Distributed Electro-Mechanical Coupling Effects in a Dielectric Elastomer Membrane Array

Background Dielectric elastomer (DE) transducers permit to effectively develop large-deformation, energy-efficient, and compliant mechatronic devices. By arranging many DE elements in an array-like configuration, a soft actuator/sensor system capable of cooperative features can be obtained. When man...

Full description

Saved in:
Bibliographic Details
Published inExperimental mechanics Vol. 63; no. 1; pp. 79 - 95
Main Authors Neu, J., Croce, S., Willian, T., Hubertus, J., Schultes, G., Seelecke, S., Rizzello, G.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Dielectric elastomer (DE) transducers permit to effectively develop large-deformation, energy-efficient, and compliant mechatronic devices. By arranging many DE elements in an array-like configuration, a soft actuator/sensor system capable of cooperative features can be obtained. When many DE elements are densely packed onto a common elastic membrane, spatial coupling effects introduce electro-mechanical interactions among neighbors, which strongly affect the system actuation and sensing performance. To effectively design cooperative DE systems, those coupling effects must be systematically characterized and understood first. Objective As a first step towards the development of complex cooperative DE systems, in this work we present a systematic characterization of the spatial electro-mechanical interactions in a 1-by-3 array of silicone DEs. More specifically, we investigate how the force and capacitance characteristics of each DE in the array change when its neighbors are subject to different types of mechanical or electrical loads. Force and capacitance are chosen for this investigation, since those quantities are directly tied to the DE actuation and sensing behaviors, respectively. Methods An electro-mechanical characterization procedure is implemented through a novel experimental setup, which is specifically developed for testing soft DE arrays. The setup allows to investigate how the force and capacitance characteristics of each DE are affected by static deformations and/or electrical voltages applied to its nearby elements. Different combinations of electro-mechanical loads and DE neighbors are considered in an extensive experimental campaign. Results The conducted investigation shows the existence of strong electro-mechanical coupling effects among the different array elements. The interaction intensity depends on multiple parameters, such as the distance between active DEs or the amount of deformation/voltage applied to the neighbors, and provides essential information for the design of array actuators. In some cases, such coupling effects may lead to changes in force up to 9% compared to the reference configuration. A further coupling is also observed in the DE capacitive response, and opens up the possibility of implementing advanced and/or distributed self-sensing strategies in future applications. Conclusion By means of the conducted experiments, we clearly show that the actuation and sensing characteristics of each DE in the array are strongly influenced by the electro-mechanical loading state of its neighbors. The coupling effects may significantly affect the overall cooperative system performance, if not properly accounted for during the design. In future works, the obtained results will allow developing cooperative DE systems which are robust to, and possibly take advantage of, such spatial coupling effects.
AbstractList Background Dielectric elastomer (DE) transducers permit to effectively develop large-deformation, energy-efficient, and compliant mechatronic devices. By arranging many DE elements in an array-like configuration, a soft actuator/sensor system capable of cooperative features can be obtained. When many DE elements are densely packed onto a common elastic membrane, spatial coupling effects introduce electro-mechanical interactions among neighbors, which strongly affect the system actuation and sensing performance. To effectively design cooperative DE systems, those coupling effects must be systematically characterized and understood first. Objective As a first step towards the development of complex cooperative DE systems, in this work we present a systematic characterization of the spatial electro-mechanical interactions in a 1-by-3 array of silicone DEs. More specifically, we investigate how the force and capacitance characteristics of each DE in the array change when its neighbors are subject to different types of mechanical or electrical loads. Force and capacitance are chosen for this investigation, since those quantities are directly tied to the DE actuation and sensing behaviors, respectively. Methods An electro-mechanical characterization procedure is implemented through a novel experimental setup, which is specifically developed for testing soft DE arrays. The setup allows to investigate how the force and capacitance characteristics of each DE are affected by static deformations and/or electrical voltages applied to its nearby elements. Different combinations of electro-mechanical loads and DE neighbors are considered in an extensive experimental campaign. Results The conducted investigation shows the existence of strong electro-mechanical coupling effects among the different array elements. The interaction intensity depends on multiple parameters, such as the distance between active DEs or the amount of deformation/voltage applied to the neighbors, and provides essential information for the design of array actuators. In some cases, such coupling effects may lead to changes in force up to 9% compared to the reference configuration. A further coupling is also observed in the DE capacitive response, and opens up the possibility of implementing advanced and/or distributed self-sensing strategies in future applications. Conclusion By means of the conducted experiments, we clearly show that the actuation and sensing characteristics of each DE in the array are strongly influenced by the electro-mechanical loading state of its neighbors. The coupling effects may significantly affect the overall cooperative system performance, if not properly accounted for during the design. In future works, the obtained results will allow developing cooperative DE systems which are robust to, and possibly take advantage of, such spatial coupling effects.
BackgroundDielectric elastomer (DE) transducers permit to effectively develop large-deformation, energy-efficient, and compliant mechatronic devices. By arranging many DE elements in an array-like configuration, a soft actuator/sensor system capable of cooperative features can be obtained. When many DE elements are densely packed onto a common elastic membrane, spatial coupling effects introduce electro-mechanical interactions among neighbors, which strongly affect the system actuation and sensing performance. To effectively design cooperative DE systems, those coupling effects must be systematically characterized and understood first.ObjectiveAs a first step towards the development of complex cooperative DE systems, in this work we present a systematic characterization of the spatial electro-mechanical interactions in a 1-by-3 array of silicone DEs. More specifically, we investigate how the force and capacitance characteristics of each DE in the array change when its neighbors are subject to different types of mechanical or electrical loads. Force and capacitance are chosen for this investigation, since those quantities are directly tied to the DE actuation and sensing behaviors, respectively.MethodsAn electro-mechanical characterization procedure is implemented through a novel experimental setup, which is specifically developed for testing soft DE arrays. The setup allows to investigate how the force and capacitance characteristics of each DE are affected by static deformations and/or electrical voltages applied to its nearby elements. Different combinations of electro-mechanical loads and DE neighbors are considered in an extensive experimental campaign.ResultsThe conducted investigation shows the existence of strong electro-mechanical coupling effects among the different array elements. The interaction intensity depends on multiple parameters, such as the distance between active DEs or the amount of deformation/voltage applied to the neighbors, and provides essential information for the design of array actuators. In some cases, such coupling effects may lead to changes in force up to 9% compared to the reference configuration. A further coupling is also observed in the DE capacitive response, and opens up the possibility of implementing advanced and/or distributed self-sensing strategies in future applications.ConclusionBy means of the conducted experiments, we clearly show that the actuation and sensing characteristics of each DE in the array are strongly influenced by the electro-mechanical loading state of its neighbors. The coupling effects may significantly affect the overall cooperative system performance, if not properly accounted for during the design. In future works, the obtained results will allow developing cooperative DE systems which are robust to, and possibly take advantage of, such spatial coupling effects.
Author Neu, J.
Schultes, G.
Seelecke, S.
Croce, S.
Rizzello, G.
Hubertus, J.
Willian, T.
Author_xml – sequence: 1
  givenname: J.
  orcidid: 0000-0002-0719-9011
  surname: Neu
  fullname: Neu, J.
  email: julian.neu@imsl.uni-saarland.de
  organization: Dept. of Systems Engineering, Dept. of Materials Science, Saarland University
– sequence: 2
  givenname: S.
  surname: Croce
  fullname: Croce, S.
  organization: Dept. of Systems Engineering, Dept. of Materials Science, Saarland University
– sequence: 3
  givenname: T.
  surname: Willian
  fullname: Willian, T.
  organization: Dept. of Systems Engineering, Dept. of Materials Science, Saarland University
– sequence: 4
  givenname: J.
  surname: Hubertus
  fullname: Hubertus, J.
  organization: Sensors and Thin Films Group, University of Applied Sciences of Saarland
– sequence: 5
  givenname: G.
  surname: Schultes
  fullname: Schultes, G.
  organization: Sensors and Thin Films Group, University of Applied Sciences of Saarland
– sequence: 6
  givenname: S.
  surname: Seelecke
  fullname: Seelecke, S.
  organization: Dept. of Systems Engineering, Dept. of Materials Science, Saarland University
– sequence: 7
  givenname: G.
  surname: Rizzello
  fullname: Rizzello, G.
  organization: Dept. of Systems Engineering, Dept. of Materials Science, Saarland University
BookMark eNp9kDtvAjEQhK2ISAGSP5DqpNSX-HEPu0RAHhIoDUU6y-dbE6PDR2xT8O_jcJEipaCZLXa-ndVM0Mj1DhC6J_iRYFw_BUJYgXNMaY4xF0mv0JjUBclpXZUjNMaYFHnBS3KDJiHscIJYTcfoY2FD9LY5RmizZQc6-j5fg_5UzmrVZfP-eOis22ZLY9IyZNZlKltYOFutTowKsd-Dz9awb7xykM28V6dbdG1UF-Dud07R5nm5mb_mq_eXt_lslWsqWMxbqg1hpYIWGBW8rTDTVdPUnJu2ZLThWtfKJC1Ea1ouCgENGCI4F4ALxqboYTh78P3XEUKUu_7oXUqUtC4rUlRUiOSig0v7PgQPRh683St_kgTLnwLlUKBMBcpzgRIniP-DtI0q2t5Fr2x3GWUDGlKO24L_--oC9Q1QRoep
CitedBy_id crossref_primary_10_3390_act12020046
crossref_primary_10_3390_act12040141
crossref_primary_10_1016_j_ijnonlinmec_2024_104855
Cites_doi 10.1088/1361-665X/aa746d
10.5772/9311
10.1109/ISIE.2003.1267903
10.1109/ICRA.2017.7989501
10.1002/MARC.200900425
10.1016/j.eml.2018.02.004
10.1117/12.2612804
10.1016/J.DISPLA.2007.04.013
10.3390/mi5010066
10.1117/12.2218779
10.3389/fbioe.2014.00031
10.1109/TCST.2014.2338356
10.1088/0964-1726/25/3/035034
10.1109/JMEMS.2006.879378
10.1088/0964-1726/22/9/094016
10.1002/adfm.202001597
10.1016/j.sna.2020.112243
10.3390/app10072241
10.1088/1361-665X/ab8a01
10.1002/AELM.201700427
10.3390/act10100276
10.1088/1361-665X/aab7d8
10.3389/FROBT.2021.695918/BIBTEX
10.1016/j.mechatronics.2018.10.005
10.1007/s00339-012-7402-8
10.1117/12.847358
10.1016/J.SNA.2007.10.076
10.1109/WHC.2009.4810822
10.1016/S0924-4247(97)01657-9
10.1016/j.sna.2017.08.028
10.1016/j.eml.2015.12.008
10.1117/12.2612608
10.1021/ACSAMI.1C10686/SUPPL_FILE/AM1C10686_SI_003.PDF
10.1002/admt.201900128
10.1002/adma.201700880
10.1115/1.4039104
10.1007/s11012-015-0212-2
10.1631/jzus.A0820666
10.1007/978-4-431-54767-9_13
10.1109/TIE.2013.2245612
10.1109/ICMECH.2015.7083992
10.1109/TRANSDUCERS.2019.8808630
10.1115/SMASIS2021-67752
10.1117/12.2581718
10.1117/12.2582943
10.1117/12.475072
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s11340-022-00892-0
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1741-2765
EndPage 95
ExternalDocumentID 10_1007_s11340_022_00892_0
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: SPP 2206
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Universität des Saarlandes (1036)
GroupedDBID -5B
-5G
-BR
-EM
-XX
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDEX
ABDPE
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAGR
AIAKS
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
E.L
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IGS
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LAS
LLZTM
M4V
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9P
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UCJ
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XSW
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c293t-d2cf135aede3298d603c6bb788fd532b8cc7af8cc49dfd8949ebef19889e0433
IEDL.DBID U2A
ISSN 0014-4851
IngestDate Fri Jul 25 10:57:39 EDT 2025
Tue Jul 01 04:20:00 EDT 2025
Thu Apr 24 23:04:56 EDT 2025
Fri Feb 21 02:43:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Dielectric Elastomer Actuators
Self-Sensing
Cooperative Actuators
Actuator-Array
Electro-Mechanical Coupling
Soft Actuators
Dielectric Elastomers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d2cf135aede3298d603c6bb788fd532b8cc7af8cc49dfd8949ebef19889e0433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0719-9011
OpenAccessLink https://link.springer.com/10.1007/s11340-022-00892-0
PQID 2756146299
PQPubID 2044465
PageCount 17
ParticipantIDs proquest_journals_2756146299
crossref_primary_10_1007_s11340_022_00892_0
crossref_citationtrail_10_1007_s11340_022_00892_0
springer_journals_10_1007_s11340_022_00892_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal Integrating Experimental Methods with the Mechanical Behavior of Materials and Structures
PublicationTitle Experimental mechanics
PublicationTitleAbbrev Exp Mech
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Berselli, Vassura, Parenti, Vertechy (CR36) 2010
Albukhari, Mescheder (CR14) 2021
Brochu, Pei (CR25) 2010; 31
Rizzello, Naso, York, Seelecke (CR48) 2015; 23
Wang, Zhu, Ye (CR9) 2009; 10
Follador, Cianchetti, Mazzolai (CR38) 2015; 50
Hodgins, York, Seelecke (CR40) 2013
Marette, Poulin, Besse (CR34) 2017; 29
Matysek, Lotz, Flittner (CR33) 2010; 7642
CR18
Kadooka, Imamura, Taya (CR23) 2016; 9798
CR17
CR15
Jung, Kim, Choi (CR31) 2008; 143
Hubertus, Fasolt, Linnebach (CR29) 2020
Chiba, Asaka, Okuzaki (CR1) 2014
Luo, Li, Yu (CR10) 2020; 10
Hau, Bruch, Rizzello (CR39) 2018
Cao, Gao, Conn (CR4) 2019; 4
Matysek, Lotz, Winterstein, Schlaak (CR19) 2009; 2009
Fukuta, Chapuis, Mita, Fujita (CR12) 2006; 15
Croce, Neu, Hubertus (CR46) 2022; 12042
Benali-Khoudja, Hafez, Kheddar (CR13) 2007; 28
Fasolt, Hodgins, Rizzello, Seelecke (CR28) 2017; 265
Rosset, Shea (CR27) 2013; 110
Pyo, Choi, Kim (CR22) 2018
Loew, Rizzello, Seelecke (CR37) 2018; 56
CR5
Lu, Shi, Shi, Wang (CR7) 2016; 6
Hill, Rizzello, Seelecke (CR3) 2017
CR26
Linnebach, Rizzello, Seelecke, Seelecke (CR41) 2020
CR45
Laurent, Delettre, Zeggari (CR11) 2014; 5
CR44
Cao, Qin, Liu (CR8) 2018; 21
CR21
Pelrine, Kornbluh, Joseph (CR32) 1998; 64
CR43
Cunha, JP, Costa RR, Hsu L (CR16) 2003; II
Rizzello, Naso, York, Seelecke (CR2) 2016
Aksoy, Shea (CR20) 2020
Frediani, Mazzei, de Rossi, Carpi (CR35) 2014; 2
Duduta, Clarke, Wood (CR6) 2017
Hubertus, Neu, Croce (CR30) 2021; 13
Neu, Hubertus, Croce (CR42) 2021; 8
Neu, Croce, Hubertus (CR24) 2022; 12042
Hau, York, Rizzello, Seelecke (CR47) 2018
M Hodgins (892_CR40) 2013
A Albukhari (892_CR14) 2021
K Kadooka (892_CR23) 2016; 9798
P Loew (892_CR37) 2018; 56
S Hau (892_CR47) 2018
B Fasolt (892_CR28) 2017; 265
A Marette (892_CR34) 2017; 29
M Benali-Khoudja (892_CR13) 2007; 28
892_CR26
S Croce (892_CR46) 2022; 12042
G Frediani (892_CR35) 2014; 2
G Berselli (892_CR36) 2010
M Matysek (892_CR33) 2010; 7642
K Jung (892_CR31) 2008; 143
G Rizzello (892_CR2) 2016
S Pyo (892_CR22) 2018
M Follador (892_CR38) 2015; 50
cr-split#-892_CR18.2
T Lu (892_CR7) 2016; 6
J Neu (892_CR24) 2022; 12042
cr-split#-892_CR18.1
C Cao (892_CR4) 2019; 4
892_CR21
VSD Cunha (892_CR16) 2003; II
892_CR15
892_CR17
892_CR5
S Rosset (892_CR27) 2013; 110
S Hau (892_CR39) 2018
Y Fukuta (892_CR12) 2006; 15
J Neu (892_CR42) 2021; 8
HM Wang (892_CR9) 2009; 10
G Rizzello (892_CR48) 2015; 23
P Brochu (892_CR25) 2010; 31
B Aksoy (892_CR20) 2020
M Duduta (892_CR6) 2017
J Cao (892_CR8) 2018; 21
J Hubertus (892_CR29) 2020
P Linnebach (892_CR41) 2020
GJ Laurent (892_CR11) 2014; 5
RE Pelrine (892_CR32) 1998; 64
892_CR44
892_CR43
892_CR45
M Hill (892_CR3) 2017
M Matysek (892_CR19) 2009; 2009
S Chiba (892_CR1) 2014
B Luo (892_CR10) 2020; 10
J Hubertus (892_CR30) 2021; 13
References_xml – ident: CR45
– year: 2017
  ident: CR3
  article-title: Development and experimental characterization of a pneumatic valve actuated by a dielectric elastomer membrane
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aa746d
– year: 2010
  ident: CR36
  article-title: On Designing Compliant Actuators Based On Dielectric Elastomers for Robotic Applications
  publication-title: Robot Manipulators New Achievements
  doi: 10.5772/9311
– volume: II
  start-page: 690
  year: 2003
  end-page: 695
  ident: CR16
  article-title: Cooperative actuators for fault tolerant model-reference sliding mode control
  publication-title: IEEE International Symposium on Industrial Electronics
  doi: 10.1109/ISIE.2003.1267903
– ident: CR18
– ident: CR43
– year: 2017
  ident: CR6
  article-title: A high speed soft robot based on dielectric elastomer actuators
  publication-title: Proceedings - IEEE International Conference on Robotics and Automation
  doi: 10.1109/ICRA.2017.7989501
– volume: 31
  start-page: 10
  year: 2010
  end-page: 36
  ident: CR25
  article-title: Advances in dielectric elastomers for actuators and artificial muscles
  publication-title: Macromol Rapid Commun
  doi: 10.1002/MARC.200900425
– volume: 21
  start-page: 9
  year: 2018
  end-page: 16
  ident: CR8
  article-title: Untethered soft robot capable of stable locomotion using soft electrostatic actuators
  publication-title: Extreme Mech Lett
  doi: 10.1016/j.eml.2018.02.004
– volume: 12042
  start-page: 160
  year: 2022
  end-page: 165
  ident: CR24
  article-title: Experimental characterization of the mechanical coupling in a DE-array
  publication-title: Proc SPIE
  doi: 10.1117/12.2612804
– volume: 28
  start-page: 133
  year: 2007
  end-page: 144
  ident: CR13
  article-title: VITAL: An electromagnetic integrated tactile display
  publication-title: Displays
  doi: 10.1016/J.DISPLA.2007.04.013
– start-page: 183
  year: 2014
  end-page: 195
  ident: CR1
  article-title: Dielectric Elastomers
  publication-title: Soft Actuators: Materials, Modeling, Applications, and Future Perspectives
– volume: 5
  start-page: 66
  year: 2014
  end-page: 80
  ident: CR11
  article-title: Micropositioning and fast transport using a contactless micro-conveyor
  publication-title: Micromachines (Basel)
  doi: 10.3390/mi5010066
– volume: 9798
  start-page: 97982H
  year: 2016
  ident: CR23
  article-title: Tactile sensor integrated dielectric elastomer actuator for simultaneous actuation and sensing
  publication-title: Proc SPIE
  doi: 10.1117/12.2218779
– volume: 2
  start-page: 1
  year: 2014
  end-page: 7
  ident: CR35
  article-title: Wearable wireless tactile display for virtual interactions with soft bodies
  publication-title: Frontiers in Bioengineering and Biotechnology
  doi: 10.3389/fbioe.2014.00031
– volume: 23
  start-page: 632
  year: 2015
  end-page: 643
  ident: CR48
  article-title: Modeling, identification, and control of a dielectric electro-Active polymer positioning system
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2014.2338356
– year: 2016
  ident: CR2
  article-title: Closed loop control of dielectric elastomer actuators based on self-sensing displacement feedback
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/25/3/035034
– volume: 15
  start-page: 912
  year: 2006
  end-page: 926
  ident: CR12
  article-title: Design, fabrication, and control of MEMS-based actuator arrays for air-flow distributed micromanipulation
  publication-title: J Microelectromech Syst
  doi: 10.1109/JMEMS.2006.879378
– year: 2013
  ident: CR40
  article-title: Experimental comparison of bias elements for out-of-plane DEAP actuator system
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/22/9/094016
– year: 2020
  ident: CR20
  article-title: Reconfigurable and Latchable Shape-Morphing Dielectric Elastomers Based on Local Stiffness Modulation
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.202001597
– year: 2020
  ident: CR29
  article-title: Electromechanical evaluation of sub-micron NiCr-carbon thin films as highly conductive and compliant electrodes for dielectric elastomers
  publication-title: Sens Actuators, A
  doi: 10.1016/j.sna.2020.112243
– volume: 10
  start-page: 1
  year: 2020
  end-page: 13
  ident: CR10
  article-title: A jumping robot driven by a dielectric elastomer actuator
  publication-title: Applied Sciences (Switzerland)
  doi: 10.3390/app10072241
– ident: CR21
– year: 2020
  ident: CR41
  article-title: Design and validation of a dielectric elastomer membrane actuator driven pneumatic pump
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/ab8a01
– year: 2018
  ident: CR22
  article-title: Flexible, Transparent, Sensitive, and Crosstalk-Free Capacitive Tactile Sensor Array Based on Graphene Electrodes and Air Dielectric
  publication-title: Advanced Electronic Materials
  doi: 10.1002/AELM.201700427
– ident: CR44
– year: 2021
  ident: CR14
  article-title: Investigation of the dynamics of a 2-DoF actuation unit cell for a cooperative electrostatic actuation system
  publication-title: Actuators
  doi: 10.3390/act10100276
– year: 2018
  ident: CR39
  article-title: Silicone based dielectric elastomer strip actuators coupled with nonlinear biasing elements for large actuation strains
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aab7d8
– volume: 8
  start-page: 171
  year: 2021
  ident: CR42
  article-title: Fully Polymeric Domes as High-Stroke Biasing System for Soft Dielectric Elastomer Actuators
  publication-title: Frontiers in Robotics and AI
  doi: 10.3389/FROBT.2021.695918/BIBTEX
– volume: 56
  start-page: 48
  year: 2018
  end-page: 57
  ident: CR37
  article-title: A novel biasing mechanism for circular out-of-plane dielectric actuators based on permanent magnets
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2018.10.005
– volume: 110
  start-page: 281
  year: 2013
  end-page: 307
  ident: CR27
  article-title: Flexible and stretchable electrodes for dielectric elastomer actuators
  publication-title: Appl Phys A Mater Sci Process
  doi: 10.1007/s00339-012-7402-8
– ident: CR15
– volume: 7642
  start-page: 76420D
  year: 2010
  ident: CR33
  article-title: Schlaak HF (2010) Vibrotactile display for mobile applications based on dielectric elastomer stack actuators
  publication-title: Electroactive Polymer Actuators and Devices (EAPAD)
  doi: 10.1117/12.847358
– ident: CR17
– volume: 143
  start-page: 343
  year: 2008
  end-page: 351
  ident: CR31
  article-title: A self-sensing dielectric elastomer actuator
  publication-title: Sens Actuators, A
  doi: 10.1016/J.SNA.2007.10.076
– volume: 2009
  start-page: 290
  year: 2009
  end-page: 295
  ident: CR19
  article-title: Dielectric elastomer actuators for tactile displays. Proceedings - 3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
  publication-title: World Haptics
  doi: 10.1109/WHC.2009.4810822
– volume: 64
  start-page: 77
  year: 1998
  end-page: 85
  ident: CR32
  article-title: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation
  publication-title: Sens Actuators, A
  doi: 10.1016/S0924-4247(97)01657-9
– volume: 265
  start-page: 10
  year: 2017
  end-page: 19
  ident: CR28
  article-title: Effect of screen printing parameters on sensor and actuator performance of dielectric elastomer (DE) membranes
  publication-title: Sens Actuators, A
  doi: 10.1016/j.sna.2017.08.028
– volume: 6
  start-page: 75
  year: 2016
  end-page: 81
  ident: CR7
  article-title: Bioinspired bicipital muscle with fiber-constrained dielectric elastomer actuator
  publication-title: Extreme Mech Lett
  doi: 10.1016/j.eml.2015.12.008
– volume: 12042
  start-page: 93
  year: 2022
  end-page: 101
  ident: CR46
  article-title: Finite element modeling and parameter study of a fully-polymeric array of coupled dielectric elastomers
  publication-title: Proc SPIE
  doi: 10.1117/12.2612608
– volume: 13
  start-page: 39894
  year: 2021
  end-page: 39904
  ident: CR30
  article-title: Nanoscale Nickel-Based Thin Films as Highly Conductive Electrodes for Dielectric Elastomer Applications with Extremely High Stretchability up to 200%
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/ACSAMI.1C10686/SUPPL_FILE/AM1C10686_SI_003.PDF
– volume: 4
  start-page: 1
  year: 2019
  end-page: 6
  ident: CR4
  article-title: A Magnetically Coupled Dielectric Elastomer Pump for Soft Robotics
  publication-title: Advanced Materials Technologies
  doi: 10.1002/admt.201900128
– ident: CR5
– volume: 29
  start-page: 1
  year: 2017
  end-page: 6
  ident: CR34
  article-title: Flexible Zinc-Tin Oxide Thin Film Transistors Operating at 1 kV for Integrated Switching of Dielectric Elastomer Actuators Arrays
  publication-title: Adv Mater
  doi: 10.1002/adma.201700880
– year: 2018
  ident: CR47
  article-title: Performance Prediction and Scaling Laws of Circular Dielectric Elastomer Membrane Actuators
  publication-title: Journal of Mechanical Design, Transactions of the ASME
  doi: 10.1115/1.4039104
– volume: 50
  start-page: 2741
  year: 2015
  end-page: 2749
  ident: CR38
  article-title: Design of a compact bistable mechanism based on dielectric elastomer actuators
  publication-title: Meccanica
  doi: 10.1007/s11012-015-0212-2
– volume: 10
  start-page: 1296
  year: 2009
  end-page: 1304
  ident: CR9
  article-title: Simulation, experimental evaluation and performance improvement of a cone dielectric elastomer actuator
  publication-title: J Zhejiang Univ, Sci, A
  doi: 10.1631/jzus.A0820666
– ident: CR26
– volume: II
  start-page: 690
  year: 2003
  ident: 892_CR16
  publication-title: IEEE International Symposium on Industrial Electronics
  doi: 10.1109/ISIE.2003.1267903
– year: 2018
  ident: 892_CR39
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aab7d8
– volume: 56
  start-page: 48
  year: 2018
  ident: 892_CR37
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2018.10.005
– start-page: 183
  volume-title: Soft Actuators: Materials, Modeling, Applications, and Future Perspectives
  year: 2014
  ident: 892_CR1
  doi: 10.1007/978-4-431-54767-9_13
– volume: 5
  start-page: 66
  year: 2014
  ident: 892_CR11
  publication-title: Micromachines (Basel)
  doi: 10.3390/mi5010066
– year: 2020
  ident: 892_CR20
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.202001597
– volume: 265
  start-page: 10
  year: 2017
  ident: 892_CR28
  publication-title: Sens Actuators, A
  doi: 10.1016/j.sna.2017.08.028
– ident: 892_CR21
– year: 2021
  ident: 892_CR14
  publication-title: Actuators
  doi: 10.3390/act10100276
– ident: 892_CR15
  doi: 10.1109/TIE.2013.2245612
– volume: 29
  start-page: 1
  year: 2017
  ident: 892_CR34
  publication-title: Adv Mater
  doi: 10.1002/adma.201700880
– volume: 4
  start-page: 1
  year: 2019
  ident: 892_CR4
  publication-title: Advanced Materials Technologies
  doi: 10.1002/admt.201900128
– ident: 892_CR45
  doi: 10.1109/ICMECH.2015.7083992
– volume: 2009
  start-page: 290
  year: 2009
  ident: 892_CR19
  publication-title: World Haptics
  doi: 10.1109/WHC.2009.4810822
– volume: 13
  start-page: 39894
  year: 2021
  ident: 892_CR30
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/ACSAMI.1C10686/SUPPL_FILE/AM1C10686_SI_003.PDF
– volume: 10
  start-page: 1
  year: 2020
  ident: 892_CR10
  publication-title: Applied Sciences (Switzerland)
  doi: 10.3390/app10072241
– volume: 8
  start-page: 171
  year: 2021
  ident: 892_CR42
  publication-title: Frontiers in Robotics and AI
  doi: 10.3389/FROBT.2021.695918/BIBTEX
– year: 2010
  ident: 892_CR36
  publication-title: Robot Manipulators New Achievements
  doi: 10.5772/9311
– volume: 143
  start-page: 343
  year: 2008
  ident: 892_CR31
  publication-title: Sens Actuators, A
  doi: 10.1016/J.SNA.2007.10.076
– ident: 892_CR17
  doi: 10.1109/TRANSDUCERS.2019.8808630
– volume: 110
  start-page: 281
  year: 2013
  ident: 892_CR27
  publication-title: Appl Phys A Mater Sci Process
  doi: 10.1007/s00339-012-7402-8
– year: 2017
  ident: 892_CR3
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aa746d
– ident: 892_CR44
  doi: 10.1115/SMASIS2021-67752
– volume: 28
  start-page: 133
  year: 2007
  ident: 892_CR13
  publication-title: Displays
  doi: 10.1016/J.DISPLA.2007.04.013
– year: 2020
  ident: 892_CR41
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/ab8a01
– volume: 21
  start-page: 9
  year: 2018
  ident: 892_CR8
  publication-title: Extreme Mech Lett
  doi: 10.1016/j.eml.2018.02.004
– volume: 12042
  start-page: 93
  year: 2022
  ident: 892_CR46
  publication-title: Proc SPIE
  doi: 10.1117/12.2612608
– year: 2018
  ident: 892_CR47
  publication-title: Journal of Mechanical Design, Transactions of the ASME
  doi: 10.1115/1.4039104
– year: 2016
  ident: 892_CR2
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/25/3/035034
– year: 2020
  ident: 892_CR29
  publication-title: Sens Actuators, A
  doi: 10.1016/j.sna.2020.112243
– volume: 6
  start-page: 75
  year: 2016
  ident: 892_CR7
  publication-title: Extreme Mech Lett
  doi: 10.1016/j.eml.2015.12.008
– volume: 50
  start-page: 2741
  year: 2015
  ident: 892_CR38
  publication-title: Meccanica
  doi: 10.1007/s11012-015-0212-2
– ident: #cr-split#-892_CR18.2
– volume: 10
  start-page: 1296
  year: 2009
  ident: 892_CR9
  publication-title: J Zhejiang Univ, Sci, A
  doi: 10.1631/jzus.A0820666
– year: 2018
  ident: 892_CR22
  publication-title: Advanced Electronic Materials
  doi: 10.1002/AELM.201700427
– year: 2013
  ident: 892_CR40
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/22/9/094016
– volume: 7642
  start-page: 76420D
  year: 2010
  ident: 892_CR33
  publication-title: Electroactive Polymer Actuators and Devices (EAPAD)
  doi: 10.1117/12.847358
– ident: 892_CR5
  doi: 10.1117/12.2581718
– year: 2017
  ident: 892_CR6
  publication-title: Proceedings - IEEE International Conference on Robotics and Automation
  doi: 10.1109/ICRA.2017.7989501
– volume: 12042
  start-page: 160
  year: 2022
  ident: 892_CR24
  publication-title: Proc SPIE
  doi: 10.1117/12.2612804
– volume: 2
  start-page: 1
  year: 2014
  ident: 892_CR35
  publication-title: Frontiers in Bioengineering and Biotechnology
  doi: 10.3389/fbioe.2014.00031
– ident: 892_CR43
  doi: 10.1117/12.2582943
– ident: 892_CR26
  doi: 10.1117/12.475072
– ident: #cr-split#-892_CR18.1
– volume: 31
  start-page: 10
  year: 2010
  ident: 892_CR25
  publication-title: Macromol Rapid Commun
  doi: 10.1002/MARC.200900425
– volume: 23
  start-page: 632
  year: 2015
  ident: 892_CR48
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2014.2338356
– volume: 9798
  start-page: 97982H
  year: 2016
  ident: 892_CR23
  publication-title: Proc SPIE
  doi: 10.1117/12.2218779
– volume: 64
  start-page: 77
  year: 1998
  ident: 892_CR32
  publication-title: Sens Actuators, A
  doi: 10.1016/S0924-4247(97)01657-9
– volume: 15
  start-page: 912
  year: 2006
  ident: 892_CR12
  publication-title: J Microelectromech Syst
  doi: 10.1109/JMEMS.2006.879378
SSID ssj0007372
Score 2.3654072
Snippet Background Dielectric elastomer (DE) transducers permit to effectively develop large-deformation, energy-efficient, and compliant mechatronic devices. By...
BackgroundDielectric elastomer (DE) transducers permit to effectively develop large-deformation, energy-efficient, and compliant mechatronic devices. By...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 79
SubjectTerms Actuation
Actuators
Arrays
Biomedical Engineering and Bioengineering
Capacitance
Characterization and Evaluation of Materials
Configurations
Control
Coupling
Deformation effects
Dynamical Systems
Elastomers
Electrical loads
Engineering
Investigations
Lasers
Mechanical properties
Membranes
Modulus of elasticity
Optical Devices
Optics
Photonics
Research Paper
Solid Mechanics
System effectiveness
Transducers
Vibration
Title Distributed Electro-Mechanical Coupling Effects in a Dielectric Elastomer Membrane Array
URI https://link.springer.com/article/10.1007/s11340-022-00892-0
https://www.proquest.com/docview/2756146299
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoEB8RSFUnlgA0vNs_FYpS0VEBZaqUxRYjuoEk1RHwP_nrs8GkCAxJIMsR3pzrlHfPd9AFdWh0DAu1TULhxux6rLY-mYPEoi28wQ-B1qcA4e3dHEvps606IpbFVWu5dHkpmlrprdDItKETF5Qr9FNZM1aDiUu-Munpi9rf0l4pXc_trcxoCiaJX5eY2v7qiKMb8di2beZngA-0WYyHq5Xg9hR6dHsPcJPPAYpn3CvCW6Kq3YIGez4YGmTl4SPPMXG-q2fWE5QPGKzVIWsf4sJ76ZSZwTYeQ310sW6DkmzanG9y2j9xMYDwdjf8QLngQu0VmvuTJlYlhOpJW2TOEpt2NJN44xuU2UY5mxJ2U3SvBqC5UoT9gCNZcYwvOEJvyyU6ini1SfAUu0MA0VxbHpJra2OsJztCdxPctFOQvZBKOUVigLDHGisngNK_RjknCIEg4zCYedJlxv57zlCBp_jm6VSgiLr2kVEkQ9WnT0nE24KRVTPf59tfP_Db-AXWKTz_-wtKC-Xm70JcYc67gNjV4_eHii--3z_aANNd_129nG-wABgM9W
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9sEJGHk8YjSqkKNJ2K1M3yK6gSTVEfA_-euyRtoQIkliyxHem7xHcX330fIdeBiyTgTSxq56HDlGk6Soe-IzPJ_IKBP8QG57QXdV7Y0yAcVDQ52Auzdn5_N_W8AAsQIWUCb4WVkptki0GmjOV7SZQsd12UWyl3XeYwCCOqBpmf1_juhFaR5dphaOFj2vtkrwoO6X1pzQOyYfNDsvuFMvCIDFrIdIsiVdbQh1LDxkkt9u8i3DQZz7HH9pWWtMRTOsyppK1hKXcz1DBHQrw3shOa2hGkyrmF503kxzHptx_6Scep1BEcDS565hhfZ14QSmts4PPYRG6gI6Ugpc1MGPgq1ropM7gybjITc8bBXhkgF3OLrGUnpJaPc3tKaGa57xmplB9lzAYugGtjDesFESStXNeJt0BL6Io5HAUs3sSK8xgRFoCwKBAWbp3cLOe8l7wZf45uLIwgqm9oKpCYHvZx8Jd1crswzOr276ud_W_4Fdnu9NOu6D72ns_JDurJl_9YGqQ2m8ztBUQdM3VZvG6fusLKIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oJkYPxmdEUffgTTfQJ92jKRBfEA-YcGvafRgSKQTKwX_vTLelaNTESy_d3SYz7c5Md77vI-TaaSEJeBub2rnH3ES2WSI8m8U6du2cgd9DgHN_4N-_uo8jb7SG4s-73csjSYNpQJamNGvOpG5WwDfLwbZEKKQghmH_5CbZgkolP6gN_XC1F6MIi9mLXeZCclHAZn5e42toqvLNb0ekeeTp7ZO9ImWkd8bHB2RDpYdkd41I8IiMOsh_i9JVStKuUbZhfYWoXnQCDadLRN6-UUNWvKDjlMa0MzYiOGMBc2LIAidqTvtqAgV0quB58_jjmAx73WF4zwrNBCYgcGdM2kJbjhcrqRybB9JvOcJPEih0tfQcOwmEaMcari6XWgbc5eBFbfEg4Aq5zE5ILZ2m6pRQrbhtyThJbF-7ymnxwFOBgPUcH0pZLurEKq0ViYJPHGUt3qOKCRktHIGFo9zCUatOblZzZoZN48_RjdIJUfFlLSKkq4fdHaJondyWjqlu_77a2f-GX5Htl04ven4YPJ2THRSZNz9eGqSWzZfqAlKRLLnM37ZPNAfSag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Electro-Mechanical+Coupling+Effects+in+a+Dielectric+Elastomer+Membrane+Array&rft.jtitle=Experimental+mechanics&rft.au=Neu%2C+J.&rft.au=Croce%2C+S.&rft.au=Willian%2C+T.&rft.au=Hubertus%2C+J.&rft.date=2023-01-01&rft.issn=0014-4851&rft.eissn=1741-2765&rft.volume=63&rft.issue=1&rft.spage=79&rft.epage=95&rft_id=info:doi/10.1007%2Fs11340-022-00892-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11340_022_00892_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4851&client=summon