A Learning-Based Multipopulation Evolutionary Optimization for Flexible Job Shop Scheduling Problem With Finite Transportation Resources

In many practical manufacturing systems, transportation equipment such as automated guided vehicles (AGVs) is widely adopted to transfer jobs and realize the collaboration of different machines, but is often ignored in current researches. In this article, we address the flexible job shop scheduling...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 27; no. 6; pp. 1590 - 1603
Main Authors Pan, Zixiao, Wang, Ling, Zheng, Jie, Chen, Jing-Fang, Wang, Xing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In many practical manufacturing systems, transportation equipment such as automated guided vehicles (AGVs) is widely adopted to transfer jobs and realize the collaboration of different machines, but is often ignored in current researches. In this article, we address the flexible job shop scheduling problem with finite transportation resources (FJSP-Ts). Considering the difficulties caused by the introduction of transportation and the NP-hard nature, the evolutionary algorithm (EA) is adopted as a solution approach. To this end, a learning-based multipopulation evolutionary optimization (LMEO) is proposed to deal with the FJSP-T. First, the multipopulation strategy is introduced and a cooperation-based initialization is designed by combining several heuristics to guarantee the quality and diversity of the initial population. Second, a reinforcement learning (RL)-based mating selection is proposed to realize the cooperation of different subpopulations by selecting appropriate individuals for evolutionary search. Then, a specific local search inspired by the problem properties is designed to enhance the exploitation capability of the LMEO. Moreover, a statistical learning-based replacement is designed to maintain the quality and diversity of the population. Extensive experiments are conducted to test the performances of the LMEO. The statistical comparison shows that the LMEO is superior to the state-of-the-art algorithms in solving the FJSP-T in terms of solution quality and robustness.
AbstractList In many practical manufacturing systems, transportation equipment such as automated guided vehicles (AGVs) is widely adopted to transfer jobs and realize the collaboration of different machines, but is often ignored in current researches. In this article, we address the flexible job shop scheduling problem with finite transportation resources (FJSP-Ts). Considering the difficulties caused by the introduction of transportation and the NP-hard nature, the evolutionary algorithm (EA) is adopted as a solution approach. To this end, a learning-based multipopulation evolutionary optimization (LMEO) is proposed to deal with the FJSP-T. First, the multipopulation strategy is introduced and a cooperation-based initialization is designed by combining several heuristics to guarantee the quality and diversity of the initial population. Second, a reinforcement learning (RL)-based mating selection is proposed to realize the cooperation of different subpopulations by selecting appropriate individuals for evolutionary search. Then, a specific local search inspired by the problem properties is designed to enhance the exploitation capability of the LMEO. Moreover, a statistical learning-based replacement is designed to maintain the quality and diversity of the population. Extensive experiments are conducted to test the performances of the LMEO. The statistical comparison shows that the LMEO is superior to the state-of-the-art algorithms in solving the FJSP-T in terms of solution quality and robustness.
Author Wang, Xing
Zheng, Jie
Pan, Zixiao
Chen, Jing-Fang
Wang, Ling
Author_xml – sequence: 1
  givenname: Zixiao
  orcidid: 0000-0001-5153-5564
  surname: Pan
  fullname: Pan, Zixiao
  email: pzx19@mails.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Ling
  orcidid: 0000-0003-1226-2801
  surname: Wang
  fullname: Wang, Ling
  email: wangling@mail.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0002-9640-1604
  surname: Zheng
  fullname: Zheng, Jie
  email: j-zheng18@mails.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Jing-Fang
  orcidid: 0000-0001-8698-2532
  surname: Chen
  fullname: Chen, Jing-Fang
  email: cjf17@mails.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Xing
  surname: Wang
  fullname: Wang, Xing
  email: wang-x17@mails.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
BookMark eNp9kM9OGzEQxi0EEgH6ABUXSz1vsL322j7SKKFUqYIg_XNbeTezxGizXmxvBX0CHruONuLQQ08z0jffNzO_M3TcuQ4Q-kjJlFKir9bzH7MpI4xNc0Y1y9URmlDNaUYIK45TT5TOpFS_TtFZCE-EUC6onqC3a7wE4zvbPWafTYAN_ja00fauH1oTrevw_Ldrh31n_Cte9dHu7J9RaZzHixZebNUC_uoq_LB1PX6ot7AZ2hSI77xL0g7_tHGLF7azEfDamy70zscx4x6CG3wN4QKdNKYN8OFQz9H3xXw9-5ItVze3s-tlVjOdx6wGzoziuZRAZL4RBeUVkaCAV0woowQvKtpApbTUOW9qsVFQcE5IQUST1PwcfRpze--eBwixfEoHdGllyZQWSnEhdJqi41TtXQgemrL3dpcIlJSUe-DlHni5B14egCeP_MdT2_HL6I1t_-u8HJ0WAN43aZ1Lmm75C8Lhke0
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_cie_2025_110917
crossref_primary_10_1016_j_rcim_2024_102782
crossref_primary_10_1109_TASE_2024_3396474
crossref_primary_10_1016_j_eswa_2025_126603
crossref_primary_10_1016_j_ejor_2025_02_025
crossref_primary_10_3390_app14104082
crossref_primary_10_1016_j_swevo_2024_101719
crossref_primary_10_1016_j_ins_2024_121011
crossref_primary_10_1016_j_swevo_2024_101538
crossref_primary_10_1109_TCYB_2023_3280175
crossref_primary_10_1080_00207543_2024_2363435
crossref_primary_10_1016_j_swevo_2025_101873
crossref_primary_10_1016_j_swevo_2024_101651
crossref_primary_10_1016_j_swevo_2024_101750
crossref_primary_10_1109_ACCESS_2025_3535825
crossref_primary_10_1109_TEVC_2024_3354850
crossref_primary_10_1007_s00521_024_10580_w
crossref_primary_10_3390_math12243926
crossref_primary_10_1016_j_engappai_2024_108699
crossref_primary_10_1016_j_engappai_2024_108775
crossref_primary_10_1080_00207543_2024_2357740
crossref_primary_10_1016_j_aei_2024_102647
crossref_primary_10_1109_TSMC_2024_3520381
crossref_primary_10_1109_TITS_2024_3511998
crossref_primary_10_1007_s10586_024_04970_x
crossref_primary_10_1007_s40747_025_01828_6
crossref_primary_10_1016_j_swevo_2025_101901
crossref_primary_10_1016_j_ins_2024_121364
crossref_primary_10_1016_j_compeleceng_2024_109780
crossref_primary_10_1016_j_swevo_2024_101602
crossref_primary_10_1016_j_swevo_2024_101789
crossref_primary_10_1016_j_swevo_2025_101885
Cites_doi 10.1016/j.cie.2020.107082
10.1109/TCYB.2022.3151855
10.1016/j.engappai.2021.104307
10.1016/j.cor.2011.10.007
10.23919/CSMS.2021.0027
10.1016/j.suscom.2022.100680
10.1007/s00170-010-2820-2
10.1109/TETCI.2018.2823329
10.1007/s10845-020-01537-6
10.1109/TETCI.2022.3145706
10.1016/j.cor.2016.11.017
10.1016/j.knosys.2021.107731
10.1109/TETCI.2018.2868474
10.1109/TASE.2021.3129439
10.1016/j.rcim.2021.102198
10.1007/BF02023073
10.1016/0305-0483(83)90088-9
10.1109/TSMC.2021.3120702
10.1109/MCI.2018.2840738
10.1016/j.rcim.2019.04.006
10.1016/j.apm.2016.09.022
10.1109/TETCI.2021.3098354
10.1109/KES.1998.725893
10.1109/TEVC.2022.3179256
10.1016/j.ejor.2020.07.063
10.1007/s10845-020-01547-4
10.1109/TCYB.2020.3026571
10.1109/TEVC.2022.3164260
10.1109/TEVC.2021.3106168
10.1016/j.cie.2015.01.003
10.1007/s10898-021-00992-6
10.1109/TEVC.2020.3024708
10.1109/TEVC.2021.3060811
10.1016/j.cie.2017.05.026
10.1080/00207543.2021.1968526
10.1016/j.cie.2016.02.024
10.1109/TEVC.2022.3177605
10.1080/00207540902814348
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2022.3219238
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 1603
ExternalDocumentID 10_1109_TEVC_2022_3219238
9937159
Genre orig-research
GrantInformation_xml – fundername: National Science Fund for Distinguished Young Scholars of China
  grantid: 61525304
– fundername: National Natural Science Foundation of China
  grantid: 62273193
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-ce42a84377e073d5614b07e8e4b258a8546b1feb897934fc5d8e64400605f8543
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Sun Jun 29 16:36:28 EDT 2025
Tue Jul 01 01:56:24 EDT 2025
Thu Apr 24 23:00:02 EDT 2025
Wed Aug 27 02:07:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ce42a84377e073d5614b07e8e4b258a8546b1feb897934fc5d8e64400605f8543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5153-5564
0000-0002-9640-1604
0000-0001-8698-2532
0000-0003-1226-2801
PQID 2895884559
PQPubID 85418
PageCount 14
ParticipantIDs crossref_primary_10_1109_TEVC_2022_3219238
proquest_journals_2895884559
ieee_primary_9937159
crossref_citationtrail_10_1109_TEVC_2022_3219238
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Deroussi (ref13)
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref33
  doi: 10.1016/j.cie.2020.107082
– ident: ref6
  doi: 10.1109/TCYB.2022.3151855
– ident: ref12
  doi: 10.1016/j.engappai.2021.104307
– ident: ref15
  doi: 10.1016/j.cor.2011.10.007
– ident: ref35
  doi: 10.23919/CSMS.2021.0027
– ident: ref11
  doi: 10.1016/j.suscom.2022.100680
– ident: ref14
  doi: 10.1007/s00170-010-2820-2
– ident: ref24
  doi: 10.1109/TETCI.2018.2823329
– ident: ref17
  doi: 10.1007/s10845-020-01537-6
– ident: ref4
  doi: 10.1109/TETCI.2022.3145706
– ident: ref8
  doi: 10.1016/j.cor.2016.11.017
– ident: ref29
  doi: 10.1016/j.knosys.2021.107731
– ident: ref22
  doi: 10.1109/TETCI.2018.2868474
– ident: ref5
  doi: 10.1109/TASE.2021.3129439
– start-page: 1
  volume-title: Proc. Int. Conf. Metaheuris. Nat. Inspir. Comput.
  ident: ref13
  article-title: Simultaneous scheduling of machines and vehicles for the flexible job shop problem
– ident: ref19
  doi: 10.1016/j.rcim.2021.102198
– ident: ref39
  doi: 10.1007/BF02023073
– ident: ref38
  doi: 10.1016/0305-0483(83)90088-9
– ident: ref2
  doi: 10.1109/TSMC.2021.3120702
– ident: ref21
  doi: 10.1109/MCI.2018.2840738
– ident: ref10
  doi: 10.1016/j.rcim.2019.04.006
– ident: ref9
  doi: 10.1016/j.apm.2016.09.022
– ident: ref31
  doi: 10.1109/TETCI.2021.3098354
– ident: ref37
  doi: 10.1109/KES.1998.725893
– ident: ref28
  doi: 10.1109/TEVC.2022.3179256
– ident: ref34
  doi: 10.1016/j.ejor.2020.07.063
– ident: ref1
  doi: 10.1007/s10845-020-01547-4
– ident: ref20
  doi: 10.1109/TCYB.2020.3026571
– ident: ref26
  doi: 10.1109/TEVC.2022.3164260
– ident: ref27
  doi: 10.1109/TEVC.2021.3106168
– ident: ref3
  doi: 10.1016/j.cie.2015.01.003
– ident: ref18
  doi: 10.1007/s10898-021-00992-6
– ident: ref23
  doi: 10.1109/TEVC.2020.3024708
– ident: ref25
  doi: 10.1109/TEVC.2021.3060811
– ident: ref32
  doi: 10.1016/j.cie.2017.05.026
– ident: ref7
  doi: 10.1080/00207543.2021.1968526
– ident: ref16
  doi: 10.1016/j.cie.2016.02.024
– ident: ref30
  doi: 10.1109/TEVC.2022.3177605
– ident: ref36
  doi: 10.1080/00207540902814348
SSID ssj0014519
Score 2.6005266
Snippet In many practical manufacturing systems, transportation equipment such as automated guided vehicles (AGVs) is widely adopted to transfer jobs and realize the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1590
SubjectTerms Automated guided vehicles
Cooperation
Evolutionary algorithms
Evolutionary computation
Finite transportation resource
flexible job shop scheduling
Job shop scheduling
Job shops
multipopulation
Optimization
reinforcement learning (RL)
Robustness (mathematics)
Sociology
statistical learning
Statistics
Task analysis
Transportation
Title A Learning-Based Multipopulation Evolutionary Optimization for Flexible Job Shop Scheduling Problem With Finite Transportation Resources
URI https://ieeexplore.ieee.org/document/9937159
https://www.proquest.com/docview/2895884559
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4BT_AAWwHRjU1-2BNaSpLarfPIUCuExIY02PoW1c6ZVkBbtSkS-wv2Z-8udqL90rS3SLGdSHe--86--w7gnUkU9p3rRw57NpK2l0WZ5kMcpWPtyCfJinbx6mPv4lZejtRoA943tTCIWCWfYYcfq7v8Ym7XfFR2yr6U3O8mbFLg5mu1mhsDpknxyfQZIUY9CjeYSZyd3gy-nFMkmKadbsqARv_ig6qmKn9Y4sq9DPfgqv4xn1Vy31mXpmO__cbZ-L9__gJ2A84UZ14xXsIGzlqwV_dwEGFLt2DnJ0LCFmwz9vTUzfvw_UwE9tW76AM5u0JU1bqLpuWXGDwFxR0vn8UnMj6PoapTEBQWQ-baNA8oLudGfJ7MF_TVCXk2LoAX176Rjfg6LSdiOGXkKxqidb9GfbOwOoDb4eDm_CIKjRsiS-ihjCzKdMxS7iNZkILJRk3cR43SpEqPtZI9kzg0OiPrIJ1VhUbCZcwNoxy97R7C1mw-wyMQXVNIWiRV5MsJuTldpCjlOLHKJSiztA1xLcrcBlZzbq7xkFfRTZzlLP2cpZ8H6bfhpJmy8JQe_xq8z9JsBgZBtuG41pc8bPpVTrErl_1SjPbq77NewzZ3q_fZMMewVS7X-IYwTWneVsr8AwxA9Do
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8cB42KBjojDADzwh0iWp3TqP29SqjHUg0UHfoto504nRVls6Cf4C_uzdxU7ELyHeIsV2Ip1932ef7zuAlyZR2HeuHzns2UjaXhZlmg9xlI61I0ySlezi-Kw3OpcnUzXdgNdNLgwiVpfPsMOPVSy_WNo1H5UdMJYS_N6Bu4T7KvHZWk3MgIVS_HX6jDijnoYYZhJnB5PBx2PaC6Zpp5sypdG_oFBVVuUPX1wBzHAHxvWv-XslXzrr0nTs999UG__33x_AdmCa4tBPjYewgYsW7NRVHERY1C24_5MkYQu2mH168eZd-HEogv7q5-iI4K4QVb7uqin6JQY3YerOrr6Jd-R-voa8TkFkWAxZbdNcojhZGvFhvlzRV-eEbZwCL977Ujbi00U5F8ML5r6ikVr3Y9SxhetHcD4cTI5HUSjdEFniD2VkUaYztnMfyYcULDdq4j5qlCZVeqaV7JnEodEZ-QfprCo0EjNjdRjl6G13DzYXywU-BtE1haRBUkVoTtzN6SJFKWeJVS5BmaVtiGtT5jbomnN5jcu82t_EWc7Wz9n6ebB-G141XVZe1ONfjXfZmk3DYMg27NfzJQ_L_jqn3Ssn_tIu7cnfe72Ae6PJ-DQ_fXP29ilsce16fzdmHzbLqzU-I4ZTmufVxL4F6oH3gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Learning-Based+Multipopulation+Evolutionary+Optimization+for+Flexible+Job+Shop+Scheduling+Problem+With+Finite+Transportation+Resources&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Pan%2C+Zixiao&rft.au=Wang%2C+Ling&rft.au=Zheng%2C+Jie&rft.au=Jing-Fang%2C+Chen&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=27&rft.issue=6&rft.spage=1590&rft_id=info:doi/10.1109%2FTEVC.2022.3219238&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon