Human Activity Classification Based on Micro-Doppler Signatures Separation
Human activity classification based on micro-Doppler (m-D) signatures finds applications in surveillance, search and rescue operations, and healthcare. In this article, we propose a new approach for human activity classification. This approach deals with the situations of reduced limb movements that...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0196-2892 1558-0644 |
DOI | 10.1109/TGRS.2021.3105124 |
Cover
Loading…
Abstract | Human activity classification based on micro-Doppler (m-D) signatures finds applications in surveillance, search and rescue operations, and healthcare. In this article, we propose a new approach for human activity classification. This approach deals with the situations of reduced limb movements that could be due to the presence of injury or an individual carrying objects. It applies a preprocessing step to separate human m-D signals of the limbs from the Doppler signal corresponding to the torso. The separated m-D signal is input to a two-layer convolutional principal component analysis network (CPCAN) for feature extraction and motion classification. The CPCAN comprises a simple network architecture for efficient training and implementation, and it automatically learns the highly discriminative features. Experiments involving multiple human subjects performing different activities show a high classification accuracy associated with small arm motions. |
---|---|
AbstractList | Human activity classification based on micro-Doppler (m-D) signatures finds applications in surveillance, search and rescue operations, and healthcare. In this article, we propose a new approach for human activity classification. This approach deals with the situations of reduced limb movements that could be due to the presence of injury or an individual carrying objects. It applies a preprocessing step to separate human m-D signals of the limbs from the Doppler signal corresponding to the torso. The separated m-D signal is input to a two-layer convolutional principal component analysis network (CPCAN) for feature extraction and motion classification. The CPCAN comprises a simple network architecture for efficient training and implementation, and it automatically learns the highly discriminative features. Experiments involving multiple human subjects performing different activities show a high classification accuracy associated with small arm motions. |
Author | Amin, Moeness G. Qiao, Xingshuai Shan, Tao Tao, Ran Zeng, Zhengxin |
Author_xml | – sequence: 1 givenname: Xingshuai orcidid: 0000-0001-7681-3049 surname: Qiao fullname: Qiao, Xingshuai organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Moeness G. orcidid: 0000-0002-0926-4120 surname: Amin fullname: Amin, Moeness G. organization: Center for Advanced Communications (CAC), Villanova University, Villanova, PA, USA – sequence: 3 givenname: Tao orcidid: 0000-0002-5351-2312 surname: Shan fullname: Shan, Tao email: shantao@bit.edu.cn organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Zhengxin orcidid: 0000-0003-4831-0094 surname: Zeng fullname: Zeng, Zhengxin organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Ran orcidid: 0000-0002-5243-7189 surname: Tao fullname: Tao, Ran organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China |
BookMark | eNp9UE1PwjAYbgwmAvoDjJclnod9u3Zdj4gKGoyJ4LkpXWdKYJttZ8K_t3zEgwdP73t4vgeoVze1Qega8AgAi7vl9H0xIpjAKAPMgNAz1AfGihTnlPZQH4PIU1IIcoEG3q8xBsqA99HLrNuqOhnrYL9t2CWTjfLeVlarYJs6uVfelEl8Xq12TfrQtO3GuGRhP2sVOmd8sjCtcgfwJTqv1Mabq9Mdoo-nx-Vkls7fps-T8TzVRGQh1Sanlc4JLQuqQQDmoqBGKYI101qVMSPXVJUrmmlSsJIVlWI8w5QWWvMVz4bo9qjbuuarMz7IddO5OlpKEmU5y2P9iIIjKub23plKts5uldtJwHI_mdxPJveTydNkkcP_cLQNh27BKbv5l3lzZFpjzK-TYASEENkPE2p7BA |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_JIOT_2023_3301519 crossref_primary_10_1016_j_gecco_2021_e01947 crossref_primary_10_1109_TGRS_2022_3230977 crossref_primary_10_1109_TGRS_2023_3276023 crossref_primary_10_1109_TAES_2022_3179679 crossref_primary_10_1007_s11042_023_17238_0 crossref_primary_10_1109_JIOT_2024_3419567 crossref_primary_10_1109_JIOT_2023_3321056 crossref_primary_10_1109_TMTT_2024_3441591 crossref_primary_10_3390_rs13183791 crossref_primary_10_1109_TRS_2025_3539289 crossref_primary_10_1109_TAES_2024_3400763 |
Cites_doi | 10.1109/CVPR.2005.177 10.1117/12.2225106 10.1049/iet-rsn.2015.0118 10.1117/12.669003 10.1109/TIP.2015.2475625 10.1109/MSP.2012.2205597 10.1109/ICSENS.2017.8234179 10.1109/TIP.2010.2103949 10.1049/iet-rsn.2015.0144 10.1109/ICONIP.2002.1202854 10.1109/TSP.2009.2028095 10.1049/cp.2017.0381 10.3390/s17122769 10.1109/72.991427 10.1201/9781315155340 10.1109/JSEN.2018.2872894 10.1109/TBME.2019.2893528 10.1016/j.chemolab.2017.01.018 10.1049/iet-rsn.2015.0580 10.1109/LGRS.2017.2771405 10.1049/iet-rsn.2016.0055 10.1109/ISSPA.2005.1581019 10.1049/iet-rsn.2015.0493 10.1109/ITW.2012.6404738 10.1109/MSP.2018.2890128 10.1109/LGRS.2018.2806940 10.1109/JERM.2018.2827099 10.1109/IPSN.2018.00049 10.1049/iet-rsn.2014.0360 10.1049/PBRA034E 10.1109/LGRS.2015.2491329 10.1109/LGRS.2015.2439393 10.1016/j.sigpro.2010.08.013 10.1016/j.jmva.2007.06.007 10.1109/TAES.2014.130082 10.1109/TGRS.2019.2958178 10.1109/JSEN.2019.2937989 10.1109/TAES.2006.1603402 10.1109/TGRS.2019.2929096 10.1109/TSP.2008.924797 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2021.3105124 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 14 |
ExternalDocumentID | 10_1109_TGRS_2021_3105124 9521999 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61771046; 61421001 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c293t-ce64fc624d84c19107984eaa20c5ccad8927c4adb43c285d58fa5730448cc7b73 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Tue Aug 26 14:40:24 EDT 2025 Tue Jul 01 01:34:30 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 Wed Aug 27 03:00:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-ce64fc624d84c19107984eaa20c5ccad8927c4adb43c285d58fa5730448cc7b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0926-4120 0000-0002-5243-7189 0000-0003-4831-0094 0000-0002-5351-2312 0000-0001-7681-3049 |
PQID | 2624756124 |
PQPubID | 85465 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TGRS_2021_3105124 proquest_journals_2624756124 crossref_citationtrail_10_1109_TGRS_2021_3105124 ieee_primary_9521999 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref32 doi: 10.1109/CVPR.2005.177 – ident: ref30 doi: 10.1117/12.2225106 – ident: ref3 doi: 10.1049/iet-rsn.2015.0118 – ident: ref25 doi: 10.1117/12.669003 – ident: ref21 doi: 10.1109/TIP.2015.2475625 – ident: ref31 doi: 10.1109/MSP.2012.2205597 – ident: ref15 doi: 10.1109/ICSENS.2017.8234179 – ident: ref36 doi: 10.1109/TIP.2010.2103949 – ident: ref6 doi: 10.1049/iet-rsn.2015.0144 – ident: ref33 doi: 10.1109/ICONIP.2002.1202854 – ident: ref24 doi: 10.1109/TSP.2009.2028095 – ident: ref7 doi: 10.1049/cp.2017.0381 – ident: ref19 doi: 10.3390/s17122769 – ident: ref34 doi: 10.1109/72.991427 – ident: ref4 doi: 10.1201/9781315155340 – ident: ref17 doi: 10.1109/JSEN.2018.2872894 – ident: ref5 doi: 10.1109/TBME.2019.2893528 – ident: ref35 doi: 10.1016/j.chemolab.2017.01.018 – ident: ref37 doi: 10.1049/iet-rsn.2015.0580 – ident: ref10 doi: 10.1109/LGRS.2017.2771405 – ident: ref8 doi: 10.1049/iet-rsn.2016.0055 – ident: ref26 doi: 10.1109/ISSPA.2005.1581019 – ident: ref11 doi: 10.1049/iet-rsn.2015.0493 – ident: ref22 doi: 10.1109/ITW.2012.6404738 – ident: ref38 doi: 10.1109/MSP.2018.2890128 – ident: ref14 doi: 10.1109/LGRS.2018.2806940 – ident: ref16 doi: 10.1109/JERM.2018.2827099 – ident: ref40 doi: 10.1109/IPSN.2018.00049 – ident: ref12 doi: 10.1049/iet-rsn.2014.0360 – ident: ref2 doi: 10.1049/PBRA034E – ident: ref9 doi: 10.1109/LGRS.2015.2491329 – ident: ref13 doi: 10.1109/LGRS.2015.2439393 – ident: ref18 doi: 10.1016/j.sigpro.2010.08.013 – ident: ref28 doi: 10.1016/j.jmva.2007.06.007 – ident: ref29 doi: 10.1109/TAES.2014.130082 – ident: ref39 doi: 10.1109/TGRS.2019.2958178 – ident: ref23 doi: 10.1109/JSEN.2019.2937989 – ident: ref1 doi: 10.1109/TAES.2006.1603402 – ident: ref20 doi: 10.1109/TGRS.2019.2929096 – ident: ref27 doi: 10.1109/TSP.2008.924797 |
SSID | ssj0014517 |
Score | 2.4931643 |
Snippet | Human activity classification based on micro-Doppler (m-D) signatures finds applications in surveillance, search and rescue operations, and healthcare. In this... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Classification Computer architecture Convolutional principal component analysis Doppler shift Doppler sonar Feature extraction human activity classification Human performance Legged locomotion micro-Doppler (m-D) signatures Principal component analysis Principal components analysis Radar Rescue operations Search and rescue Search and rescue missions signal separation Signatures Spectrogram Torso Training |
Title | Human Activity Classification Based on Micro-Doppler Signatures Separation |
URI | https://ieeexplore.ieee.org/document/9521999 https://www.proquest.com/docview/2624756124 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB21lZDgwNKCKBSUAyeE28SZbMeylKpSOdBW6i1yHAchUIq6XPh6xk5asQlx88GWnJmJ3zx7FoALgTyL0MkY-douQxQRS4QImQoIDAgj0DfV9YcPfn-Cg6k3rcDVJhdGKWWCz1RbD81bfjqTK31V1okIa8ihqUKViFuRq7V5MUDPKVOjfUYkgpcvmI4ddcb3jyNigtwhgko2yPELBpmmKj9OYgMvvT0YrjdWRJW8tFfLpC3fv9Vs_O_O92G39DOtbmEYB1BReR12PlUfrMOWif6UiwYMzFW-1ZVFKwnLdMrUMURGbdY1IV1q0WCoo_fY7Yw8VzW3Rs9PRVnQhTVSRQnxWX4Ik97d-KbPyiYLTBLSL5lUPmbS55iGKIm82UEUohKC29Ij7aYkykCiSBN0JQ-91Asz4dGxQLROyiAJ3COo5bNcHYMVitRRSIgo7ARlmIWunZGHIFIM3MQNeBPstdhjWVYg140wXmPDROwo1pqKtabiUlNNuNwseSvKb_w1uaElv5lYCr0JrbVu4_IHXcScvjjQnUHx5PdVp7DNdaaDuW1pQW05X6kz8j-WybkxvA8iZNTt |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGCAEHHgPEYEAPnBDZ2tR9HXmPse3ANmm3Kk1ThEAbYtuFX4-TdhMvIW45JFJqu_nsxP4McCKQZxE6GSNf22WIImKJECFTAYEBYQT6hl2_3fEbfWwOvEEJzua1MEopk3ymanpo3vLTkZzqq7J6RFhDDs0CLHm6GDev1pq_GaDnFMXRPqMwghdvmI4d1Xu3D12KBblDISpZIccvKGTaqvw4iw3A3GxAe7a1PK_kuTadJDX5_o218b9734T1wtO0znPT2IKSGpZh7RP_YBmWTf6nHG9D01zmW-cybyZhmV6ZOovIKM66IKxLLRq0df4euxqR76rerO7TY04MOra6KicRHw13oH9z3btssKLNApOE9RMmlY-Z9DmmIUoK3-wgClEJwW3pkX5TEmUgUaQJupKHXuqFmfDoYKDATsogCdxdWByOhmoPrFCkjkLCRGEnKMMsdO2MfASRYuAmbsArYM_EHsuCg1y3wniJTSxiR7HWVKw1FReaqsDpfMlrTsDx1-RtLfn5xELoFajOdBsXv-g45vTFge4Nivu_rzqGlUav3Ypbd537A1jluu7B3L1UYXHyNlWH5I1MkiNjhB9mtNg1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Activity+Classification+Based+on+Micro-Doppler+Signatures+Separation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Qiao%2C+Xingshuai&rft.au=Amin%2C+Moeness+G.&rft.au=Shan%2C+Tao&rft.au=Zeng%2C+Zhengxin&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2021.3105124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3105124 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |