A Programmable Heterogeneous Microprocessor Based on Bit-Scalable In-Memory Computing

In-memory computing (IMC) addresses the cost of accessing data from memory in a manner that introduces a tradeoff between energy/throughput and computation signal-to-noise ratio (SNR). However, low SNR posed a primary restriction to integrating IMC in larger, heterogeneous architectures required for...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 55; no. 9; pp. 2609 - 2621
Main Authors Jia, Hongyang, Valavi, Hossein, Tang, Yinqi, Zhang, Jintao, Verma, Naveen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9200
1558-173X
DOI10.1109/JSSC.2020.2987714

Cover

Loading…
Abstract In-memory computing (IMC) addresses the cost of accessing data from memory in a manner that introduces a tradeoff between energy/throughput and computation signal-to-noise ratio (SNR). However, low SNR posed a primary restriction to integrating IMC in larger, heterogeneous architectures required for practical workloads due to the challenges with creating robust abstractions necessary for the hardware and software stack. This work exploits recent progress in high-SNR IMC to achieve a programmable heterogeneous microprocessor architecture implemented in 65-nm CMOS and corresponding interfaces to the software that enables mapping of application workloads. The architecture consists of a 590-Kb IMC accelerator, configurable digital near-memory-computing (NMC) accelerator, RISC-V CPU, and other peripherals. To enable programmability, microarchitectural design of the IMC accelerator provides the integration in the standard processor memory space, areaand energy-efficient analog-to-digital conversion for interfacing to NMC, bit-scalable computation (1-8 b), and input-vector sparsity-proportional energy consumption. The IMC accelerator demonstrates excellent matching between computed outputs and idealized software-modeled outputs, at 1b TOPS/W of 192|400 and 1b-TOPS/mm2 of 0.60|0.24 for MAC hardware, at V DD of 1.2|0.85 V, both of which scale directly with the bit precision of the input vector and matrix elements. Software libraries developed for application mapping are used to demonstrate CIFAR-10 image classification with a ten-layer CNN, achieving accuracy, throughput, and energy of 89.3%|92.4%, 176|23 images/s, and 5.31|105.2 μJ/image, for 1|4 b quantization levels.
AbstractList In-memory computing (IMC) addresses the cost of accessing data from memory in a manner that introduces a tradeoff between energy/throughput and computation signal-to-noise ratio (SNR). However, low SNR posed a primary restriction to integrating IMC in larger, heterogeneous architectures required for practical workloads due to the challenges with creating robust abstractions necessary for the hardware and software stack. This work exploits recent progress in high-SNR IMC to achieve a programmable heterogeneous microprocessor architecture implemented in 65-nm CMOS and corresponding interfaces to the software that enables mapping of application workloads. The architecture consists of a 590-Kb IMC accelerator, configurable digital near-memory-computing (NMC) accelerator, RISC-V CPU, and other peripherals. To enable programmability, microarchitectural design of the IMC accelerator provides the integration in the standard processor memory space, area- and energy-efficient analog-to-digital conversion for interfacing to NMC, bit-scalable computation (1–8 b), and input-vector sparsity-proportional energy consumption. The IMC accelerator demonstrates excellent matching between computed outputs and idealized software-modeled outputs, at 1b TOPS/W of 192|400 and 1b-TOPS/mm2 of 0.60|0.24 for MAC hardware, at [Formula Omitted] of 1.2|0.85 V, both of which scale directly with the bit precision of the input vector and matrix elements. Software libraries developed for application mapping are used to demonstrate CIFAR-10 image classification with a ten-layer CNN, achieving accuracy, throughput, and energy of 89.3%|92.4%, 176|23 images/s, and [Formula Omitted]/image, for 1|4 b quantization levels.
In-memory computing (IMC) addresses the cost of accessing data from memory in a manner that introduces a tradeoff between energy/throughput and computation signal-to-noise ratio (SNR). However, low SNR posed a primary restriction to integrating IMC in larger, heterogeneous architectures required for practical workloads due to the challenges with creating robust abstractions necessary for the hardware and software stack. This work exploits recent progress in high-SNR IMC to achieve a programmable heterogeneous microprocessor architecture implemented in 65-nm CMOS and corresponding interfaces to the software that enables mapping of application workloads. The architecture consists of a 590-Kb IMC accelerator, configurable digital near-memory-computing (NMC) accelerator, RISC-V CPU, and other peripherals. To enable programmability, microarchitectural design of the IMC accelerator provides the integration in the standard processor memory space, areaand energy-efficient analog-to-digital conversion for interfacing to NMC, bit-scalable computation (1-8 b), and input-vector sparsity-proportional energy consumption. The IMC accelerator demonstrates excellent matching between computed outputs and idealized software-modeled outputs, at 1b TOPS/W of 192|400 and 1b-TOPS/mm2 of 0.60|0.24 for MAC hardware, at V DD of 1.2|0.85 V, both of which scale directly with the bit precision of the input vector and matrix elements. Software libraries developed for application mapping are used to demonstrate CIFAR-10 image classification with a ten-layer CNN, achieving accuracy, throughput, and energy of 89.3%|92.4%, 176|23 images/s, and 5.31|105.2 μJ/image, for 1|4 b quantization levels.
Author Valavi, Hossein
Tang, Yinqi
Jia, Hongyang
Zhang, Jintao
Verma, Naveen
Author_xml – sequence: 1
  givenname: Hongyang
  orcidid: 0000-0001-8692-1860
  surname: Jia
  fullname: Jia, Hongyang
  email: hjia@princeton.edu
  organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
– sequence: 2
  givenname: Hossein
  orcidid: 0000-0002-0218-9906
  surname: Valavi
  fullname: Valavi, Hossein
  organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
– sequence: 3
  givenname: Yinqi
  orcidid: 0000-0001-6667-1833
  surname: Tang
  fullname: Tang, Yinqi
  organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
– sequence: 4
  givenname: Jintao
  orcidid: 0000-0001-6909-0612
  surname: Zhang
  fullname: Zhang, Jintao
  organization: IBM T. J. Watson Center, Ossining, NY, USA
– sequence: 5
  givenname: Naveen
  surname: Verma
  fullname: Verma, Naveen
  organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
BookMark eNp9kE9Lw0AQxRdRsK1-APES8Jy6f5Ime2yD2kqLQi14C5vNbElJduvu5tBv79YWDx48DQ_eb-bNG6JLbTQgdEfwmBDMH1_X62JMMcVjyvMsI8kFGpA0zWOSsc9LNMCY5DGnGF-joXO7IJMkJwO0mUbv1myt6DpRtRDNwUPQoMH0Llo10pq9NRKcMzaaCQd1ZHQ0a3y8lqL9QRY6XkFn7CEqTLfvfaO3N-hKidbB7XmO0Ob56aOYx8u3l0UxXcaScuZjWdc8wzIBxkVV4ZSoDCgXgrMKcsZrVqlaAQClleRK1YliWT6hUtYpI5RN2Ag9nPaGjF89OF_uTG91OFnShOUTnrIkDa7s5ArPOGdBlbLxwjdGeyuatiS4PHZYHjssjx2W5w4DSf6Qe9t0wh7-Ze5PTBOS__o5zilJOfsGdjWAHQ
CODEN IJSCBC
CitedBy_id crossref_primary_10_1109_JSSC_2023_3309966
crossref_primary_10_1109_TCSI_2024_3350664
crossref_primary_10_1109_JETCAS_2020_3014250
crossref_primary_10_1109_ACCESS_2024_3487975
crossref_primary_10_1109_TCSII_2021_3099798
crossref_primary_10_1109_JSSC_2024_3386192
crossref_primary_10_1007_s11432_021_3234_0
crossref_primary_10_1109_OJSSCS_2022_3216562
crossref_primary_10_1016_j_sysarc_2021_102276
crossref_primary_10_3390_electronics12224713
crossref_primary_10_1109_JSSC_2024_3399615
crossref_primary_10_1109_TVLSI_2022_3203583
crossref_primary_10_1109_TVLSI_2024_3439355
crossref_primary_10_35848_1347_4065_ad9611
crossref_primary_10_1021_acsanm_2c02076
crossref_primary_10_1109_TCSI_2023_3266269
crossref_primary_10_1109_TCSI_2024_3364715
crossref_primary_10_3390_electronics13173494
crossref_primary_10_1109_TVLSI_2022_3210963
crossref_primary_10_1109_JSSC_2020_3031290
crossref_primary_10_1109_TCSI_2022_3185556
crossref_primary_10_35848_1347_4065_ad93e0
crossref_primary_10_1007_s11227_024_06700_x
crossref_primary_10_1109_OJSSCS_2023_3328290
crossref_primary_10_1109_TCSI_2021_3058510
crossref_primary_10_1109_JSSC_2023_3343669
crossref_primary_10_1109_TVLSI_2023_3266651
crossref_primary_10_1016_j_vlsi_2024_102243
crossref_primary_10_1109_TCSI_2024_3355944
crossref_primary_10_1109_TCSI_2021_3138057
crossref_primary_10_1109_JSSC_2021_3092759
crossref_primary_10_1109_JETCAS_2022_3170152
crossref_primary_10_1109_JSSC_2024_3470215
crossref_primary_10_1109_JSSC_2023_3326955
crossref_primary_10_1109_LSSC_2021_3103759
crossref_primary_10_1109_TCSI_2024_3360052
crossref_primary_10_1039_D2NH00568A
crossref_primary_10_1109_TCSI_2021_3071872
crossref_primary_10_1109_LSSC_2024_3520593
crossref_primary_10_1109_TVLSI_2020_3020286
crossref_primary_10_1109_JSSC_2022_3214064
crossref_primary_10_1007_s11432_021_3220_0
crossref_primary_10_1109_JSSC_2024_3387995
crossref_primary_10_1109_JEDS_2023_3265875
crossref_primary_10_1109_JSSC_2021_3095232
crossref_primary_10_1109_TVLSI_2020_3037871
crossref_primary_10_1109_JSSC_2024_3362274
crossref_primary_10_1109_TCAD_2024_3366025
crossref_primary_10_1109_JSSC_2022_3198413
crossref_primary_10_1016_j_mejo_2025_106598
crossref_primary_10_1109_TC_2021_3127354
crossref_primary_10_1002_cta_4192
crossref_primary_10_1088_2058_8585_ac541d
crossref_primary_10_3390_mi15040488
crossref_primary_10_1109_ACCESS_2023_3258360
crossref_primary_10_1109_JSSC_2024_3422826
crossref_primary_10_1109_JSSC_2022_3148273
crossref_primary_10_1109_TSP_2024_3394656
crossref_primary_10_3389_fncom_2021_674154
crossref_primary_10_1109_ACCESS_2021_3118094
crossref_primary_10_1002_adma_202419444
crossref_primary_10_1038_s41467_023_40770_4
crossref_primary_10_1109_TCSVT_2022_3145024
crossref_primary_10_1109_TC_2022_3214151
crossref_primary_10_1109_TCSI_2023_3301814
crossref_primary_10_3390_electronics13030666
crossref_primary_10_1109_ACCESS_2022_3154014
crossref_primary_10_1109_TCSI_2021_3052981
crossref_primary_10_1109_TCSII_2024_3357064
crossref_primary_10_3390_electronics10212724
crossref_primary_10_1109_JSSC_2022_3199077
crossref_primary_10_1109_JSSC_2021_3119018
crossref_primary_10_1109_TCSI_2023_3244338
crossref_primary_10_1109_TCSII_2024_3374885
crossref_primary_10_1109_JETCAS_2022_3212314
crossref_primary_10_1109_TC_2022_3230285
crossref_primary_10_1109_TCSII_2023_3249245
crossref_primary_10_1109_MSSC_2022_3182935
crossref_primary_10_1109_JSSC_2023_3269098
crossref_primary_10_1109_JSSC_2022_3224363
crossref_primary_10_1088_1741_2552_abf473
crossref_primary_10_1109_OJSSCS_2022_3210152
crossref_primary_10_1109_TVLSI_2025_3526363
crossref_primary_10_1109_JSSC_2021_3108344
crossref_primary_10_1088_1674_4926_43_3_031401
crossref_primary_10_1109_TC_2023_3285095
crossref_primary_10_1109_JSSC_2021_3056447
crossref_primary_10_1109_TCSII_2021_3095283
crossref_primary_10_1109_JSSC_2022_3211290
crossref_primary_10_1109_TCSI_2024_3476534
crossref_primary_10_1109_TCSII_2022_3159808
crossref_primary_10_3390_electronics13142822
crossref_primary_10_1109_JSSC_2022_3140414
crossref_primary_10_1109_TCSI_2021_3080042
crossref_primary_10_1109_TCSI_2024_3480350
Cites_doi 10.1109/JSSC.2017.2778702
10.1162/neco.1997.9.8.1735
10.1109/HOTCHIPS.2019.8875632
10.1109/ICASSP.2019.8683521
10.1109/CVPR.2016.90
10.1109/TC.2019.2954495
10.1109/JSSC.2018.2869150
10.1109/LSSC.2019.2902738
10.1109/MSSC.2019.2922889
10.1109/JETCAS.2019.2912352
10.1109/CVPR.2016.91
10.1145/3007787.3001163
10.1109/PATMOS.2017.8106976
10.1109/ISCA.2018.00015
10.1109/TCSI.2016.2537824
10.1109/JSSC.2019.2952773
10.1109/JSSC.2016.2616357
10.1109/JPROC.2017.2761740
10.1109/JSSC.2019.2899730
10.1109/VLSIT.2018.8510687
10.1109/JSSC.2019.2939682
10.1145/3007787.3001139
10.1109/JSSC.2016.2642198
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSSC.2020.2987714
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-173X
EndPage 2621
ExternalDocumentID 10_1109_JSSC_2020_2987714
9082159
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TAE
TN5
UKR
VH1
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-cdd970c4e39abb051f7e29aa93be839d3bfdfeee22bc9ffd4f37862ccd5312363
IEDL.DBID RIE
ISSN 0018-9200
IngestDate Mon Jun 30 10:22:56 EDT 2025
Thu Apr 24 22:54:30 EDT 2025
Tue Jul 01 01:33:38 EDT 2025
Wed Aug 27 02:30:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-cdd970c4e39abb051f7e29aa93be839d3bfdfeee22bc9ffd4f37862ccd5312363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6667-1833
0000-0002-0218-9906
0000-0001-6909-0612
0000-0001-8692-1860
PQID 2438695345
PQPubID 85482
PageCount 13
ParticipantIDs proquest_journals_2438695345
crossref_primary_10_1109_JSSC_2020_2987714
crossref_citationtrail_10_1109_JSSC_2020_2987714
ieee_primary_9082159
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of solid-state circuits
PublicationTitleAbbrev JSSC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref33
ref11
ref2
ref17
ref19
ref18
gonugondla (ref16) 2018
han (ref8) 2015
horowitz (ref10) 2014
ref26
ref25
ref20
amodei (ref23) 2016; 48
ref22
ref21
devlin (ref24) 2018
moons (ref30) 2017
ref27
ref7
ref9
simonyan (ref4) 2014
ref3
hubara (ref28) 2017; 18
ref6
ref5
krizhevsky (ref1) 2012
guo (ref35) 2019
khwa (ref32) 2018
choi (ref29) 2018
References_xml – ident: ref31
  doi: 10.1109/JSSC.2017.2778702
– ident: ref5
  doi: 10.1162/neco.1997.9.8.1735
– year: 2018
  ident: ref24
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: arXiv 1810 04805
– year: 2015
  ident: ref8
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
  publication-title: arXiv 1510 00149 [cs]
– year: 2018
  ident: ref29
  article-title: PACT: Parameterized clipping activation for quantized neural networks
  publication-title: arXiv 1805 06085
– ident: ref12
  doi: 10.1109/HOTCHIPS.2019.8875632
– ident: ref19
  doi: 10.1109/ICASSP.2019.8683521
– ident: ref2
  doi: 10.1109/CVPR.2016.90
– ident: ref9
  doi: 10.1109/TC.2019.2954495
– volume: 48
  start-page: 173
  year: 2016
  ident: ref23
  article-title: Deep speech 2: End-to-end speech recognition in English and Mandarin
  publication-title: Proc Int Conf Mach Learn (ICML)
– start-page: 10
  year: 2014
  ident: ref10
  article-title: 1.1 Computing's energy problem (and what we can do about it)
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
– volume: 18
  start-page: 6869
  year: 2017
  ident: ref28
  article-title: Quantized neural networks: Training neural networks with low precision weights and activations
  publication-title: J Mach Learn Res
– start-page: 120c
  year: 2019
  ident: ref35
  article-title: A 5.1pJ/Neuron 127.3 $\mu\text{s}$ /inference RNN-based speech recognition processor using 16 computing-in-memory SRAM macros in 65 nm CMOS
  publication-title: Proc Symp VLSI Circuits
– start-page: 496
  year: 2018
  ident: ref32
  article-title: A 65 nm 4 Kb algorithm-dependent computing-in-memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W fully parallel product-sum operation for binary DNN edge processors
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
– ident: ref21
  doi: 10.1109/JSSC.2018.2869150
– ident: ref22
  doi: 10.1109/LSSC.2019.2902738
– start-page: 1097
  year: 2012
  ident: ref1
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref13
  doi: 10.1109/MSSC.2019.2922889
– ident: ref18
  doi: 10.1109/JETCAS.2019.2912352
– ident: ref3
  doi: 10.1109/CVPR.2016.91
– ident: ref7
  doi: 10.1145/3007787.3001163
– start-page: 490
  year: 2018
  ident: ref16
  article-title: A 42 pJ/decision 3.12 TOPS/W robust in-memory machine learning classifier with on-chip training
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
– ident: ref25
  doi: 10.1109/PATMOS.2017.8106976
– ident: ref15
  doi: 10.1109/ISCA.2018.00015
– ident: ref26
  doi: 10.1109/TCSI.2016.2537824
– ident: ref34
  doi: 10.1109/JSSC.2019.2952773
– ident: ref6
  doi: 10.1109/JSSC.2016.2616357
– ident: ref11
  doi: 10.1109/JPROC.2017.2761740
– ident: ref20
  doi: 10.1109/JSSC.2019.2899730
– ident: ref33
  doi: 10.1109/VLSIT.2018.8510687
– ident: ref14
  doi: 10.1109/JSSC.2019.2939682
– ident: ref27
  doi: 10.1145/3007787.3001139
– ident: ref17
  doi: 10.1109/JSSC.2016.2642198
– year: 2014
  ident: ref4
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– start-page: 246
  year: 2017
  ident: ref30
  article-title: 14.5 envision: A 0.26-to-10 TOPS/W subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28 nm FDSOI
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
SSID ssj0014481
Score 2.6343362
Snippet In-memory computing (IMC) addresses the cost of accessing data from memory in a manner that introduces a tradeoff between energy/throughput and computation...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2609
SubjectTerms Analog to digital conversion
Capacitors
Charge-domain compute
CMOS
Computational modeling
Computer architecture
Computer memory
deep learning
Energy consumption
Hardware
hardware accelerators
Image classification
in-memory computing (IMC)
Mapping
Mathematical analysis
Matrix algebra
Matrix methods
Microprocessors
neural networks (NNs)
RISC
Signal to noise ratio
Software
Workload
Workloads
Title A Programmable Heterogeneous Microprocessor Based on Bit-Scalable In-Memory Computing
URI https://ieeexplore.ieee.org/document/9082159
https://www.proquest.com/docview/2438695345
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHDyJWWvSx-aooqzCirAueCt5gqjtot2D_nonSXcRFfHWQxLSTKYzX-ebGYDDXp6kTpiCOqF6NEUXncrcCWqs8uXrpJEhoju4zfuj9OYhe5iD41kujLU2kM9s1z-GWL6p9cT_Kjvx7bnR_M7DPAK3mKs1ixggzIjd8U5RgVH0bQTzNBEnN8PhBSJBlnQZIuyQsPPFBoWmKj--xMG8XK3AYLqxyCp56k4a1dUf32o2_nfnq7Dc-pnkLF6MNZiz1Tosfak-uAGjM3IX2VkvPn-K9D0zpsYLZevJGxl4pt44phHUr-QcrZ0hdUXOHxs6RMGGKdcVHXiq7juJ3SFw3U0YXV3eX_Rp22WBajT1DdXGiCLRqeVCKoU66grLhJSCK4vek-HKGYcvxJjSwjmTOl4gDNLaoPoynvMtWKjqym4DyQrDpVaaIWZEx8z4yjBcikzkkrmeyjuQTM-91G0Jct8J47kMUCQRpRdV6UVVtqLqwNFsyjjW3_hr8IY_-tnA9tQ7sDcVbtlq6FvJUt7LRcbTbOf3Wbuw6NeOfLI9WGheJ3YfHZBGHYSb9wlYotea
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQcgJYilqcPnFC9BDuP9REQaKEEIS0rcYv8lKpCgiB7gF_P2M6uEFQVtxzsxJlHZibzzQzA3iBPUidMQZ1QA5qii05l7gQ1Vvn2ddLIkNEtr_LhOL24zW7n4NesFsZaG8Bntu8vQy7fNHrif5Ud-PHcaH6_wELmi3FjtdYsZ4CBRpyPd4gqjMzvcpiHiTi4GI1OMBZkSZ9hjB1Kdt5YoTBW5cO3OBiYs2Uop0eLuJK__Umr-vrlXdfGz559BZY6T5McRdH4DnO2_gGLb_oPrsL4iFxHfNa9r6AiQ4-NaVCkbDN5IqXH6j3EQoLmkRyjvTOkqcnxn5aOkLVhy3lNSw_WfSZxPgTe9yeMz05vToa0m7NANRr7lmpjRJHo1HIhlUItdYVlQkrBlUX_yXDljMMXYkxp4ZxJHS8wENLaoAIznvM1mK-b2q4DyQrDpVaaYdSIrpnxvWG4FJnIJXMDlfcgmdK90l0Tcj8L464KwUgiKs-qyrOq6ljVg_3ZlofYgeN_i1c96WcLO6r3YGvK3KrT0aeKpXyQi4yn2ca_d-3C1-FNeVldnl_93oRv_jkRXbYF8-3jxG6jO9KqnSCFr77e2uI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Programmable+Heterogeneous+Microprocessor+Based+on+Bit-Scalable+In-Memory+Computing&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Jia%2C+Hongyang&rft.au=Valavi%2C+Hossein&rft.au=Tang%2C+Yinqi&rft.au=Zhang%2C+Jintao&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=0018-9200&rft.volume=55&rft.issue=9&rft.spage=2609&rft.epage=2621&rft_id=info:doi/10.1109%2FJSSC.2020.2987714&rft.externalDocID=9082159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon