Human Activity Classification Based on Micro-Doppler Signatures Separation

Human activity classification based on micro-Doppler (m-D) signatures finds applications in surveillance, search and rescue operations, and healthcare. In this article, we propose a new approach for human activity classification. This approach deals with the situations of reduced limb movements that...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 14
Main Authors Qiao, Xingshuai, Amin, Moeness G., Shan, Tao, Zeng, Zhengxin, Tao, Ran
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2021.3105124

Cover

Loading…
Abstract Human activity classification based on micro-Doppler (m-D) signatures finds applications in surveillance, search and rescue operations, and healthcare. In this article, we propose a new approach for human activity classification. This approach deals with the situations of reduced limb movements that could be due to the presence of injury or an individual carrying objects. It applies a preprocessing step to separate human m-D signals of the limbs from the Doppler signal corresponding to the torso. The separated m-D signal is input to a two-layer convolutional principal component analysis network (CPCAN) for feature extraction and motion classification. The CPCAN comprises a simple network architecture for efficient training and implementation, and it automatically learns the highly discriminative features. Experiments involving multiple human subjects performing different activities show a high classification accuracy associated with small arm motions.
AbstractList Human activity classification based on micro-Doppler (m-D) signatures finds applications in surveillance, search and rescue operations, and healthcare. In this article, we propose a new approach for human activity classification. This approach deals with the situations of reduced limb movements that could be due to the presence of injury or an individual carrying objects. It applies a preprocessing step to separate human m-D signals of the limbs from the Doppler signal corresponding to the torso. The separated m-D signal is input to a two-layer convolutional principal component analysis network (CPCAN) for feature extraction and motion classification. The CPCAN comprises a simple network architecture for efficient training and implementation, and it automatically learns the highly discriminative features. Experiments involving multiple human subjects performing different activities show a high classification accuracy associated with small arm motions.
Author Amin, Moeness G.
Qiao, Xingshuai
Shan, Tao
Tao, Ran
Zeng, Zhengxin
Author_xml – sequence: 1
  givenname: Xingshuai
  orcidid: 0000-0001-7681-3049
  surname: Qiao
  fullname: Qiao, Xingshuai
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Moeness G.
  orcidid: 0000-0002-0926-4120
  surname: Amin
  fullname: Amin, Moeness G.
  organization: Center for Advanced Communications (CAC), Villanova University, Villanova, PA, USA
– sequence: 3
  givenname: Tao
  orcidid: 0000-0002-5351-2312
  surname: Shan
  fullname: Shan, Tao
  email: shantao@bit.edu.cn
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Zhengxin
  orcidid: 0000-0003-4831-0094
  surname: Zeng
  fullname: Zeng, Zhengxin
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Ran
  orcidid: 0000-0002-5243-7189
  surname: Tao
  fullname: Tao, Ran
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China
BookMark eNp9UE1PwjAYbgwmAvoDjJclnod9u3Zdj4gKGoyJ4LkpXWdKYJttZ8K_t3zEgwdP73t4vgeoVze1Qega8AgAi7vl9H0xIpjAKAPMgNAz1AfGihTnlPZQH4PIU1IIcoEG3q8xBsqA99HLrNuqOhnrYL9t2CWTjfLeVlarYJs6uVfelEl8Xq12TfrQtO3GuGRhP2sVOmd8sjCtcgfwJTqv1Mabq9Mdoo-nx-Vkls7fps-T8TzVRGQh1Sanlc4JLQuqQQDmoqBGKYI101qVMSPXVJUrmmlSsJIVlWI8w5QWWvMVz4bo9qjbuuarMz7IddO5OlpKEmU5y2P9iIIjKub23plKts5uldtJwHI_mdxPJveTydNkkcP_cLQNh27BKbv5l3lzZFpjzK-TYASEENkPE2p7BA
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JIOT_2023_3301519
crossref_primary_10_1016_j_gecco_2021_e01947
crossref_primary_10_1109_TGRS_2022_3230977
crossref_primary_10_1109_TGRS_2023_3276023
crossref_primary_10_1109_TAES_2022_3179679
crossref_primary_10_1007_s11042_023_17238_0
crossref_primary_10_1109_JIOT_2024_3419567
crossref_primary_10_1109_JIOT_2023_3321056
crossref_primary_10_1109_TMTT_2024_3441591
crossref_primary_10_3390_rs13183791
crossref_primary_10_1109_TRS_2025_3539289
crossref_primary_10_1109_TAES_2024_3400763
Cites_doi 10.1109/CVPR.2005.177
10.1117/12.2225106
10.1049/iet-rsn.2015.0118
10.1117/12.669003
10.1109/TIP.2015.2475625
10.1109/MSP.2012.2205597
10.1109/ICSENS.2017.8234179
10.1109/TIP.2010.2103949
10.1049/iet-rsn.2015.0144
10.1109/ICONIP.2002.1202854
10.1109/TSP.2009.2028095
10.1049/cp.2017.0381
10.3390/s17122769
10.1109/72.991427
10.1201/9781315155340
10.1109/JSEN.2018.2872894
10.1109/TBME.2019.2893528
10.1016/j.chemolab.2017.01.018
10.1049/iet-rsn.2015.0580
10.1109/LGRS.2017.2771405
10.1049/iet-rsn.2016.0055
10.1109/ISSPA.2005.1581019
10.1049/iet-rsn.2015.0493
10.1109/ITW.2012.6404738
10.1109/MSP.2018.2890128
10.1109/LGRS.2018.2806940
10.1109/JERM.2018.2827099
10.1109/IPSN.2018.00049
10.1049/iet-rsn.2014.0360
10.1049/PBRA034E
10.1109/LGRS.2015.2491329
10.1109/LGRS.2015.2439393
10.1016/j.sigpro.2010.08.013
10.1016/j.jmva.2007.06.007
10.1109/TAES.2014.130082
10.1109/TGRS.2019.2958178
10.1109/JSEN.2019.2937989
10.1109/TAES.2006.1603402
10.1109/TGRS.2019.2929096
10.1109/TSP.2008.924797
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3105124
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 14
ExternalDocumentID 10_1109_TGRS_2021_3105124
9521999
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61771046; 61421001
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-ce64fc624d84c19107984eaa20c5ccad8927c4adb43c285d58fa5730448cc7b73
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Tue Aug 26 14:40:24 EDT 2025
Tue Jul 01 01:34:30 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
Wed Aug 27 03:00:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ce64fc624d84c19107984eaa20c5ccad8927c4adb43c285d58fa5730448cc7b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0926-4120
0000-0002-5243-7189
0000-0003-4831-0094
0000-0002-5351-2312
0000-0001-7681-3049
PQID 2624756124
PQPubID 85465
PageCount 14
ParticipantIDs crossref_primary_10_1109_TGRS_2021_3105124
proquest_journals_2624756124
crossref_citationtrail_10_1109_TGRS_2021_3105124
ieee_primary_9521999
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref32
  doi: 10.1109/CVPR.2005.177
– ident: ref30
  doi: 10.1117/12.2225106
– ident: ref3
  doi: 10.1049/iet-rsn.2015.0118
– ident: ref25
  doi: 10.1117/12.669003
– ident: ref21
  doi: 10.1109/TIP.2015.2475625
– ident: ref31
  doi: 10.1109/MSP.2012.2205597
– ident: ref15
  doi: 10.1109/ICSENS.2017.8234179
– ident: ref36
  doi: 10.1109/TIP.2010.2103949
– ident: ref6
  doi: 10.1049/iet-rsn.2015.0144
– ident: ref33
  doi: 10.1109/ICONIP.2002.1202854
– ident: ref24
  doi: 10.1109/TSP.2009.2028095
– ident: ref7
  doi: 10.1049/cp.2017.0381
– ident: ref19
  doi: 10.3390/s17122769
– ident: ref34
  doi: 10.1109/72.991427
– ident: ref4
  doi: 10.1201/9781315155340
– ident: ref17
  doi: 10.1109/JSEN.2018.2872894
– ident: ref5
  doi: 10.1109/TBME.2019.2893528
– ident: ref35
  doi: 10.1016/j.chemolab.2017.01.018
– ident: ref37
  doi: 10.1049/iet-rsn.2015.0580
– ident: ref10
  doi: 10.1109/LGRS.2017.2771405
– ident: ref8
  doi: 10.1049/iet-rsn.2016.0055
– ident: ref26
  doi: 10.1109/ISSPA.2005.1581019
– ident: ref11
  doi: 10.1049/iet-rsn.2015.0493
– ident: ref22
  doi: 10.1109/ITW.2012.6404738
– ident: ref38
  doi: 10.1109/MSP.2018.2890128
– ident: ref14
  doi: 10.1109/LGRS.2018.2806940
– ident: ref16
  doi: 10.1109/JERM.2018.2827099
– ident: ref40
  doi: 10.1109/IPSN.2018.00049
– ident: ref12
  doi: 10.1049/iet-rsn.2014.0360
– ident: ref2
  doi: 10.1049/PBRA034E
– ident: ref9
  doi: 10.1109/LGRS.2015.2491329
– ident: ref13
  doi: 10.1109/LGRS.2015.2439393
– ident: ref18
  doi: 10.1016/j.sigpro.2010.08.013
– ident: ref28
  doi: 10.1016/j.jmva.2007.06.007
– ident: ref29
  doi: 10.1109/TAES.2014.130082
– ident: ref39
  doi: 10.1109/TGRS.2019.2958178
– ident: ref23
  doi: 10.1109/JSEN.2019.2937989
– ident: ref1
  doi: 10.1109/TAES.2006.1603402
– ident: ref20
  doi: 10.1109/TGRS.2019.2929096
– ident: ref27
  doi: 10.1109/TSP.2008.924797
SSID ssj0014517
Score 2.4931643
Snippet Human activity classification based on micro-Doppler (m-D) signatures finds applications in surveillance, search and rescue operations, and healthcare. In this...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classification
Computer architecture
Convolutional principal component analysis
Doppler shift
Doppler sonar
Feature extraction
human activity classification
Human performance
Legged locomotion
micro-Doppler (m-D) signatures
Principal component analysis
Principal components analysis
Radar
Rescue operations
Search and rescue
Search and rescue missions
signal separation
Signatures
Spectrogram
Torso
Training
Title Human Activity Classification Based on Micro-Doppler Signatures Separation
URI https://ieeexplore.ieee.org/document/9521999
https://www.proquest.com/docview/2624756124
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB21lZDgwNKCKBSUAyeE28SZbMeylKpSOdBW6i1yHAchUIq6XPh6xk5asQlx88GWnJmJ3zx7FoALgTyL0MkY-douQxQRS4QImQoIDAgj0DfV9YcPfn-Cg6k3rcDVJhdGKWWCz1RbD81bfjqTK31V1okIa8ihqUKViFuRq7V5MUDPKVOjfUYkgpcvmI4ddcb3jyNigtwhgko2yPELBpmmKj9OYgMvvT0YrjdWRJW8tFfLpC3fv9Vs_O_O92G39DOtbmEYB1BReR12PlUfrMOWif6UiwYMzFW-1ZVFKwnLdMrUMURGbdY1IV1q0WCoo_fY7Yw8VzW3Rs9PRVnQhTVSRQnxWX4Ik97d-KbPyiYLTBLSL5lUPmbS55iGKIm82UEUohKC29Ij7aYkykCiSBN0JQ-91Asz4dGxQLROyiAJ3COo5bNcHYMVitRRSIgo7ARlmIWunZGHIFIM3MQNeBPstdhjWVYg140wXmPDROwo1pqKtabiUlNNuNwseSvKb_w1uaElv5lYCr0JrbVu4_IHXcScvjjQnUHx5PdVp7DNdaaDuW1pQW05X6kz8j-WybkxvA8iZNTt
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGCAEHHgPEYEAPnBDZ2tR9HXmPse3ANmm3Kk1ThEAbYtuFX4-TdhMvIW45JFJqu_nsxP4McCKQZxE6GSNf22WIImKJECFTAYEBYQT6hl2_3fEbfWwOvEEJzua1MEopk3ymanpo3vLTkZzqq7J6RFhDDs0CLHm6GDev1pq_GaDnFMXRPqMwghdvmI4d1Xu3D12KBblDISpZIccvKGTaqvw4iw3A3GxAe7a1PK_kuTadJDX5_o218b9734T1wtO0znPT2IKSGpZh7RP_YBmWTf6nHG9D01zmW-cybyZhmV6ZOovIKM66IKxLLRq0df4euxqR76rerO7TY04MOra6KicRHw13oH9z3btssKLNApOE9RMmlY-Z9DmmIUoK3-wgClEJwW3pkX5TEmUgUaQJupKHXuqFmfDoYKDATsogCdxdWByOhmoPrFCkjkLCRGEnKMMsdO2MfASRYuAmbsArYM_EHsuCg1y3wniJTSxiR7HWVKw1FReaqsDpfMlrTsDx1-RtLfn5xELoFajOdBsXv-g45vTFge4Nivu_rzqGlUav3Ypbd537A1jluu7B3L1UYXHyNlWH5I1MkiNjhB9mtNg1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Activity+Classification+Based+on+Micro-Doppler+Signatures+Separation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Qiao%2C+Xingshuai&rft.au=Amin%2C+Moeness+G.&rft.au=Shan%2C+Tao&rft.au=Zeng%2C+Zhengxin&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2021.3105124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3105124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon