A Learning-Based Multipopulation Evolutionary Optimization for Flexible Job Shop Scheduling Problem With Finite Transportation Resources
In many practical manufacturing systems, transportation equipment such as automated guided vehicles (AGVs) is widely adopted to transfer jobs and realize the collaboration of different machines, but is often ignored in current researches. In this article, we address the flexible job shop scheduling...
Saved in:
Published in | IEEE transactions on evolutionary computation Vol. 27; no. 6; pp. 1590 - 1603 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In many practical manufacturing systems, transportation equipment such as automated guided vehicles (AGVs) is widely adopted to transfer jobs and realize the collaboration of different machines, but is often ignored in current researches. In this article, we address the flexible job shop scheduling problem with finite transportation resources (FJSP-Ts). Considering the difficulties caused by the introduction of transportation and the NP-hard nature, the evolutionary algorithm (EA) is adopted as a solution approach. To this end, a learning-based multipopulation evolutionary optimization (LMEO) is proposed to deal with the FJSP-T. First, the multipopulation strategy is introduced and a cooperation-based initialization is designed by combining several heuristics to guarantee the quality and diversity of the initial population. Second, a reinforcement learning (RL)-based mating selection is proposed to realize the cooperation of different subpopulations by selecting appropriate individuals for evolutionary search. Then, a specific local search inspired by the problem properties is designed to enhance the exploitation capability of the LMEO. Moreover, a statistical learning-based replacement is designed to maintain the quality and diversity of the population. Extensive experiments are conducted to test the performances of the LMEO. The statistical comparison shows that the LMEO is superior to the state-of-the-art algorithms in solving the FJSP-T in terms of solution quality and robustness. |
---|---|
AbstractList | In many practical manufacturing systems, transportation equipment such as automated guided vehicles (AGVs) is widely adopted to transfer jobs and realize the collaboration of different machines, but is often ignored in current researches. In this article, we address the flexible job shop scheduling problem with finite transportation resources (FJSP-Ts). Considering the difficulties caused by the introduction of transportation and the NP-hard nature, the evolutionary algorithm (EA) is adopted as a solution approach. To this end, a learning-based multipopulation evolutionary optimization (LMEO) is proposed to deal with the FJSP-T. First, the multipopulation strategy is introduced and a cooperation-based initialization is designed by combining several heuristics to guarantee the quality and diversity of the initial population. Second, a reinforcement learning (RL)-based mating selection is proposed to realize the cooperation of different subpopulations by selecting appropriate individuals for evolutionary search. Then, a specific local search inspired by the problem properties is designed to enhance the exploitation capability of the LMEO. Moreover, a statistical learning-based replacement is designed to maintain the quality and diversity of the population. Extensive experiments are conducted to test the performances of the LMEO. The statistical comparison shows that the LMEO is superior to the state-of-the-art algorithms in solving the FJSP-T in terms of solution quality and robustness. |
Author | Wang, Xing Zheng, Jie Pan, Zixiao Chen, Jing-Fang Wang, Ling |
Author_xml | – sequence: 1 givenname: Zixiao orcidid: 0000-0001-5153-5564 surname: Pan fullname: Pan, Zixiao email: pzx19@mails.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 2 givenname: Ling orcidid: 0000-0003-1226-2801 surname: Wang fullname: Wang, Ling email: wangling@mail.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 3 givenname: Jie orcidid: 0000-0002-9640-1604 surname: Zheng fullname: Zheng, Jie email: j-zheng18@mails.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 4 givenname: Jing-Fang orcidid: 0000-0001-8698-2532 surname: Chen fullname: Chen, Jing-Fang email: cjf17@mails.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China – sequence: 5 givenname: Xing surname: Wang fullname: Wang, Xing email: wang-x17@mails.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China |
BookMark | eNp9kM9OGzEQxi0EEgH6ABUXSz1vsL322j7SKKFUqYIg_XNbeTezxGizXmxvBX0CHruONuLQQ08z0jffNzO_M3TcuQ4Q-kjJlFKir9bzH7MpI4xNc0Y1y9URmlDNaUYIK45TT5TOpFS_TtFZCE-EUC6onqC3a7wE4zvbPWafTYAN_ja00fauH1oTrevw_Ldrh31n_Cte9dHu7J9RaZzHixZebNUC_uoq_LB1PX6ot7AZ2hSI77xL0g7_tHGLF7azEfDamy70zscx4x6CG3wN4QKdNKYN8OFQz9H3xXw9-5ItVze3s-tlVjOdx6wGzoziuZRAZL4RBeUVkaCAV0woowQvKtpApbTUOW9qsVFQcE5IQUST1PwcfRpze--eBwixfEoHdGllyZQWSnEhdJqi41TtXQgemrL3dpcIlJSUe-DlHni5B14egCeP_MdT2_HL6I1t_-u8HJ0WAN43aZ1Lmm75C8Lhke0 |
CODEN | ITEVF5 |
CitedBy_id | crossref_primary_10_1016_j_cie_2025_110917 crossref_primary_10_1016_j_rcim_2024_102782 crossref_primary_10_1109_TASE_2024_3396474 crossref_primary_10_1016_j_eswa_2025_126603 crossref_primary_10_1016_j_ejor_2025_02_025 crossref_primary_10_3390_app14104082 crossref_primary_10_1016_j_swevo_2024_101719 crossref_primary_10_1016_j_ins_2024_121011 crossref_primary_10_1016_j_swevo_2024_101538 crossref_primary_10_1109_TCYB_2023_3280175 crossref_primary_10_1080_00207543_2024_2363435 crossref_primary_10_1016_j_swevo_2025_101873 crossref_primary_10_1016_j_swevo_2024_101651 crossref_primary_10_1016_j_swevo_2024_101750 crossref_primary_10_1109_ACCESS_2025_3535825 crossref_primary_10_1109_TEVC_2024_3354850 crossref_primary_10_1007_s00521_024_10580_w crossref_primary_10_3390_math12243926 crossref_primary_10_1016_j_engappai_2024_108699 crossref_primary_10_1016_j_engappai_2024_108775 crossref_primary_10_1080_00207543_2024_2357740 crossref_primary_10_1016_j_aei_2024_102647 crossref_primary_10_1109_TSMC_2024_3520381 crossref_primary_10_1109_TITS_2024_3511998 crossref_primary_10_1007_s10586_024_04970_x crossref_primary_10_1007_s40747_025_01828_6 crossref_primary_10_1016_j_swevo_2025_101901 crossref_primary_10_1016_j_ins_2024_121364 crossref_primary_10_1016_j_compeleceng_2024_109780 crossref_primary_10_1016_j_swevo_2024_101602 crossref_primary_10_1016_j_swevo_2024_101789 crossref_primary_10_1016_j_swevo_2025_101885 |
Cites_doi | 10.1016/j.cie.2020.107082 10.1109/TCYB.2022.3151855 10.1016/j.engappai.2021.104307 10.1016/j.cor.2011.10.007 10.23919/CSMS.2021.0027 10.1016/j.suscom.2022.100680 10.1007/s00170-010-2820-2 10.1109/TETCI.2018.2823329 10.1007/s10845-020-01537-6 10.1109/TETCI.2022.3145706 10.1016/j.cor.2016.11.017 10.1016/j.knosys.2021.107731 10.1109/TETCI.2018.2868474 10.1109/TASE.2021.3129439 10.1016/j.rcim.2021.102198 10.1007/BF02023073 10.1016/0305-0483(83)90088-9 10.1109/TSMC.2021.3120702 10.1109/MCI.2018.2840738 10.1016/j.rcim.2019.04.006 10.1016/j.apm.2016.09.022 10.1109/TETCI.2021.3098354 10.1109/KES.1998.725893 10.1109/TEVC.2022.3179256 10.1016/j.ejor.2020.07.063 10.1007/s10845-020-01547-4 10.1109/TCYB.2020.3026571 10.1109/TEVC.2022.3164260 10.1109/TEVC.2021.3106168 10.1016/j.cie.2015.01.003 10.1007/s10898-021-00992-6 10.1109/TEVC.2020.3024708 10.1109/TEVC.2021.3060811 10.1016/j.cie.2017.05.026 10.1080/00207543.2021.1968526 10.1016/j.cie.2016.02.024 10.1109/TEVC.2022.3177605 10.1080/00207540902814348 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TEVC.2022.3219238 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Computer Science |
EISSN | 1941-0026 |
EndPage | 1603 |
ExternalDocumentID | 10_1109_TEVC_2022_3219238 9937159 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars of China grantid: 61525304 – fundername: National Natural Science Foundation of China grantid: 62273193 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-ce42a84377e073d5614b07e8e4b258a8546b1feb897934fc5d8e64400605f8543 |
IEDL.DBID | RIE |
ISSN | 1089-778X |
IngestDate | Sun Jun 29 16:36:28 EDT 2025 Tue Jul 01 01:56:24 EDT 2025 Thu Apr 24 23:00:02 EDT 2025 Wed Aug 27 02:07:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-ce42a84377e073d5614b07e8e4b258a8546b1feb897934fc5d8e64400605f8543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5153-5564 0000-0002-9640-1604 0000-0001-8698-2532 0000-0003-1226-2801 |
PQID | 2895884559 |
PQPubID | 85418 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TEVC_2022_3219238 proquest_journals_2895884559 ieee_primary_9937159 crossref_citationtrail_10_1109_TEVC_2022_3219238 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on evolutionary computation |
PublicationTitleAbbrev | TEVC |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Deroussi (ref13) ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref33 doi: 10.1016/j.cie.2020.107082 – ident: ref6 doi: 10.1109/TCYB.2022.3151855 – ident: ref12 doi: 10.1016/j.engappai.2021.104307 – ident: ref15 doi: 10.1016/j.cor.2011.10.007 – ident: ref35 doi: 10.23919/CSMS.2021.0027 – ident: ref11 doi: 10.1016/j.suscom.2022.100680 – ident: ref14 doi: 10.1007/s00170-010-2820-2 – ident: ref24 doi: 10.1109/TETCI.2018.2823329 – ident: ref17 doi: 10.1007/s10845-020-01537-6 – ident: ref4 doi: 10.1109/TETCI.2022.3145706 – ident: ref8 doi: 10.1016/j.cor.2016.11.017 – ident: ref29 doi: 10.1016/j.knosys.2021.107731 – ident: ref22 doi: 10.1109/TETCI.2018.2868474 – ident: ref5 doi: 10.1109/TASE.2021.3129439 – start-page: 1 volume-title: Proc. Int. Conf. Metaheuris. Nat. Inspir. Comput. ident: ref13 article-title: Simultaneous scheduling of machines and vehicles for the flexible job shop problem – ident: ref19 doi: 10.1016/j.rcim.2021.102198 – ident: ref39 doi: 10.1007/BF02023073 – ident: ref38 doi: 10.1016/0305-0483(83)90088-9 – ident: ref2 doi: 10.1109/TSMC.2021.3120702 – ident: ref21 doi: 10.1109/MCI.2018.2840738 – ident: ref10 doi: 10.1016/j.rcim.2019.04.006 – ident: ref9 doi: 10.1016/j.apm.2016.09.022 – ident: ref31 doi: 10.1109/TETCI.2021.3098354 – ident: ref37 doi: 10.1109/KES.1998.725893 – ident: ref28 doi: 10.1109/TEVC.2022.3179256 – ident: ref34 doi: 10.1016/j.ejor.2020.07.063 – ident: ref1 doi: 10.1007/s10845-020-01547-4 – ident: ref20 doi: 10.1109/TCYB.2020.3026571 – ident: ref26 doi: 10.1109/TEVC.2022.3164260 – ident: ref27 doi: 10.1109/TEVC.2021.3106168 – ident: ref3 doi: 10.1016/j.cie.2015.01.003 – ident: ref18 doi: 10.1007/s10898-021-00992-6 – ident: ref23 doi: 10.1109/TEVC.2020.3024708 – ident: ref25 doi: 10.1109/TEVC.2021.3060811 – ident: ref32 doi: 10.1016/j.cie.2017.05.026 – ident: ref7 doi: 10.1080/00207543.2021.1968526 – ident: ref16 doi: 10.1016/j.cie.2016.02.024 – ident: ref30 doi: 10.1109/TEVC.2022.3177605 – ident: ref36 doi: 10.1080/00207540902814348 |
SSID | ssj0014519 |
Score | 2.6005266 |
Snippet | In many practical manufacturing systems, transportation equipment such as automated guided vehicles (AGVs) is widely adopted to transfer jobs and realize the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1590 |
SubjectTerms | Automated guided vehicles Cooperation Evolutionary algorithms Evolutionary computation Finite transportation resource flexible job shop scheduling Job shop scheduling Job shops multipopulation Optimization reinforcement learning (RL) Robustness (mathematics) Sociology statistical learning Statistics Task analysis Transportation |
Title | A Learning-Based Multipopulation Evolutionary Optimization for Flexible Job Shop Scheduling Problem With Finite Transportation Resources |
URI | https://ieeexplore.ieee.org/document/9937159 https://www.proquest.com/docview/2895884559 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4BT_AAWwHRjU1-2BNaSpLarfPIUCuExIY02PoW1c6ZVkBbtSkS-wv2Z-8udqL90rS3SLGdSHe--86--w7gnUkU9p3rRw57NpK2l0WZ5kMcpWPtyCfJinbx6mPv4lZejtRoA943tTCIWCWfYYcfq7v8Ym7XfFR2yr6U3O8mbFLg5mu1mhsDpknxyfQZIUY9CjeYSZyd3gy-nFMkmKadbsqARv_ig6qmKn9Y4sq9DPfgqv4xn1Vy31mXpmO__cbZ-L9__gJ2A84UZ14xXsIGzlqwV_dwEGFLt2DnJ0LCFmwz9vTUzfvw_UwE9tW76AM5u0JU1bqLpuWXGDwFxR0vn8UnMj6PoapTEBQWQ-baNA8oLudGfJ7MF_TVCXk2LoAX176Rjfg6LSdiOGXkKxqidb9GfbOwOoDb4eDm_CIKjRsiS-ihjCzKdMxS7iNZkILJRk3cR43SpEqPtZI9kzg0OiPrIJ1VhUbCZcwNoxy97R7C1mw-wyMQXVNIWiRV5MsJuTldpCjlOLHKJSiztA1xLcrcBlZzbq7xkFfRTZzlLP2cpZ8H6bfhpJmy8JQe_xq8z9JsBgZBtuG41pc8bPpVTrErl_1SjPbq77NewzZ3q_fZMMewVS7X-IYwTWneVsr8AwxA9Do |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8cB42KBjojDADzwh0iWp3TqP29SqjHUg0UHfoto504nRVls6Cf4C_uzdxU7ELyHeIsV2Ip1932ef7zuAlyZR2HeuHzns2UjaXhZlmg9xlI61I0ySlezi-Kw3OpcnUzXdgNdNLgwiVpfPsMOPVSy_WNo1H5UdMJYS_N6Bu4T7KvHZWk3MgIVS_HX6jDijnoYYZhJnB5PBx2PaC6Zpp5sypdG_oFBVVuUPX1wBzHAHxvWv-XslXzrr0nTs999UG__33x_AdmCa4tBPjYewgYsW7NRVHERY1C24_5MkYQu2mH168eZd-HEogv7q5-iI4K4QVb7uqin6JQY3YerOrr6Jd-R-voa8TkFkWAxZbdNcojhZGvFhvlzRV-eEbZwCL977Ujbi00U5F8ML5r6ikVr3Y9SxhetHcD4cTI5HUSjdEFniD2VkUaYztnMfyYcULDdq4j5qlCZVeqaV7JnEodEZ-QfprCo0EjNjdRjl6G13DzYXywU-BtE1haRBUkVoTtzN6SJFKWeJVS5BmaVtiGtT5jbomnN5jcu82t_EWc7Wz9n6ebB-G141XVZe1ONfjXfZmk3DYMg27NfzJQ_L_jqn3Ssn_tIu7cnfe72Ae6PJ-DQ_fXP29ilsce16fzdmHzbLqzU-I4ZTmufVxL4F6oH3gw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Learning-Based+Multipopulation+Evolutionary+Optimization+for+Flexible+Job+Shop+Scheduling+Problem+With+Finite+Transportation+Resources&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Pan%2C+Zixiao&rft.au=Wang%2C+Ling&rft.au=Zheng%2C+Jie&rft.au=Jing-Fang%2C+Chen&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=27&rft.issue=6&rft.spage=1590&rft_id=info:doi/10.1109%2FTEVC.2022.3219238&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |