Modeling InSAR Phase and SAR Intensity Changes Induced by Soil Moisture

A broad range of studies have been conducted so far to quantify the effect of soil moisture on synthetic aperture radar (SAR) intensity and interferometric synthetic aperture radar (InSAR) phase. The introduced models are either intensity or interferometric models, and there is no single scattering...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 58; no. 7; pp. 4967 - 4975
Main Authors Eshqi Molan, Yusuf, Lu, Zhong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A broad range of studies have been conducted so far to quantify the effect of soil moisture on synthetic aperture radar (SAR) intensity and interferometric synthetic aperture radar (InSAR) phase. The introduced models are either intensity or interferometric models, and there is no single scattering model that can estimate both intensity and phase changes, indicating the subject is poorly understood. Here, we quantify the influence of soil moisture on InSAR phase and SAR intensity by employing a volume scattering model. We model soil as a collection of randomly distributed independent point scatterers embedded in a homogeneous background. Our volume scattering model successfully estimates SAR intensity and InSAR phase changes due to soil moisture changes. In addition to soil moisture changes, the model also takes into account the scatterers' size and their volumetric fraction. This may open a new window in the study of soil structure using SAR images and InSAR methods. Our results indicate that the structure of soil manipulates the way soil moisture alters the SAR intensity and InSAR phase. The model has been evaluated against field soil moisture measurements and shown to be successful in modeling InSAR phase and SAR intensity.
AbstractList A broad range of studies have been conducted so far to quantify the effect of soil moisture on synthetic aperture radar (SAR) intensity and interferometric synthetic aperture radar (InSAR) phase. The introduced models are either intensity or interferometric models, and there is no single scattering model that can estimate both intensity and phase changes, indicating the subject is poorly understood. Here, we quantify the influence of soil moisture on InSAR phase and SAR intensity by employing a volume scattering model. We model soil as a collection of randomly distributed independent point scatterers embedded in a homogeneous background. Our volume scattering model successfully estimates SAR intensity and InSAR phase changes due to soil moisture changes. In addition to soil moisture changes, the model also takes into account the scatterers' size and their volumetric fraction. This may open a new window in the study of soil structure using SAR images and InSAR methods. Our results indicate that the structure of soil manipulates the way soil moisture alters the SAR intensity and InSAR phase. The model has been evaluated against field soil moisture measurements and shown to be successful in modeling InSAR phase and SAR intensity.
Author Lu, Zhong
Eshqi Molan, Yusuf
Author_xml – sequence: 1
  givenname: Yusuf
  orcidid: 0000-0003-2027-1388
  surname: Eshqi Molan
  fullname: Eshqi Molan, Yusuf
  email: yeshqimolan@smu.edu, yusuf.molan@gmail.com
  organization: Department of Earth Sciences, Southern Methodist University, Dallas, TX, USA
– sequence: 2
  givenname: Zhong
  orcidid: 0000-0001-9181-1818
  surname: Lu
  fullname: Lu, Zhong
  email: zhonglu@smu.edu
  organization: Department of Earth Sciences, Southern Methodist University, Dallas, TX, USA
BookMark eNp9kEFPAjEQhRuDiaD-AOOliefFdrfd3R4JUSSBaADPTbc7hZK1i2058O_dDcSDB0-Tmbxv3swboYFrHSD0QMmYUiKeN7PVepySlIxTUZCS0Ss0pJyXCckZG6AhoSJP0lKkN2gUwp4Qyjgthmi2bGtorNviuVtPVvhjpwJg5Wrcd3MXwQUbT3i6U24LoZvURw01rk543doGL1sb4tHDHbo2qglwf6m36PP1ZTN9Sxbvs_l0skh0KrKY1JlhZSUyA6RU3TVcF7oGwwvFRWWMVlVmSqEqKE2tqWaMgeIm590XudaMZLfo6bz34NvvI4Qo9-3Ru85SpowWLOOUlJ2KnlXatyF4MPLg7ZfyJ0mJ7POSfV6yz0te8uqY4g-jbVTRti56ZZt_ycczaQHg10kQQgohsh9-b3mj
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_agronomy14051067
crossref_primary_10_1109_TGRS_2022_3216083
crossref_primary_10_1109_TGRS_2020_2982062
crossref_primary_10_1007_s10668_023_03127_x
crossref_primary_10_1016_j_rse_2023_113516
crossref_primary_10_1109_JSTARS_2024_3357699
crossref_primary_10_3390_rs14092076
crossref_primary_10_3390_rs15143620
crossref_primary_10_5194_nhess_21_629_2021
crossref_primary_10_1109_MGRS_2022_3170350
crossref_primary_10_3390_rs13040557
crossref_primary_10_3390_geosciences11070300
crossref_primary_10_1016_j_rse_2022_112894
crossref_primary_10_1109_TGRS_2021_3109450
Cites_doi 10.1109/TGRS.2011.2132137
10.2174/1875413901205010037
10.2136/vzj2007.0143
10.1029/95WR03638
10.1109/IGARSS.2008.4779405
10.1029/2006GL027659
10.1016/j.jhydrol.2014.01.032
10.1016/j.rse.2016.02.062
10.1098/rspl.1904.0058
10.1109/JSTARS.2017.2671025
10.3390/rs10030405
10.1109/TGRS.2003.817211
10.3390/rs10010150
10.1002/2015RS005926
10.1016/j.tecto.2011.10.013
10.1146/annurev.earth.28.1.169
10.1007/0-306-47633-9
10.1109/TGRS.1985.289497
10.1063/1.367496
10.1109/IGARSS.1995.524098
10.1080/01431160600658123
10.1049/PBEW047E
10.1175/1520-0442(2004)017<2039:ICITWS>2.0.CO;2
10.1029/97RG03139
10.1016/j.rse.2015.04.012
10.1109/TGRS.2013.2241069
10.1002/0471224286
10.3390/rs1030210
10.1080/014311697217783
10.1080/01431160110040035
10.1029/JB094iB07p09183
10.1109/36.134085
10.1109/36.898661
10.1029/96RS01763
10.1109/IGARSS.2011.6049379
10.1109/TGRS.2020.2982062
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2020.2970841
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 4975
ExternalDocumentID 10_1109_TGRS_2020_2970841
9000799
Genre orig-research
GrantInformation_xml – fundername: Shuler-Foscue Endowment at Southern Methodist University
– fundername: NASA Earth Surface and Interior Program
  grantid: 80NSSC19K1491; NNX16AK56G
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-d3f48b93fe08a8925c7cdef57a59bffcab3f89abe8fdc1c444ea5f650646cc403
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:16:34 EDT 2025
Tue Jul 01 01:34:18 EDT 2025
Thu Apr 24 22:54:16 EDT 2025
Wed Aug 27 02:38:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d3f48b93fe08a8925c7cdef57a59bffcab3f89abe8fdc1c444ea5f650646cc403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2027-1388
0000-0001-9181-1818
PQID 2417435108
PQPubID 85465
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2020_2970841
proquest_journals_2417435108
crossref_primary_10_1109_TGRS_2020_2970841
ieee_primary_9000799
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
bohren (ref40) 1983
ref12
ref37
ref36
ref14
ref31
ulaby (ref42) 1986; 3
ref30
ref33
ref11
nesti (ref23) 1998
ref32
ref10
ref2
ulaby (ref35) 1981; 1
ref1
ref17
ref38
ref16
ref19
zhang (ref20) 2008; 37
ref18
rudant (ref24) 1996
ref46
ref45
cardinali (ref15) 2000
ref26
ref25
ref22
ref44
ref21
ref43
fung (ref41) 1994
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref6
mätzler (ref39) 2012
lu (ref3) 2014
ref5
References_xml – ident: ref25
  doi: 10.1109/TGRS.2011.2132137
– year: 2012
  ident: ref39
  publication-title: Matlab Functions for Mie Scattering and Absorption
– start-page: 439
  year: 2000
  ident: ref15
  article-title: Landslides triggered by rapid snow melting, the December 1996-Jan. 1997 event in Central Italy
  publication-title: Proc EGS Plinius Conf
– ident: ref8
  doi: 10.2174/1875413901205010037
– year: 1994
  ident: ref41
  publication-title: Microwave Scattering and Emission Models and Their Applications
– year: 1983
  ident: ref40
  publication-title: Absorption and Scattering of Light by Small Particles
– ident: ref16
  doi: 10.2136/vzj2007.0143
– start-page: 423
  year: 1998
  ident: ref23
  article-title: Phase shift and decorrelation of radar signal related to soil moisture changes
  publication-title: Proc 2nd ESA Int Workshop Retr Bio-Geo-Phys Parameter SAR Data Land Appl
– ident: ref30
  doi: 10.1029/95WR03638
– ident: ref21
  doi: 10.1109/IGARSS.2008.4779405
– ident: ref17
  doi: 10.1029/2006GL027659
– ident: ref18
  doi: 10.1016/j.jhydrol.2014.01.032
– volume: 1
  start-page: 334
  year: 1981
  ident: ref35
  publication-title: Microwave Remote Sensing Active and Passive
– ident: ref32
  doi: 10.1016/j.rse.2016.02.062
– ident: ref44
  doi: 10.1098/rspl.1904.0058
– ident: ref33
  doi: 10.1109/JSTARS.2017.2671025
– ident: ref4
  doi: 10.3390/rs10030405
– ident: ref7
  doi: 10.1109/TGRS.2003.817211
– ident: ref26
  doi: 10.3390/rs10010150
– ident: ref37
  doi: 10.1002/2015RS005926
– ident: ref12
  doi: 10.1016/j.tecto.2011.10.013
– start-page: 390
  year: 2014
  ident: ref3
  article-title: InSAR imaging of Aleutian volcanoes: Monitoring a volcanic arc from space
  publication-title: Journal of the Geophysical Sciences
– ident: ref2
  doi: 10.1146/annurev.earth.28.1.169
– ident: ref13
  doi: 10.1007/0-306-47633-9
– start-page: 83
  year: 1996
  ident: ref24
  article-title: Laboratory experiment for the interpretation of phase shift in SAR interferograms
  publication-title: Proc Fringe
– ident: ref43
  doi: 10.1109/TGRS.1985.289497
– ident: ref36
  doi: 10.1063/1.367496
– ident: ref22
  doi: 10.1109/IGARSS.1995.524098
– ident: ref29
  doi: 10.1080/01431160600658123
– ident: ref45
  doi: 10.1049/PBEW047E
– ident: ref19
  doi: 10.1175/1520-0442(2004)017<2039:ICITWS>2.0.CO;2
– ident: ref1
  doi: 10.1029/97RG03139
– ident: ref9
  doi: 10.1016/j.rse.2015.04.012
– ident: ref10
  doi: 10.1109/TGRS.2013.2241069
– ident: ref34
  doi: 10.1002/0471224286
– ident: ref31
  doi: 10.3390/rs1030210
– ident: ref28
  doi: 10.1080/014311697217783
– ident: ref6
  doi: 10.1080/01431160110040035
– volume: 37
  start-page: 131
  year: 2008
  ident: ref20
  article-title: Study on relation between InSAR coherence and soil moisture
  publication-title: Proc ISPRS Congr
– ident: ref14
  doi: 10.1029/JB094iB07p09183
– ident: ref27
  doi: 10.1109/36.134085
– ident: ref5
  doi: 10.1109/36.898661
– volume: 3
  year: 1986
  ident: ref42
  publication-title: Microwave Remote Sensing Active and Passive
– ident: ref38
  doi: 10.1029/96RS01763
– ident: ref11
  doi: 10.1109/IGARSS.2011.6049379
– ident: ref46
  doi: 10.1109/TGRS.2020.2982062
SSID ssj0014517
Score 2.420895
Snippet A broad range of studies have been conducted so far to quantify the effect of soil moisture on synthetic aperture radar (SAR) intensity and interferometric...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4967
SubjectTerms Atmospheric modeling
Interferometric synthetic aperture radar
Interferometric synthetic aperture radar (InSAR) phase
Interferometry
Mathematical model
modeling
Modelling
Phase changes
Radar
SAR (radar)
Scattering
Soil
Soil moisture
Soil structure
Soils
Solid modeling
Synthetic aperture radar
synthetic aperture radar (SAR) intensity
Title Modeling InSAR Phase and SAR Intensity Changes Induced by Soil Moisture
URI https://ieeexplore.ieee.org/document/9000799
https://www.proquest.com/docview/2417435108
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50QdCDj1VxdZUcPIld0zZ95LiIT1iRXQVvJZkmKEpX3Paw_nqTNrv4Qry1kJQwM5lH5_EBHApfcc1ibcFdEo-xhHsi0ehh6MdUcSowtQ3Og5v48p5dP0QPC3A874VRStXFZ6pnH-tcfj7Gyv4qO7EAlwnni7BoAremV2ueMWCR71qjY88EEYHLYPqUn9xdDEcmEgxoL-AJTZn_xQbVoCo_NHFtXs7XYDA7WFNV8tyrStnD928zG_978nVYdX4m6TeCsQELqmjDyqfpg21Yqqs_cbIJFxYRzfalk6ti1B-S20dj24gocmLfXJV7OSVNK8KEWLwPVDmRUzIaP72QwdgIS_WmtuD-_Ozu9NJzCAseGjNfenmoWSp5qBVNhSFahAnmSkeJiLjUGoUMdcqFVKnO0UfGmBKRju2QuxiR0XAbWsW4UDtAAqQ6TJDzSEkW5lwaDRxwJqyPGfo-doDOaJ6hGz9uUTBesjoMoTyzbMosmzLHpg4czbe8NrM3_lq8ack-X-go3oHujLGZu52TzHgtxnEy2ijd_X3XHizbbzdluV1olW-V2jfORykPaqn7ALBe1A4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH64IOrBXRzXHDyJnUnbdMlRRB2XEXFG8FaS1wRF6YjTOeivN2kzgxvirYWEhvde3tK3fAD7wldcs1hbcJfEYyzhnkg0ehj6MVWcCkxtg3PnOm7fsYv76H4CDse9MEqpqvhMNe1jlcvP-zi0v8paFuAy4XwSpo3dj4K6W2ucM2CR75qjY8-EEYHLYfqUt3pnt10TCwa0GfCEpsz_YoUqWJUfurgyMKeL0Bkdra4reWoOS9nE929TG_979iVYcJ4mOapFYxkmVLEC85_mD67ATFX_iYNVOLOYaLYznZwX3aNbcvNgrBsRRU7sm6tzL99I3YwwIBbxA1VO5Bvp9h-fSadvxGX4qtbg7vSkd9z2HMaCh8bQl14eapZKHmpFU2GIFmGCudJRIiIutUYhQ51yIVWqc_SRMaZEpGM75i5GZDRch6miX6gNIAFSHSbIeaQkC3MujQ4OOBPWywx9HxtARzTP0A0gtzgYz1kViFCeWTZllk2ZY1MDDsZbXurpG38tXrVkHy90FG_A9oixmbufg8z4LcZ1Mvoo3fx91x7Mtnudq-zq_PpyC-bsd-oi3W2YKl-Hase4IqXcrSTwA-_c11g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+InSAR+Phase+and+SAR+Intensity+Changes+Induced+by+Soil+Moisture&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Eshqi+Molan%2C+Yusuf&rft.au=Lu%2C+Zhong&rft.date=2020-07-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=58&rft.issue=7&rft.spage=4967&rft.epage=4975&rft_id=info:doi/10.1109%2FTGRS.2020.2970841&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2020_2970841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon