Distributed Electro-Mechanical Coupling Effects in a Dielectric Elastomer Membrane Array
Background Dielectric elastomer (DE) transducers permit to effectively develop large-deformation, energy-efficient, and compliant mechatronic devices. By arranging many DE elements in an array-like configuration, a soft actuator/sensor system capable of cooperative features can be obtained. When man...
Saved in:
Published in | Experimental mechanics Vol. 63; no. 1; pp. 79 - 95 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Dielectric elastomer (DE) transducers permit to effectively develop large-deformation, energy-efficient, and compliant mechatronic devices. By arranging many DE elements in an array-like configuration, a soft actuator/sensor system capable of cooperative features can be obtained. When many DE elements are densely packed onto a common elastic membrane, spatial coupling effects introduce electro-mechanical interactions among neighbors, which strongly affect the system actuation and sensing performance. To effectively design cooperative DE systems, those coupling effects must be systematically characterized and understood first.
Objective
As a first step towards the development of complex cooperative DE systems, in this work we present a systematic characterization of the spatial electro-mechanical interactions in a 1-by-3 array of silicone DEs. More specifically, we investigate how the force and capacitance characteristics of each DE in the array change when its neighbors are subject to different types of mechanical or electrical loads. Force and capacitance are chosen for this investigation, since those quantities are directly tied to the DE actuation and sensing behaviors, respectively.
Methods
An electro-mechanical characterization procedure is implemented through a novel experimental setup, which is specifically developed for testing soft DE arrays. The setup allows to investigate how the force and capacitance characteristics of each DE are affected by static deformations and/or electrical voltages applied to its nearby elements. Different combinations of electro-mechanical loads and DE neighbors are considered in an extensive experimental campaign.
Results
The conducted investigation shows the existence of strong electro-mechanical coupling effects among the different array elements. The interaction intensity depends on multiple parameters, such as the distance between active DEs or the amount of deformation/voltage applied to the neighbors, and provides essential information for the design of array actuators. In some cases, such coupling effects may lead to changes in force up to 9% compared to the reference configuration. A further coupling is also observed in the DE capacitive response, and opens up the possibility of implementing advanced and/or distributed self-sensing strategies in future applications.
Conclusion
By means of the conducted experiments, we clearly show that the actuation and sensing characteristics of each DE in the array are strongly influenced by the electro-mechanical loading state of its neighbors. The coupling effects may significantly affect the overall cooperative system performance, if not properly accounted for during the design. In future works, the obtained results will allow developing cooperative DE systems which are robust to, and possibly take advantage of, such spatial coupling effects. |
---|---|
AbstractList | Background
Dielectric elastomer (DE) transducers permit to effectively develop large-deformation, energy-efficient, and compliant mechatronic devices. By arranging many DE elements in an array-like configuration, a soft actuator/sensor system capable of cooperative features can be obtained. When many DE elements are densely packed onto a common elastic membrane, spatial coupling effects introduce electro-mechanical interactions among neighbors, which strongly affect the system actuation and sensing performance. To effectively design cooperative DE systems, those coupling effects must be systematically characterized and understood first.
Objective
As a first step towards the development of complex cooperative DE systems, in this work we present a systematic characterization of the spatial electro-mechanical interactions in a 1-by-3 array of silicone DEs. More specifically, we investigate how the force and capacitance characteristics of each DE in the array change when its neighbors are subject to different types of mechanical or electrical loads. Force and capacitance are chosen for this investigation, since those quantities are directly tied to the DE actuation and sensing behaviors, respectively.
Methods
An electro-mechanical characterization procedure is implemented through a novel experimental setup, which is specifically developed for testing soft DE arrays. The setup allows to investigate how the force and capacitance characteristics of each DE are affected by static deformations and/or electrical voltages applied to its nearby elements. Different combinations of electro-mechanical loads and DE neighbors are considered in an extensive experimental campaign.
Results
The conducted investigation shows the existence of strong electro-mechanical coupling effects among the different array elements. The interaction intensity depends on multiple parameters, such as the distance between active DEs or the amount of deformation/voltage applied to the neighbors, and provides essential information for the design of array actuators. In some cases, such coupling effects may lead to changes in force up to 9% compared to the reference configuration. A further coupling is also observed in the DE capacitive response, and opens up the possibility of implementing advanced and/or distributed self-sensing strategies in future applications.
Conclusion
By means of the conducted experiments, we clearly show that the actuation and sensing characteristics of each DE in the array are strongly influenced by the electro-mechanical loading state of its neighbors. The coupling effects may significantly affect the overall cooperative system performance, if not properly accounted for during the design. In future works, the obtained results will allow developing cooperative DE systems which are robust to, and possibly take advantage of, such spatial coupling effects. BackgroundDielectric elastomer (DE) transducers permit to effectively develop large-deformation, energy-efficient, and compliant mechatronic devices. By arranging many DE elements in an array-like configuration, a soft actuator/sensor system capable of cooperative features can be obtained. When many DE elements are densely packed onto a common elastic membrane, spatial coupling effects introduce electro-mechanical interactions among neighbors, which strongly affect the system actuation and sensing performance. To effectively design cooperative DE systems, those coupling effects must be systematically characterized and understood first.ObjectiveAs a first step towards the development of complex cooperative DE systems, in this work we present a systematic characterization of the spatial electro-mechanical interactions in a 1-by-3 array of silicone DEs. More specifically, we investigate how the force and capacitance characteristics of each DE in the array change when its neighbors are subject to different types of mechanical or electrical loads. Force and capacitance are chosen for this investigation, since those quantities are directly tied to the DE actuation and sensing behaviors, respectively.MethodsAn electro-mechanical characterization procedure is implemented through a novel experimental setup, which is specifically developed for testing soft DE arrays. The setup allows to investigate how the force and capacitance characteristics of each DE are affected by static deformations and/or electrical voltages applied to its nearby elements. Different combinations of electro-mechanical loads and DE neighbors are considered in an extensive experimental campaign.ResultsThe conducted investigation shows the existence of strong electro-mechanical coupling effects among the different array elements. The interaction intensity depends on multiple parameters, such as the distance between active DEs or the amount of deformation/voltage applied to the neighbors, and provides essential information for the design of array actuators. In some cases, such coupling effects may lead to changes in force up to 9% compared to the reference configuration. A further coupling is also observed in the DE capacitive response, and opens up the possibility of implementing advanced and/or distributed self-sensing strategies in future applications.ConclusionBy means of the conducted experiments, we clearly show that the actuation and sensing characteristics of each DE in the array are strongly influenced by the electro-mechanical loading state of its neighbors. The coupling effects may significantly affect the overall cooperative system performance, if not properly accounted for during the design. In future works, the obtained results will allow developing cooperative DE systems which are robust to, and possibly take advantage of, such spatial coupling effects. |
Author | Neu, J. Schultes, G. Seelecke, S. Croce, S. Rizzello, G. Hubertus, J. Willian, T. |
Author_xml | – sequence: 1 givenname: J. orcidid: 0000-0002-0719-9011 surname: Neu fullname: Neu, J. email: julian.neu@imsl.uni-saarland.de organization: Dept. of Systems Engineering, Dept. of Materials Science, Saarland University – sequence: 2 givenname: S. surname: Croce fullname: Croce, S. organization: Dept. of Systems Engineering, Dept. of Materials Science, Saarland University – sequence: 3 givenname: T. surname: Willian fullname: Willian, T. organization: Dept. of Systems Engineering, Dept. of Materials Science, Saarland University – sequence: 4 givenname: J. surname: Hubertus fullname: Hubertus, J. organization: Sensors and Thin Films Group, University of Applied Sciences of Saarland – sequence: 5 givenname: G. surname: Schultes fullname: Schultes, G. organization: Sensors and Thin Films Group, University of Applied Sciences of Saarland – sequence: 6 givenname: S. surname: Seelecke fullname: Seelecke, S. organization: Dept. of Systems Engineering, Dept. of Materials Science, Saarland University – sequence: 7 givenname: G. surname: Rizzello fullname: Rizzello, G. organization: Dept. of Systems Engineering, Dept. of Materials Science, Saarland University |
BookMark | eNp9kDtvAjEQhK2ISAGSP5DqpNSX-HEPu0RAHhIoDUU6y-dbE6PDR2xT8O_jcJEipaCZLXa-ndVM0Mj1DhC6J_iRYFw_BUJYgXNMaY4xF0mv0JjUBclpXZUjNMaYFHnBS3KDJiHscIJYTcfoY2FD9LY5RmizZQc6-j5fg_5UzmrVZfP-eOis22ZLY9IyZNZlKltYOFutTowKsd-Dz9awb7xykM28V6dbdG1UF-Dud07R5nm5mb_mq_eXt_lslWsqWMxbqg1hpYIWGBW8rTDTVdPUnJu2ZLThWtfKJC1Ea1ouCgENGCI4F4ALxqboYTh78P3XEUKUu_7oXUqUtC4rUlRUiOSig0v7PgQPRh683St_kgTLnwLlUKBMBcpzgRIniP-DtI0q2t5Fr2x3GWUDGlKO24L_--oC9Q1QRoep |
CitedBy_id | crossref_primary_10_3390_act12020046 crossref_primary_10_3390_act12040141 crossref_primary_10_1016_j_ijnonlinmec_2024_104855 |
Cites_doi | 10.1088/1361-665X/aa746d 10.5772/9311 10.1109/ISIE.2003.1267903 10.1109/ICRA.2017.7989501 10.1002/MARC.200900425 10.1016/j.eml.2018.02.004 10.1117/12.2612804 10.1016/J.DISPLA.2007.04.013 10.3390/mi5010066 10.1117/12.2218779 10.3389/fbioe.2014.00031 10.1109/TCST.2014.2338356 10.1088/0964-1726/25/3/035034 10.1109/JMEMS.2006.879378 10.1088/0964-1726/22/9/094016 10.1002/adfm.202001597 10.1016/j.sna.2020.112243 10.3390/app10072241 10.1088/1361-665X/ab8a01 10.1002/AELM.201700427 10.3390/act10100276 10.1088/1361-665X/aab7d8 10.3389/FROBT.2021.695918/BIBTEX 10.1016/j.mechatronics.2018.10.005 10.1007/s00339-012-7402-8 10.1117/12.847358 10.1016/J.SNA.2007.10.076 10.1109/WHC.2009.4810822 10.1016/S0924-4247(97)01657-9 10.1016/j.sna.2017.08.028 10.1016/j.eml.2015.12.008 10.1117/12.2612608 10.1021/ACSAMI.1C10686/SUPPL_FILE/AM1C10686_SI_003.PDF 10.1002/admt.201900128 10.1002/adma.201700880 10.1115/1.4039104 10.1007/s11012-015-0212-2 10.1631/jzus.A0820666 10.1007/978-4-431-54767-9_13 10.1109/TIE.2013.2245612 10.1109/ICMECH.2015.7083992 10.1109/TRANSDUCERS.2019.8808630 10.1115/SMASIS2021-67752 10.1117/12.2581718 10.1117/12.2582943 10.1117/12.475072 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s11340-022-00892-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1741-2765 |
EndPage | 95 |
ExternalDocumentID | 10_1007_s11340_022_00892_0 |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: SPP 2206 funderid: http://dx.doi.org/10.13039/501100001659 – fundername: Universität des Saarlandes (1036) |
GroupedDBID | -5B -5G -BR -EM -XX -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDEX ABDPE ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAGR AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 E.L EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IAO IEA IGS IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X J-C J0Z JBSCW JZLTJ KDC KOV LAS LLZTM M4V M4Y MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9P PF0 PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TN5 TSG TSK TSV TUC TUS U2A UCJ UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XSW YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c293t-d2cf135aede3298d603c6bb788fd532b8cc7af8cc49dfd8949ebef19889e0433 |
IEDL.DBID | U2A |
ISSN | 0014-4851 |
IngestDate | Fri Jul 25 10:57:39 EDT 2025 Tue Jul 01 04:20:00 EDT 2025 Thu Apr 24 23:04:56 EDT 2025 Fri Feb 21 02:43:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Dielectric Elastomer Actuators Self-Sensing Cooperative Actuators Actuator-Array Electro-Mechanical Coupling Soft Actuators Dielectric Elastomers |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-d2cf135aede3298d603c6bb788fd532b8cc7af8cc49dfd8949ebef19889e0433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0719-9011 |
OpenAccessLink | https://link.springer.com/10.1007/s11340-022-00892-0 |
PQID | 2756146299 |
PQPubID | 2044465 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2756146299 crossref_primary_10_1007_s11340_022_00892_0 crossref_citationtrail_10_1007_s11340_022_00892_0 springer_journals_10_1007_s11340_022_00892_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230100 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal Integrating Experimental Methods with the Mechanical Behavior of Materials and Structures |
PublicationTitle | Experimental mechanics |
PublicationTitleAbbrev | Exp Mech |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Berselli, Vassura, Parenti, Vertechy (CR36) 2010 Albukhari, Mescheder (CR14) 2021 Brochu, Pei (CR25) 2010; 31 Rizzello, Naso, York, Seelecke (CR48) 2015; 23 Wang, Zhu, Ye (CR9) 2009; 10 Follador, Cianchetti, Mazzolai (CR38) 2015; 50 Hodgins, York, Seelecke (CR40) 2013 Marette, Poulin, Besse (CR34) 2017; 29 Matysek, Lotz, Flittner (CR33) 2010; 7642 CR18 Kadooka, Imamura, Taya (CR23) 2016; 9798 CR17 CR15 Jung, Kim, Choi (CR31) 2008; 143 Hubertus, Fasolt, Linnebach (CR29) 2020 Chiba, Asaka, Okuzaki (CR1) 2014 Luo, Li, Yu (CR10) 2020; 10 Hau, Bruch, Rizzello (CR39) 2018 Cao, Gao, Conn (CR4) 2019; 4 Matysek, Lotz, Winterstein, Schlaak (CR19) 2009; 2009 Fukuta, Chapuis, Mita, Fujita (CR12) 2006; 15 Croce, Neu, Hubertus (CR46) 2022; 12042 Benali-Khoudja, Hafez, Kheddar (CR13) 2007; 28 Fasolt, Hodgins, Rizzello, Seelecke (CR28) 2017; 265 Rosset, Shea (CR27) 2013; 110 Pyo, Choi, Kim (CR22) 2018 Loew, Rizzello, Seelecke (CR37) 2018; 56 CR5 Lu, Shi, Shi, Wang (CR7) 2016; 6 Hill, Rizzello, Seelecke (CR3) 2017 CR26 Linnebach, Rizzello, Seelecke, Seelecke (CR41) 2020 CR45 Laurent, Delettre, Zeggari (CR11) 2014; 5 CR44 Cao, Qin, Liu (CR8) 2018; 21 CR21 Pelrine, Kornbluh, Joseph (CR32) 1998; 64 CR43 Cunha, JP, Costa RR, Hsu L (CR16) 2003; II Rizzello, Naso, York, Seelecke (CR2) 2016 Aksoy, Shea (CR20) 2020 Frediani, Mazzei, de Rossi, Carpi (CR35) 2014; 2 Duduta, Clarke, Wood (CR6) 2017 Hubertus, Neu, Croce (CR30) 2021; 13 Neu, Hubertus, Croce (CR42) 2021; 8 Neu, Croce, Hubertus (CR24) 2022; 12042 Hau, York, Rizzello, Seelecke (CR47) 2018 M Hodgins (892_CR40) 2013 A Albukhari (892_CR14) 2021 K Kadooka (892_CR23) 2016; 9798 P Loew (892_CR37) 2018; 56 S Hau (892_CR47) 2018 B Fasolt (892_CR28) 2017; 265 A Marette (892_CR34) 2017; 29 M Benali-Khoudja (892_CR13) 2007; 28 892_CR26 S Croce (892_CR46) 2022; 12042 G Frediani (892_CR35) 2014; 2 G Berselli (892_CR36) 2010 M Matysek (892_CR33) 2010; 7642 K Jung (892_CR31) 2008; 143 G Rizzello (892_CR2) 2016 S Pyo (892_CR22) 2018 M Follador (892_CR38) 2015; 50 cr-split#-892_CR18.2 T Lu (892_CR7) 2016; 6 J Neu (892_CR24) 2022; 12042 cr-split#-892_CR18.1 C Cao (892_CR4) 2019; 4 892_CR21 VSD Cunha (892_CR16) 2003; II 892_CR15 892_CR17 892_CR5 S Rosset (892_CR27) 2013; 110 S Hau (892_CR39) 2018 Y Fukuta (892_CR12) 2006; 15 J Neu (892_CR42) 2021; 8 HM Wang (892_CR9) 2009; 10 G Rizzello (892_CR48) 2015; 23 P Brochu (892_CR25) 2010; 31 B Aksoy (892_CR20) 2020 M Duduta (892_CR6) 2017 J Cao (892_CR8) 2018; 21 J Hubertus (892_CR29) 2020 P Linnebach (892_CR41) 2020 GJ Laurent (892_CR11) 2014; 5 RE Pelrine (892_CR32) 1998; 64 892_CR44 892_CR43 892_CR45 M Hill (892_CR3) 2017 M Matysek (892_CR19) 2009; 2009 S Chiba (892_CR1) 2014 B Luo (892_CR10) 2020; 10 J Hubertus (892_CR30) 2021; 13 |
References_xml | – ident: CR45 – year: 2017 ident: CR3 article-title: Development and experimental characterization of a pneumatic valve actuated by a dielectric elastomer membrane publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aa746d – year: 2010 ident: CR36 article-title: On Designing Compliant Actuators Based On Dielectric Elastomers for Robotic Applications publication-title: Robot Manipulators New Achievements doi: 10.5772/9311 – volume: II start-page: 690 year: 2003 end-page: 695 ident: CR16 article-title: Cooperative actuators for fault tolerant model-reference sliding mode control publication-title: IEEE International Symposium on Industrial Electronics doi: 10.1109/ISIE.2003.1267903 – ident: CR18 – ident: CR43 – year: 2017 ident: CR6 article-title: A high speed soft robot based on dielectric elastomer actuators publication-title: Proceedings - IEEE International Conference on Robotics and Automation doi: 10.1109/ICRA.2017.7989501 – volume: 31 start-page: 10 year: 2010 end-page: 36 ident: CR25 article-title: Advances in dielectric elastomers for actuators and artificial muscles publication-title: Macromol Rapid Commun doi: 10.1002/MARC.200900425 – volume: 21 start-page: 9 year: 2018 end-page: 16 ident: CR8 article-title: Untethered soft robot capable of stable locomotion using soft electrostatic actuators publication-title: Extreme Mech Lett doi: 10.1016/j.eml.2018.02.004 – volume: 12042 start-page: 160 year: 2022 end-page: 165 ident: CR24 article-title: Experimental characterization of the mechanical coupling in a DE-array publication-title: Proc SPIE doi: 10.1117/12.2612804 – volume: 28 start-page: 133 year: 2007 end-page: 144 ident: CR13 article-title: VITAL: An electromagnetic integrated tactile display publication-title: Displays doi: 10.1016/J.DISPLA.2007.04.013 – start-page: 183 year: 2014 end-page: 195 ident: CR1 article-title: Dielectric Elastomers publication-title: Soft Actuators: Materials, Modeling, Applications, and Future Perspectives – volume: 5 start-page: 66 year: 2014 end-page: 80 ident: CR11 article-title: Micropositioning and fast transport using a contactless micro-conveyor publication-title: Micromachines (Basel) doi: 10.3390/mi5010066 – volume: 9798 start-page: 97982H year: 2016 ident: CR23 article-title: Tactile sensor integrated dielectric elastomer actuator for simultaneous actuation and sensing publication-title: Proc SPIE doi: 10.1117/12.2218779 – volume: 2 start-page: 1 year: 2014 end-page: 7 ident: CR35 article-title: Wearable wireless tactile display for virtual interactions with soft bodies publication-title: Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2014.00031 – volume: 23 start-page: 632 year: 2015 end-page: 643 ident: CR48 article-title: Modeling, identification, and control of a dielectric electro-Active polymer positioning system publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2014.2338356 – year: 2016 ident: CR2 article-title: Closed loop control of dielectric elastomer actuators based on self-sensing displacement feedback publication-title: Smart Mater Struct doi: 10.1088/0964-1726/25/3/035034 – volume: 15 start-page: 912 year: 2006 end-page: 926 ident: CR12 article-title: Design, fabrication, and control of MEMS-based actuator arrays for air-flow distributed micromanipulation publication-title: J Microelectromech Syst doi: 10.1109/JMEMS.2006.879378 – year: 2013 ident: CR40 article-title: Experimental comparison of bias elements for out-of-plane DEAP actuator system publication-title: Smart Mater Struct doi: 10.1088/0964-1726/22/9/094016 – year: 2020 ident: CR20 article-title: Reconfigurable and Latchable Shape-Morphing Dielectric Elastomers Based on Local Stiffness Modulation publication-title: Adv Func Mater doi: 10.1002/adfm.202001597 – year: 2020 ident: CR29 article-title: Electromechanical evaluation of sub-micron NiCr-carbon thin films as highly conductive and compliant electrodes for dielectric elastomers publication-title: Sens Actuators, A doi: 10.1016/j.sna.2020.112243 – volume: 10 start-page: 1 year: 2020 end-page: 13 ident: CR10 article-title: A jumping robot driven by a dielectric elastomer actuator publication-title: Applied Sciences (Switzerland) doi: 10.3390/app10072241 – ident: CR21 – year: 2020 ident: CR41 article-title: Design and validation of a dielectric elastomer membrane actuator driven pneumatic pump publication-title: Smart Mater Struct doi: 10.1088/1361-665X/ab8a01 – year: 2018 ident: CR22 article-title: Flexible, Transparent, Sensitive, and Crosstalk-Free Capacitive Tactile Sensor Array Based on Graphene Electrodes and Air Dielectric publication-title: Advanced Electronic Materials doi: 10.1002/AELM.201700427 – ident: CR44 – year: 2021 ident: CR14 article-title: Investigation of the dynamics of a 2-DoF actuation unit cell for a cooperative electrostatic actuation system publication-title: Actuators doi: 10.3390/act10100276 – year: 2018 ident: CR39 article-title: Silicone based dielectric elastomer strip actuators coupled with nonlinear biasing elements for large actuation strains publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aab7d8 – volume: 8 start-page: 171 year: 2021 ident: CR42 article-title: Fully Polymeric Domes as High-Stroke Biasing System for Soft Dielectric Elastomer Actuators publication-title: Frontiers in Robotics and AI doi: 10.3389/FROBT.2021.695918/BIBTEX – volume: 56 start-page: 48 year: 2018 end-page: 57 ident: CR37 article-title: A novel biasing mechanism for circular out-of-plane dielectric actuators based on permanent magnets publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.10.005 – volume: 110 start-page: 281 year: 2013 end-page: 307 ident: CR27 article-title: Flexible and stretchable electrodes for dielectric elastomer actuators publication-title: Appl Phys A Mater Sci Process doi: 10.1007/s00339-012-7402-8 – ident: CR15 – volume: 7642 start-page: 76420D year: 2010 ident: CR33 article-title: Schlaak HF (2010) Vibrotactile display for mobile applications based on dielectric elastomer stack actuators publication-title: Electroactive Polymer Actuators and Devices (EAPAD) doi: 10.1117/12.847358 – ident: CR17 – volume: 143 start-page: 343 year: 2008 end-page: 351 ident: CR31 article-title: A self-sensing dielectric elastomer actuator publication-title: Sens Actuators, A doi: 10.1016/J.SNA.2007.10.076 – volume: 2009 start-page: 290 year: 2009 end-page: 295 ident: CR19 article-title: Dielectric elastomer actuators for tactile displays. Proceedings - 3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems publication-title: World Haptics doi: 10.1109/WHC.2009.4810822 – volume: 64 start-page: 77 year: 1998 end-page: 85 ident: CR32 article-title: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation publication-title: Sens Actuators, A doi: 10.1016/S0924-4247(97)01657-9 – volume: 265 start-page: 10 year: 2017 end-page: 19 ident: CR28 article-title: Effect of screen printing parameters on sensor and actuator performance of dielectric elastomer (DE) membranes publication-title: Sens Actuators, A doi: 10.1016/j.sna.2017.08.028 – volume: 6 start-page: 75 year: 2016 end-page: 81 ident: CR7 article-title: Bioinspired bicipital muscle with fiber-constrained dielectric elastomer actuator publication-title: Extreme Mech Lett doi: 10.1016/j.eml.2015.12.008 – volume: 12042 start-page: 93 year: 2022 end-page: 101 ident: CR46 article-title: Finite element modeling and parameter study of a fully-polymeric array of coupled dielectric elastomers publication-title: Proc SPIE doi: 10.1117/12.2612608 – volume: 13 start-page: 39894 year: 2021 end-page: 39904 ident: CR30 article-title: Nanoscale Nickel-Based Thin Films as Highly Conductive Electrodes for Dielectric Elastomer Applications with Extremely High Stretchability up to 200% publication-title: ACS Appl Mater Interfaces doi: 10.1021/ACSAMI.1C10686/SUPPL_FILE/AM1C10686_SI_003.PDF – volume: 4 start-page: 1 year: 2019 end-page: 6 ident: CR4 article-title: A Magnetically Coupled Dielectric Elastomer Pump for Soft Robotics publication-title: Advanced Materials Technologies doi: 10.1002/admt.201900128 – ident: CR5 – volume: 29 start-page: 1 year: 2017 end-page: 6 ident: CR34 article-title: Flexible Zinc-Tin Oxide Thin Film Transistors Operating at 1 kV for Integrated Switching of Dielectric Elastomer Actuators Arrays publication-title: Adv Mater doi: 10.1002/adma.201700880 – year: 2018 ident: CR47 article-title: Performance Prediction and Scaling Laws of Circular Dielectric Elastomer Membrane Actuators publication-title: Journal of Mechanical Design, Transactions of the ASME doi: 10.1115/1.4039104 – volume: 50 start-page: 2741 year: 2015 end-page: 2749 ident: CR38 article-title: Design of a compact bistable mechanism based on dielectric elastomer actuators publication-title: Meccanica doi: 10.1007/s11012-015-0212-2 – volume: 10 start-page: 1296 year: 2009 end-page: 1304 ident: CR9 article-title: Simulation, experimental evaluation and performance improvement of a cone dielectric elastomer actuator publication-title: J Zhejiang Univ, Sci, A doi: 10.1631/jzus.A0820666 – ident: CR26 – volume: II start-page: 690 year: 2003 ident: 892_CR16 publication-title: IEEE International Symposium on Industrial Electronics doi: 10.1109/ISIE.2003.1267903 – year: 2018 ident: 892_CR39 publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aab7d8 – volume: 56 start-page: 48 year: 2018 ident: 892_CR37 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2018.10.005 – start-page: 183 volume-title: Soft Actuators: Materials, Modeling, Applications, and Future Perspectives year: 2014 ident: 892_CR1 doi: 10.1007/978-4-431-54767-9_13 – volume: 5 start-page: 66 year: 2014 ident: 892_CR11 publication-title: Micromachines (Basel) doi: 10.3390/mi5010066 – year: 2020 ident: 892_CR20 publication-title: Adv Func Mater doi: 10.1002/adfm.202001597 – volume: 265 start-page: 10 year: 2017 ident: 892_CR28 publication-title: Sens Actuators, A doi: 10.1016/j.sna.2017.08.028 – ident: 892_CR21 – year: 2021 ident: 892_CR14 publication-title: Actuators doi: 10.3390/act10100276 – ident: 892_CR15 doi: 10.1109/TIE.2013.2245612 – volume: 29 start-page: 1 year: 2017 ident: 892_CR34 publication-title: Adv Mater doi: 10.1002/adma.201700880 – volume: 4 start-page: 1 year: 2019 ident: 892_CR4 publication-title: Advanced Materials Technologies doi: 10.1002/admt.201900128 – ident: 892_CR45 doi: 10.1109/ICMECH.2015.7083992 – volume: 2009 start-page: 290 year: 2009 ident: 892_CR19 publication-title: World Haptics doi: 10.1109/WHC.2009.4810822 – volume: 13 start-page: 39894 year: 2021 ident: 892_CR30 publication-title: ACS Appl Mater Interfaces doi: 10.1021/ACSAMI.1C10686/SUPPL_FILE/AM1C10686_SI_003.PDF – volume: 10 start-page: 1 year: 2020 ident: 892_CR10 publication-title: Applied Sciences (Switzerland) doi: 10.3390/app10072241 – volume: 8 start-page: 171 year: 2021 ident: 892_CR42 publication-title: Frontiers in Robotics and AI doi: 10.3389/FROBT.2021.695918/BIBTEX – year: 2010 ident: 892_CR36 publication-title: Robot Manipulators New Achievements doi: 10.5772/9311 – volume: 143 start-page: 343 year: 2008 ident: 892_CR31 publication-title: Sens Actuators, A doi: 10.1016/J.SNA.2007.10.076 – ident: 892_CR17 doi: 10.1109/TRANSDUCERS.2019.8808630 – volume: 110 start-page: 281 year: 2013 ident: 892_CR27 publication-title: Appl Phys A Mater Sci Process doi: 10.1007/s00339-012-7402-8 – year: 2017 ident: 892_CR3 publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aa746d – ident: 892_CR44 doi: 10.1115/SMASIS2021-67752 – volume: 28 start-page: 133 year: 2007 ident: 892_CR13 publication-title: Displays doi: 10.1016/J.DISPLA.2007.04.013 – year: 2020 ident: 892_CR41 publication-title: Smart Mater Struct doi: 10.1088/1361-665X/ab8a01 – volume: 21 start-page: 9 year: 2018 ident: 892_CR8 publication-title: Extreme Mech Lett doi: 10.1016/j.eml.2018.02.004 – volume: 12042 start-page: 93 year: 2022 ident: 892_CR46 publication-title: Proc SPIE doi: 10.1117/12.2612608 – year: 2018 ident: 892_CR47 publication-title: Journal of Mechanical Design, Transactions of the ASME doi: 10.1115/1.4039104 – year: 2016 ident: 892_CR2 publication-title: Smart Mater Struct doi: 10.1088/0964-1726/25/3/035034 – year: 2020 ident: 892_CR29 publication-title: Sens Actuators, A doi: 10.1016/j.sna.2020.112243 – volume: 6 start-page: 75 year: 2016 ident: 892_CR7 publication-title: Extreme Mech Lett doi: 10.1016/j.eml.2015.12.008 – volume: 50 start-page: 2741 year: 2015 ident: 892_CR38 publication-title: Meccanica doi: 10.1007/s11012-015-0212-2 – ident: #cr-split#-892_CR18.2 – volume: 10 start-page: 1296 year: 2009 ident: 892_CR9 publication-title: J Zhejiang Univ, Sci, A doi: 10.1631/jzus.A0820666 – year: 2018 ident: 892_CR22 publication-title: Advanced Electronic Materials doi: 10.1002/AELM.201700427 – year: 2013 ident: 892_CR40 publication-title: Smart Mater Struct doi: 10.1088/0964-1726/22/9/094016 – volume: 7642 start-page: 76420D year: 2010 ident: 892_CR33 publication-title: Electroactive Polymer Actuators and Devices (EAPAD) doi: 10.1117/12.847358 – ident: 892_CR5 doi: 10.1117/12.2581718 – year: 2017 ident: 892_CR6 publication-title: Proceedings - IEEE International Conference on Robotics and Automation doi: 10.1109/ICRA.2017.7989501 – volume: 12042 start-page: 160 year: 2022 ident: 892_CR24 publication-title: Proc SPIE doi: 10.1117/12.2612804 – volume: 2 start-page: 1 year: 2014 ident: 892_CR35 publication-title: Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2014.00031 – ident: 892_CR43 doi: 10.1117/12.2582943 – ident: 892_CR26 doi: 10.1117/12.475072 – ident: #cr-split#-892_CR18.1 – volume: 31 start-page: 10 year: 2010 ident: 892_CR25 publication-title: Macromol Rapid Commun doi: 10.1002/MARC.200900425 – volume: 23 start-page: 632 year: 2015 ident: 892_CR48 publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2014.2338356 – volume: 9798 start-page: 97982H year: 2016 ident: 892_CR23 publication-title: Proc SPIE doi: 10.1117/12.2218779 – volume: 64 start-page: 77 year: 1998 ident: 892_CR32 publication-title: Sens Actuators, A doi: 10.1016/S0924-4247(97)01657-9 – volume: 15 start-page: 912 year: 2006 ident: 892_CR12 publication-title: J Microelectromech Syst doi: 10.1109/JMEMS.2006.879378 |
SSID | ssj0007372 |
Score | 2.3654072 |
Snippet | Background
Dielectric elastomer (DE) transducers permit to effectively develop large-deformation, energy-efficient, and compliant mechatronic devices. By... BackgroundDielectric elastomer (DE) transducers permit to effectively develop large-deformation, energy-efficient, and compliant mechatronic devices. By... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 79 |
SubjectTerms | Actuation Actuators Arrays Biomedical Engineering and Bioengineering Capacitance Characterization and Evaluation of Materials Configurations Control Coupling Deformation effects Dynamical Systems Elastomers Electrical loads Engineering Investigations Lasers Mechanical properties Membranes Modulus of elasticity Optical Devices Optics Photonics Research Paper Solid Mechanics System effectiveness Transducers Vibration |
Title | Distributed Electro-Mechanical Coupling Effects in a Dielectric Elastomer Membrane Array |
URI | https://link.springer.com/article/10.1007/s11340-022-00892-0 https://www.proquest.com/docview/2756146299 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoEB8RSFUnlgA0vNs_FYpS0VEBZaqUxRYjuoEk1RHwP_nrs8GkCAxJIMsR3pzrlHfPd9AFdWh0DAu1TULhxux6rLY-mYPEoi28wQ-B1qcA4e3dHEvps606IpbFVWu5dHkpmlrprdDItKETF5Qr9FNZM1aDiUu-Munpi9rf0l4pXc_trcxoCiaJX5eY2v7qiKMb8di2beZngA-0WYyHq5Xg9hR6dHsPcJPPAYpn3CvCW6Kq3YIGez4YGmTl4SPPMXG-q2fWE5QPGKzVIWsf4sJ76ZSZwTYeQ310sW6DkmzanG9y2j9xMYDwdjf8QLngQu0VmvuTJlYlhOpJW2TOEpt2NJN44xuU2UY5mxJ2U3SvBqC5UoT9gCNZcYwvOEJvyyU6ini1SfAUu0MA0VxbHpJra2OsJztCdxPctFOQvZBKOUVigLDHGisngNK_RjknCIEg4zCYedJlxv57zlCBp_jm6VSgiLr2kVEkQ9WnT0nE24KRVTPf59tfP_Db-AXWKTz_-wtKC-Xm70JcYc67gNjV4_eHii--3z_aANNd_129nG-wABgM9W |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9sEJGHk8YjSqkKNJ2K1M3yK6gSTVEfA_-euyRtoQIkliyxHem7xHcX330fIdeBiyTgTSxq56HDlGk6Soe-IzPJ_IKBP8QG57QXdV7Y0yAcVDQ52Auzdn5_N_W8AAsQIWUCb4WVkptki0GmjOV7SZQsd12UWyl3XeYwCCOqBpmf1_juhFaR5dphaOFj2vtkrwoO6X1pzQOyYfNDsvuFMvCIDFrIdIsiVdbQh1LDxkkt9u8i3DQZz7HH9pWWtMRTOsyppK1hKXcz1DBHQrw3shOa2hGkyrmF503kxzHptx_6Scep1BEcDS565hhfZ14QSmts4PPYRG6gI6Ugpc1MGPgq1ropM7gybjITc8bBXhkgF3OLrGUnpJaPc3tKaGa57xmplB9lzAYugGtjDesFESStXNeJt0BL6Io5HAUs3sSK8xgRFoCwKBAWbp3cLOe8l7wZf45uLIwgqm9oKpCYHvZx8Jd1crswzOr276ud_W_4Fdnu9NOu6D72ns_JDurJl_9YGqQ2m8ztBUQdM3VZvG6fusLKIw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oJkYPxmdEUffgTTfQJ92jKRBfEA-YcGvafRgSKQTKwX_vTLelaNTESy_d3SYz7c5Md77vI-TaaSEJeBub2rnH3ES2WSI8m8U6du2cgd9DgHN_4N-_uo8jb7SG4s-73csjSYNpQJamNGvOpG5WwDfLwbZEKKQghmH_5CbZgkolP6gN_XC1F6MIi9mLXeZCclHAZn5e42toqvLNb0ekeeTp7ZO9ImWkd8bHB2RDpYdkd41I8IiMOsh_i9JVStKuUbZhfYWoXnQCDadLRN6-UUNWvKDjlMa0MzYiOGMBc2LIAidqTvtqAgV0quB58_jjmAx73WF4zwrNBCYgcGdM2kJbjhcrqRybB9JvOcJPEih0tfQcOwmEaMcari6XWgbc5eBFbfEg4Aq5zE5ILZ2m6pRQrbhtyThJbF-7ymnxwFOBgPUcH0pZLurEKq0ViYJPHGUt3qOKCRktHIGFo9zCUatOblZzZoZN48_RjdIJUfFlLSKkq4fdHaJondyWjqlu_77a2f-GX5Htl04ven4YPJ2THRSZNz9eGqSWzZfqAlKRLLnM37ZPNAfSag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Electro-Mechanical+Coupling+Effects+in+a+Dielectric+Elastomer+Membrane+Array&rft.jtitle=Experimental+mechanics&rft.au=Neu%2C+J.&rft.au=Croce%2C+S.&rft.au=Willian%2C+T.&rft.au=Hubertus%2C+J.&rft.date=2023-01-01&rft.issn=0014-4851&rft.eissn=1741-2765&rft.volume=63&rft.issue=1&rft.spage=79&rft.epage=95&rft_id=info:doi/10.1007%2Fs11340-022-00892-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11340_022_00892_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4851&client=summon |