade-off between equalisation capacitance and range of optimal power-clock frequencies vs. loading (i.e. the percentage of active synapses).
AbstractList In the quest for low power, bio-inspired computation both memristive and memcapacitive-based Artificial Neural Networks (ANN) have been the subjects of increasing focus for hardware implementation of neuromorphic computing. One step further, regenerative capacitive neural networks, which call for the use of adiabatic computing, offer a tantalising route towards even lower energy consumption, especially when combined with ‘memimpedace’ elements. Here, we present an artificial neuron featuring adiabatic synapse capacitors to produce membrane potentials for the somas of neurons; the latter implemented via dynamic latched comparators augmented with Resistive Random-Access Memory (RRAM) devices. Our initial 4-bit adiabatic capacitive neuron proof-of-concept example shows 90% synaptic energy saving. At 4 synapses/soma we already witness an overall 35% energy reduction. Furthermore, the impact of process and temperature on the 4-bit adiabatic synapse shows a maximum energy variation of 30% at [Formula Omitted] across the corners without any functionality loss. Finally, the efficacy of our adiabatic approach to ANN is tested for 512 & 1024 synapse/neuron for worst and best case synapse loading conditions and variable equalising capacitance’s quantifying the expected trade-off between equalisation capacitance and range of optimal power-clock frequencies vs. loading (i.e. the percentage of active synapses).
In the quest for low power, bio-inspired computation both memristive and memcapacitive-based Artificial Neural Networks (ANN) have been the subjects of increasing focus for hardware implementation of neuromorphic computing. One step further, regenerative capacitive neural networks, which call for the use of adiabatic computing, offer a tantalising route towards even lower energy consumption, especially when combined with 'memimpedace' elements. Here, we present an artificial neuron featuring adiabatic synapse capacitors to produce membrane potentials for the somas of neurons; the latter implemented via dynamic latched comparators augmented with Resistive Random-Access Memory (RRAM) devices. Our initial 4-bit adiabatic capacitive neuron proof-of-concept example shows 90% synaptic energy saving. At 4 synapses/soma we already witness an overall 35% energy reduction. Furthermore, the impact of process and temperature on the 4-bit adiabatic synapse shows a maximum energy variation of 30% at <inline-formula> <tex-math notation="LaTeX">100^{o}C </tex-math></inline-formula> across the corners without any functionality loss. Finally, the efficacy of our adiabatic approach to ANN is tested for 512 & 1024 synapse/neuron for worst and best case synapse loading conditions and variable equalising capacitance's quantifying the expected trade-off between equalisation capacitance and range of optimal power-clock frequencies vs. loading (i.e. the percentage of active synapses).
Author Maheshwari, Sachin
Prodromakis, Themistoklis
Papavassiliou, Christos
Serb, Alexander
Author_xml – sequence: 1
  givenname: Sachin
  orcidid: 0000-0002-9192-2961
  surname: Maheshwari
  fullname: Maheshwari, Sachin
  email: maheshwari.sachin@ed.ac.uk
  organization: Centre for Electronics Frontiers, School of Engineering, The University of Edinburgh, Edinburgh, U.K
– sequence: 2
  givenname: Alexander
  orcidid: 0000-0002-8034-2398
  surname: Serb
  fullname: Serb, Alexander
  email: aserb@ed.ac.uk
  organization: Centre for Electronics Frontiers, School of Engineering, The University of Edinburgh, Edinburgh, U.K
– sequence: 3
  givenname: Christos
  orcidid: 0000-0002-8003-2146
  surname: Papavassiliou
  fullname: Papavassiliou, Christos
  email: c.papavas@imperial.ac.uk
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K
– sequence: 4
  givenname: Themistoklis
  orcidid: 0000-0002-6267-6909
  surname: Prodromakis
  fullname: Prodromakis, Themistoklis
  email: t.prodromakis@ed.ac.uk
  organization: Centre for Electronics Frontiers, School of Engineering, The University of Edinburgh, Edinburgh, U.K
BookMark eNp9kM9PwjAUgBuDiYD-AcZLE8_D_thYe5yISoKaIMbj0nWvUALr7IoJ_71bIB48eHo9fF9f3jdAvcpVgNA1JSNKibxbTt5nI0YYG3EqWJKmZ6hPk0RERJBxr3vHMhKciQs0aJoNIUwSTvvokFU4K60qVLAaT1SttA32G3DmgzVWW7XFr7D3rsKfNqzxYpG9RPeqgRIv1x6atduW-AEC6GBbxjiPpxX41SGamk6HKhz9nfP1ulvhdvU-2Gp1ic6N2jZwdZpD9PE4XU6eo_nb02ySzSPNJA9RGRsDkrGCJFCAAErSghHQJJZCJyIVqhBlUUgdG2gZVjAdx0byFjIJB8OH6Pb4b-3d1x6akG_c3lftypylRIxjzhlvqfRIae-axoPJ2w6quyl4Zbc5JXnXOe86513n_NS5Nekfs_Z2p_zhX-fm6FgA-OVlKmXCBf8BNiGMhA
CODEN ITCSCH
CitedBy_id crossref_primary_10_1038_s44335_024_00013_1
crossref_primary_10_1109_TED_2025_3526104
crossref_primary_10_1063_5_0163068
Cites_doi 10.1109/ISCAS51556.2021.9401142
10.1002/adma.201604310
10.1016/j.vlsi.2018.04.002
10.1109/ISCAS48785.2022.9937701
10.1145/359576.359579
10.1016/j.vlsi.2020.06.007
10.1109/IECBES.2018.8626714
10.1007/s00429-021-02347-z
10.1002/cta.3101
10.1049/el.2013.2463
10.3389/fnins.2015.00141
10.1109/ISCAS.2007.378651
10.1016/S0045-7906(97)00043-8
10.1109/ISCAS.2018.8351250
10.3389/fnins.2016.00482
10.1038/s41467-018-05677-5
10.1109/PHYCMP.1992.615554
10.1109/PATMOS.2016.7833684
10.1109/MWSCAS.2019.8885023
10.1109/ISCAS.2014.6865269
10.1109/NER.2011.5910490
10.1109/TNANO.2015.2438017
10.1109/TED.2021.3101996
10.1007/978-94-007-2345-0
10.1109/TCSI.2019.2902475
10.1088/0957-4484/26/22/225201
10.1109/PESC.1995.474793
10.1109/ICRC.2017.8123661
10.1109/VLSID.2014.88
10.1109/PRIME.2016.7519499
10.1109/TEC.2006.874230
10.1007/BF02478259
10.1007/978-81-322-3703-7_6
10.1038/s41928-021-00649-y
10.1109/31.68299
10.3390/mi12050551
10.1109/TCAD.2018.2791468
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSI.2022.3182577
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0806
EndPage 3525
ExternalDocumentID 10_1109_TCSI_2022_3182577
9799538
Genre orig-research
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council (EPSRC) Programme Grant Functional Oxides for Reconfigurable Technologies (FORTE)
  grantid: EP/R024642/1
  funderid: 10.13039/501100000266
– fundername: Royal Academy of Engineering (RAEng) Chair in Emerging Technologies
  grantid: CiET1819/2/93
  funderid: 10.13039/501100000287
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-d4ffe922b05ebe8e107b20ec0498c5878ab8dbb9c4feb052b2c44f93b20f53ef3
IEDL.DBID RIE
ISSN 1549-8328
IngestDate Mon Jun 30 03:06:14 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Tue Jul 01 04:15:17 EDT 2025
Wed Aug 27 02:29:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d4ffe922b05ebe8e107b20ec0498c5878ab8dbb9c4feb052b2c44f93b20f53ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6267-6909
0000-0002-8003-2146
0000-0002-8034-2398
0000-0002-9192-2961
PQID 2708643323
PQPubID 85411
PageCount 14
ParticipantIDs proquest_journals_2708643323
ieee_primary_9799538
crossref_citationtrail_10_1109_TCSI_2022_3182577
crossref_primary_10_1109_TCSI_2022_3182577
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. I, Regular papers
PublicationTitleAbbrev TCSI
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
Ge (ref17) 2019
Tran (ref19) 2017
ref31
ref30
Mead (ref1) 1989
ref11
ref33
ref10
ref32
ref2
ref39
ref16
ref38
ref18
Younis (ref35) 1994
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
Purves (ref5) 2001
ref9
ref4
ref3
ref6
ref40
References_xml – ident: ref29
  doi: 10.1109/ISCAS51556.2021.9401142
– ident: ref8
  doi: 10.1002/adma.201604310
– volume-title: Memcapacitive cross-bar array for determining a dot product
  year: 2019
  ident: ref17
– ident: ref26
  doi: 10.1016/j.vlsi.2018.04.002
– volume-title: Circuits Within the Cerebellum
  year: 2001
  ident: ref5
– ident: ref42
  doi: 10.1109/ISCAS48785.2022.9937701
– ident: ref2
  doi: 10.1145/359576.359579
– ident: ref27
  doi: 10.1016/j.vlsi.2020.06.007
– ident: ref32
  doi: 10.1109/IECBES.2018.8626714
– ident: ref4
  doi: 10.1007/s00429-021-02347-z
– ident: ref40
  doi: 10.1002/cta.3101
– ident: ref15
  doi: 10.1049/el.2013.2463
– volume-title: arXiv:1704.05921
  year: 2017
  ident: ref19
  article-title: Memcapacitive devices in logic and crossbar applications
– ident: ref3
  doi: 10.3389/fnins.2015.00141
– ident: ref28
  doi: 10.1109/ISCAS.2007.378651
– ident: ref9
  doi: 10.1016/S0045-7906(97)00043-8
– ident: ref30
  doi: 10.1109/ISCAS.2018.8351250
– ident: ref12
  doi: 10.3389/fnins.2016.00482
– ident: ref16
  doi: 10.1038/s41467-018-05677-5
– ident: ref22
  doi: 10.1109/PHYCMP.1992.615554
– ident: ref25
  doi: 10.1109/PATMOS.2016.7833684
– ident: ref14
  doi: 10.1109/MWSCAS.2019.8885023
– ident: ref6
  doi: 10.1109/ISCAS.2014.6865269
– ident: ref7
  doi: 10.1109/NER.2011.5910490
– ident: ref36
  doi: 10.1109/TNANO.2015.2438017
– ident: ref39
  doi: 10.1109/TED.2021.3101996
– ident: ref21
  doi: 10.1007/978-94-007-2345-0
– ident: ref13
  doi: 10.1109/TCSI.2019.2902475
– year: 1994
  ident: ref35
  article-title: Asymptotically zero energy computing using splitlevel charge recovery logic
– ident: ref20
  doi: 10.1088/0957-4484/26/22/225201
– ident: ref23
  doi: 10.1109/PESC.1995.474793
– ident: ref33
  doi: 10.1109/ICRC.2017.8123661
– ident: ref34
  doi: 10.1109/VLSID.2014.88
– volume-title: Analog VLSI and Neural Systems
  year: 1989
  ident: ref1
– ident: ref24
  doi: 10.1109/PRIME.2016.7519499
– ident: ref41
  doi: 10.1109/TEC.2006.874230
– ident: ref31
  doi: 10.1007/BF02478259
– ident: ref10
  doi: 10.1007/978-81-322-3703-7_6
– ident: ref18
  doi: 10.1038/s41928-021-00649-y
– ident: ref11
  doi: 10.1109/31.68299
– ident: ref37
  doi: 10.3390/mi12050551
– ident: ref38
  doi: 10.1109/TCAD.2018.2791468
SSID ssj0029031
Score 2.3799102
Snippet In the quest for low power, bio-inspired computation both memristive and memcapacitive-based Artificial Neural Networks (ANN) have been the subjects of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3512
SubjectTerms Adiabatic
Adiabatic flow
Artificial neural networks
Capacitance
Capacitors
Comparators
Energy conservation
Energy consumption
energy-efficient
Memory devices
memristor
MOS devices
Neural networks
Neuromorphic computing
Power management
Random access memory
RLC circuits
RRAM
Switches
Synapses
Transistors
Title An Adiabatic Capacitive Artificial Neuron With RRAM-Based Threshold Detection for Energy-Efficient Neuromorphic Computing
URI https://ieeexplore.ieee.org/document/9799538
https://www.proquest.com/docview/2708643323
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGTnDgNRCDgXLghMjWpenaHMfYNJDGYWxit2pJE4GADrHuAL8eJ-0mXkLcerCbSHZqf7XzGeAUo0ZkmmpKW4oHlCeIWaeGtahSkvkKQ27TDe0b3LT6Y349CSYlOF_dhdFau-YzXbePrpafzNTC_ipr2BIUHtA1WEPglt_VWoEr4fk5NyoXFL00KiqYTU80Rp3bK0SCjCFARUAUhl9ikBuq8uNL7MJLbwsGy43lXSWP9UUm6-r9G2fjf3e-DZtFnknauWPsQEmnu7DxiX2wAm_tlLTtv1dL2ko6GDWVayRySjmxBHHcHSm5e8juyXDYHtALjHoJGaEHzG3hilzqzDVzpQSzX9J1Nwlp1_FS4I5y_ecZGtMu4SZI4Np7MO51R50-LSYxUIXpQEYTbowWjEkvQKNHGjGjZJ5WCC8iFURhNJVRIqVQ3GiUYZIpzo3wUcgEvjb-PpTTWaoPgKjQNK0O5klTHkoj7FTAluB-ZKGUFFXwlraJVUFTbqdlPMUOrngituaMrTnjwpxVOFupvOQcHX8JV6x5VoKFZapQWzpAXJziecxCBHyW4M0__F3rCNbtu_OesxqUs9eFPsYkJZMnzjs_AEZa43s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIADr4EYzxw4ITK6NF2b4xibxmM7jCG4VUuaCAR0iHUH-PU4aTfxEuLWg61EslP7i53PAIcYNSJTVQNaUzygPEHMOjCsRpWSzFcYcqtuaF-nW2vf8Iu74G4GjqdvYbTWrvlMV-ynq-UnQzW2V2UntgSFB3QW5jHuByx_rTWFV8Lzc3ZULij6aVTUMKueOOk3rs8RCzKGEBUhURh-iUJurMqPf7ELMK0V6Ey2lveVPFbGmayo92-sjf_d-yosF5kmqeeusQYzOl2HpU_8gyV4q6ekbm9fLW0raWDcVK6VyCnl1BLEsXek5PYhuye9Xr1DTzHuJaSPPjCypStypjPXzpUSzH9J070lpE3HTIE7yvWfh2hOu4SbIYFrb8BNq9lvtGkxi4EqTAgymnBjtGBMegGaPdKIGiXztEKAEakgCqOBjBIpheJGowyTTHFuhI9CJvC18TdhLh2meguICk3V6mCmNOChNMLOBawJ7kcWTElRBm9im1gVROV2XsZT7ACLJ2JrztiaMy7MWYajqcpLztLxl3DJmmcqWFimDLsTB4iLczyKWYiQz1K8-du_ax3AQrvfuYqvzruXO7Bo18k70HZhLnsd6z1MWTK57zz1A00F5sU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adiabatic+Capacitive+Artificial+Neuron+With+RRAM-Based+Threshold+Detection+for+Energy-Efficient+Neuromorphic+Computing&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Maheshwari%2C+Sachin&rft.au=Serb%2C+Alexander&rft.au=Papavassiliou%2C+Christos&rft.au=Prodromakis%2C+Themistoklis&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1549-8328&rft.volume=69&rft.issue=9&rft.spage=3512&rft.epage=3525&rft_id=info:doi/10.1109%2FTCSI.2022.3182577&rft.externalDocID=9799538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon