Establishing a predictive model for aspirin resistance in elderly Chinese patients with chronic cardiovascular disease

Background Resistance to anti-platelet therapy is detrimental to patients. Our aim was to establish a predictive model for aspirin resistance to identify high-risk patients and to propose appropriate intervention. Methods Elderly patients (n = 1130) with stable chronic coronary heart disease who wer...

Full description

Saved in:
Bibliographic Details
Published inJournal of geriatric cardiology : JGC Vol. 13; no. 5; pp. 458 - 464
Main Authors Cao, Jian, Hao, Wei-Jun, Gao, Ling-Gen, Chen, Tian-Meng, Liu, Lin, Sun, Yu-Fa, Hu, Guo-Liang, Hu, Yi-Xin, Fan, Li
Format Journal Article
LanguageEnglish
Published China Science Press 01.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background Resistance to anti-platelet therapy is detrimental to patients. Our aim was to establish a predictive model for aspirin resistance to identify high-risk patients and to propose appropriate intervention. Methods Elderly patients (n = 1130) with stable chronic coronary heart disease who were taking aspirin (75 mg) for 〉 2 months were included. Details of their basic characteristics, laboratory test results, and medications were collected. Logistic regression analysis was performed to establish a predictive model for aspirin resistance. Risk score was finally established according to coefficient B and type of variables in logistic regression. The Hosmer-Lemeshow (HL) test and receiver operating characteristic curves were performed to respectively test the calibration and discrimination of the model. Results Seven risk factors were included in our risk score. They were serum creatinine (〉 110 μmol/L, score of 1); fasting blood glucose (〉 7.0 mmol/L, score of 1); hyperlipidemia (score of 1); number of coronary arteries (2 branches, score of 2; 〉 3 branches, score of 4); body mass index (20-25 kg/m2, score of 2; 〉 25 kg/m2, score of 4); percutaneous coronary intervention (score of 2); and smoking (score of 3). The HL test showed P ≥ 0.05 and area under the receiver operating characteristic curve ≥ 0.70. Conclusions We explored and quantified the risk factors for aspirin resistance. Our predictive model showed good calibration and discriminative power and therefore a good foundation for the further study of patients undergoing anti-platelet therapy.
Bibliography:Aspirin resistance; Cardiovascular disease; Predictive model; Risk score
11-5329/R
Background Resistance to anti-platelet therapy is detrimental to patients. Our aim was to establish a predictive model for aspirin resistance to identify high-risk patients and to propose appropriate intervention. Methods Elderly patients (n = 1130) with stable chronic coronary heart disease who were taking aspirin (75 mg) for 〉 2 months were included. Details of their basic characteristics, laboratory test results, and medications were collected. Logistic regression analysis was performed to establish a predictive model for aspirin resistance. Risk score was finally established according to coefficient B and type of variables in logistic regression. The Hosmer-Lemeshow (HL) test and receiver operating characteristic curves were performed to respectively test the calibration and discrimination of the model. Results Seven risk factors were included in our risk score. They were serum creatinine (〉 110 μmol/L, score of 1); fasting blood glucose (〉 7.0 mmol/L, score of 1); hyperlipidemia (score of 1); number of coronary arteries (2 branches, score of 2; 〉 3 branches, score of 4); body mass index (20-25 kg/m2, score of 2; 〉 25 kg/m2, score of 4); percutaneous coronary intervention (score of 2); and smoking (score of 3). The HL test showed P ≥ 0.05 and area under the receiver operating characteristic curve ≥ 0.70. Conclusions We explored and quantified the risk factors for aspirin resistance. Our predictive model showed good calibration and discriminative power and therefore a good foundation for the further study of patients undergoing anti-platelet therapy.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The first two authors contributed equally to this manuscript.
ISSN:1671-5411
DOI:10.11909/j.issn.1671-5411.2016.05.003