A Programmable Heterogeneous Microprocessor Based on Bit-Scalable In-Memory Computing
In-memory computing (IMC) addresses the cost of accessing data from memory in a manner that introduces a tradeoff between energy/throughput and computation signal-to-noise ratio (SNR). However, low SNR posed a primary restriction to integrating IMC in larger, heterogeneous architectures required for...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 55; no. 9; pp. 2609 - 2621 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9200 1558-173X |
DOI | 10.1109/JSSC.2020.2987714 |
Cover
Loading…
Abstract | In-memory computing (IMC) addresses the cost of accessing data from memory in a manner that introduces a tradeoff between energy/throughput and computation signal-to-noise ratio (SNR). However, low SNR posed a primary restriction to integrating IMC in larger, heterogeneous architectures required for practical workloads due to the challenges with creating robust abstractions necessary for the hardware and software stack. This work exploits recent progress in high-SNR IMC to achieve a programmable heterogeneous microprocessor architecture implemented in 65-nm CMOS and corresponding interfaces to the software that enables mapping of application workloads. The architecture consists of a 590-Kb IMC accelerator, configurable digital near-memory-computing (NMC) accelerator, RISC-V CPU, and other peripherals. To enable programmability, microarchitectural design of the IMC accelerator provides the integration in the standard processor memory space, areaand energy-efficient analog-to-digital conversion for interfacing to NMC, bit-scalable computation (1-8 b), and input-vector sparsity-proportional energy consumption. The IMC accelerator demonstrates excellent matching between computed outputs and idealized software-modeled outputs, at 1b TOPS/W of 192|400 and 1b-TOPS/mm2 of 0.60|0.24 for MAC hardware, at V DD of 1.2|0.85 V, both of which scale directly with the bit precision of the input vector and matrix elements. Software libraries developed for application mapping are used to demonstrate CIFAR-10 image classification with a ten-layer CNN, achieving accuracy, throughput, and energy of 89.3%|92.4%, 176|23 images/s, and 5.31|105.2 μJ/image, for 1|4 b quantization levels. |
---|---|
AbstractList | In-memory computing (IMC) addresses the cost of accessing data from memory in a manner that introduces a tradeoff between energy/throughput and computation signal-to-noise ratio (SNR). However, low SNR posed a primary restriction to integrating IMC in larger, heterogeneous architectures required for practical workloads due to the challenges with creating robust abstractions necessary for the hardware and software stack. This work exploits recent progress in high-SNR IMC to achieve a programmable heterogeneous microprocessor architecture implemented in 65-nm CMOS and corresponding interfaces to the software that enables mapping of application workloads. The architecture consists of a 590-Kb IMC accelerator, configurable digital near-memory-computing (NMC) accelerator, RISC-V CPU, and other peripherals. To enable programmability, microarchitectural design of the IMC accelerator provides the integration in the standard processor memory space, area- and energy-efficient analog-to-digital conversion for interfacing to NMC, bit-scalable computation (1–8 b), and input-vector sparsity-proportional energy consumption. The IMC accelerator demonstrates excellent matching between computed outputs and idealized software-modeled outputs, at 1b TOPS/W of 192|400 and 1b-TOPS/mm2 of 0.60|0.24 for MAC hardware, at [Formula Omitted] of 1.2|0.85 V, both of which scale directly with the bit precision of the input vector and matrix elements. Software libraries developed for application mapping are used to demonstrate CIFAR-10 image classification with a ten-layer CNN, achieving accuracy, throughput, and energy of 89.3%|92.4%, 176|23 images/s, and [Formula Omitted]/image, for 1|4 b quantization levels. In-memory computing (IMC) addresses the cost of accessing data from memory in a manner that introduces a tradeoff between energy/throughput and computation signal-to-noise ratio (SNR). However, low SNR posed a primary restriction to integrating IMC in larger, heterogeneous architectures required for practical workloads due to the challenges with creating robust abstractions necessary for the hardware and software stack. This work exploits recent progress in high-SNR IMC to achieve a programmable heterogeneous microprocessor architecture implemented in 65-nm CMOS and corresponding interfaces to the software that enables mapping of application workloads. The architecture consists of a 590-Kb IMC accelerator, configurable digital near-memory-computing (NMC) accelerator, RISC-V CPU, and other peripherals. To enable programmability, microarchitectural design of the IMC accelerator provides the integration in the standard processor memory space, areaand energy-efficient analog-to-digital conversion for interfacing to NMC, bit-scalable computation (1-8 b), and input-vector sparsity-proportional energy consumption. The IMC accelerator demonstrates excellent matching between computed outputs and idealized software-modeled outputs, at 1b TOPS/W of 192|400 and 1b-TOPS/mm2 of 0.60|0.24 for MAC hardware, at V DD of 1.2|0.85 V, both of which scale directly with the bit precision of the input vector and matrix elements. Software libraries developed for application mapping are used to demonstrate CIFAR-10 image classification with a ten-layer CNN, achieving accuracy, throughput, and energy of 89.3%|92.4%, 176|23 images/s, and 5.31|105.2 μJ/image, for 1|4 b quantization levels. |
Author | Valavi, Hossein Tang, Yinqi Jia, Hongyang Zhang, Jintao Verma, Naveen |
Author_xml | – sequence: 1 givenname: Hongyang orcidid: 0000-0001-8692-1860 surname: Jia fullname: Jia, Hongyang email: hjia@princeton.edu organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA – sequence: 2 givenname: Hossein orcidid: 0000-0002-0218-9906 surname: Valavi fullname: Valavi, Hossein organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA – sequence: 3 givenname: Yinqi orcidid: 0000-0001-6667-1833 surname: Tang fullname: Tang, Yinqi organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA – sequence: 4 givenname: Jintao orcidid: 0000-0001-6909-0612 surname: Zhang fullname: Zhang, Jintao organization: IBM T. J. Watson Center, Ossining, NY, USA – sequence: 5 givenname: Naveen surname: Verma fullname: Verma, Naveen organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA |
BookMark | eNp9kE9Lw0AQxRdRsK1-APES8Jy6f5Ime2yD2kqLQi14C5vNbElJduvu5tBv79YWDx48DQ_eb-bNG6JLbTQgdEfwmBDMH1_X62JMMcVjyvMsI8kFGpA0zWOSsc9LNMCY5DGnGF-joXO7IJMkJwO0mUbv1myt6DpRtRDNwUPQoMH0Llo10pq9NRKcMzaaCQd1ZHQ0a3y8lqL9QRY6XkFn7CEqTLfvfaO3N-hKidbB7XmO0Ob56aOYx8u3l0UxXcaScuZjWdc8wzIBxkVV4ZSoDCgXgrMKcsZrVqlaAQClleRK1YliWT6hUtYpI5RN2Ag9nPaGjF89OF_uTG91OFnShOUTnrIkDa7s5ArPOGdBlbLxwjdGeyuatiS4PHZYHjssjx2W5w4DSf6Qe9t0wh7-Ze5PTBOS__o5zilJOfsGdjWAHQ |
CODEN | IJSCBC |
CitedBy_id | crossref_primary_10_1109_JSSC_2023_3309966 crossref_primary_10_1109_TCSI_2024_3350664 crossref_primary_10_1109_JETCAS_2020_3014250 crossref_primary_10_1109_ACCESS_2024_3487975 crossref_primary_10_1109_TCSII_2021_3099798 crossref_primary_10_1109_JSSC_2024_3386192 crossref_primary_10_1007_s11432_021_3234_0 crossref_primary_10_1109_OJSSCS_2022_3216562 crossref_primary_10_1016_j_sysarc_2021_102276 crossref_primary_10_3390_electronics12224713 crossref_primary_10_1109_JSSC_2024_3399615 crossref_primary_10_1109_TVLSI_2022_3203583 crossref_primary_10_1109_TVLSI_2024_3439355 crossref_primary_10_35848_1347_4065_ad9611 crossref_primary_10_1021_acsanm_2c02076 crossref_primary_10_1109_TCSI_2023_3266269 crossref_primary_10_1109_TCSI_2024_3364715 crossref_primary_10_3390_electronics13173494 crossref_primary_10_1109_TVLSI_2022_3210963 crossref_primary_10_1109_JSSC_2020_3031290 crossref_primary_10_1109_TCSI_2022_3185556 crossref_primary_10_35848_1347_4065_ad93e0 crossref_primary_10_1007_s11227_024_06700_x crossref_primary_10_1109_OJSSCS_2023_3328290 crossref_primary_10_1109_TCSI_2021_3058510 crossref_primary_10_1109_JSSC_2023_3343669 crossref_primary_10_1109_TVLSI_2023_3266651 crossref_primary_10_1016_j_vlsi_2024_102243 crossref_primary_10_1109_TCSI_2024_3355944 crossref_primary_10_1109_TCSI_2021_3138057 crossref_primary_10_1109_JSSC_2021_3092759 crossref_primary_10_1109_JETCAS_2022_3170152 crossref_primary_10_1109_JSSC_2024_3470215 crossref_primary_10_1109_JSSC_2023_3326955 crossref_primary_10_1109_LSSC_2021_3103759 crossref_primary_10_1109_TCSI_2024_3360052 crossref_primary_10_1039_D2NH00568A crossref_primary_10_1109_TCSI_2021_3071872 crossref_primary_10_1109_LSSC_2024_3520593 crossref_primary_10_1109_TVLSI_2020_3020286 crossref_primary_10_1109_JSSC_2022_3214064 crossref_primary_10_1007_s11432_021_3220_0 crossref_primary_10_1109_JSSC_2024_3387995 crossref_primary_10_1109_JEDS_2023_3265875 crossref_primary_10_1109_JSSC_2021_3095232 crossref_primary_10_1109_TVLSI_2020_3037871 crossref_primary_10_1109_JSSC_2024_3362274 crossref_primary_10_1109_TCAD_2024_3366025 crossref_primary_10_1109_JSSC_2022_3198413 crossref_primary_10_1016_j_mejo_2025_106598 crossref_primary_10_1109_TC_2021_3127354 crossref_primary_10_1002_cta_4192 crossref_primary_10_1088_2058_8585_ac541d crossref_primary_10_3390_mi15040488 crossref_primary_10_1109_ACCESS_2023_3258360 crossref_primary_10_1109_JSSC_2024_3422826 crossref_primary_10_1109_JSSC_2022_3148273 crossref_primary_10_1109_TSP_2024_3394656 crossref_primary_10_3389_fncom_2021_674154 crossref_primary_10_1109_ACCESS_2021_3118094 crossref_primary_10_1002_adma_202419444 crossref_primary_10_1038_s41467_023_40770_4 crossref_primary_10_1109_TCSVT_2022_3145024 crossref_primary_10_1109_TC_2022_3214151 crossref_primary_10_1109_TCSI_2023_3301814 crossref_primary_10_3390_electronics13030666 crossref_primary_10_1109_ACCESS_2022_3154014 crossref_primary_10_1109_TCSI_2021_3052981 crossref_primary_10_1109_TCSII_2024_3357064 crossref_primary_10_3390_electronics10212724 crossref_primary_10_1109_JSSC_2022_3199077 crossref_primary_10_1109_JSSC_2021_3119018 crossref_primary_10_1109_TCSI_2023_3244338 crossref_primary_10_1109_TCSII_2024_3374885 crossref_primary_10_1109_JETCAS_2022_3212314 crossref_primary_10_1109_TC_2022_3230285 crossref_primary_10_1109_TCSII_2023_3249245 crossref_primary_10_1109_MSSC_2022_3182935 crossref_primary_10_1109_JSSC_2023_3269098 crossref_primary_10_1109_JSSC_2022_3224363 crossref_primary_10_1088_1741_2552_abf473 crossref_primary_10_1109_OJSSCS_2022_3210152 crossref_primary_10_1109_TVLSI_2025_3526363 crossref_primary_10_1109_JSSC_2021_3108344 crossref_primary_10_1088_1674_4926_43_3_031401 crossref_primary_10_1109_TC_2023_3285095 crossref_primary_10_1109_JSSC_2021_3056447 crossref_primary_10_1109_TCSII_2021_3095283 crossref_primary_10_1109_JSSC_2022_3211290 crossref_primary_10_1109_TCSI_2024_3476534 crossref_primary_10_1109_TCSII_2022_3159808 crossref_primary_10_3390_electronics13142822 crossref_primary_10_1109_JSSC_2022_3140414 crossref_primary_10_1109_TCSI_2021_3080042 crossref_primary_10_1109_TCSI_2024_3480350 |
Cites_doi | 10.1109/JSSC.2017.2778702 10.1162/neco.1997.9.8.1735 10.1109/HOTCHIPS.2019.8875632 10.1109/ICASSP.2019.8683521 10.1109/CVPR.2016.90 10.1109/TC.2019.2954495 10.1109/JSSC.2018.2869150 10.1109/LSSC.2019.2902738 10.1109/MSSC.2019.2922889 10.1109/JETCAS.2019.2912352 10.1109/CVPR.2016.91 10.1145/3007787.3001163 10.1109/PATMOS.2017.8106976 10.1109/ISCA.2018.00015 10.1109/TCSI.2016.2537824 10.1109/JSSC.2019.2952773 10.1109/JSSC.2016.2616357 10.1109/JPROC.2017.2761740 10.1109/JSSC.2019.2899730 10.1109/VLSIT.2018.8510687 10.1109/JSSC.2019.2939682 10.1145/3007787.3001139 10.1109/JSSC.2016.2642198 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/JSSC.2020.2987714 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-173X |
EndPage | 2621 |
ExternalDocumentID | 10_1109_JSSC_2020_2987714 9082159 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TAE TN5 UKR VH1 AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c293t-cdd970c4e39abb051f7e29aa93be839d3bfdfeee22bc9ffd4f37862ccd5312363 |
IEDL.DBID | RIE |
ISSN | 0018-9200 |
IngestDate | Mon Jun 30 10:22:56 EDT 2025 Thu Apr 24 22:54:30 EDT 2025 Tue Jul 01 01:33:38 EDT 2025 Wed Aug 27 02:30:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-cdd970c4e39abb051f7e29aa93be839d3bfdfeee22bc9ffd4f37862ccd5312363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6667-1833 0000-0002-0218-9906 0000-0001-6909-0612 0000-0001-8692-1860 |
PQID | 2438695345 |
PQPubID | 85482 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2438695345 crossref_primary_10_1109_JSSC_2020_2987714 crossref_citationtrail_10_1109_JSSC_2020_2987714 ieee_primary_9082159 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal of solid-state circuits |
PublicationTitleAbbrev | JSSC |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref31 ref33 ref11 ref2 ref17 ref19 ref18 gonugondla (ref16) 2018 han (ref8) 2015 horowitz (ref10) 2014 ref26 ref25 ref20 amodei (ref23) 2016; 48 ref22 ref21 devlin (ref24) 2018 moons (ref30) 2017 ref27 ref7 ref9 simonyan (ref4) 2014 ref3 hubara (ref28) 2017; 18 ref6 ref5 krizhevsky (ref1) 2012 guo (ref35) 2019 khwa (ref32) 2018 choi (ref29) 2018 |
References_xml | – ident: ref31 doi: 10.1109/JSSC.2017.2778702 – ident: ref5 doi: 10.1162/neco.1997.9.8.1735 – year: 2018 ident: ref24 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: arXiv 1810 04805 – year: 2015 ident: ref8 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding publication-title: arXiv 1510 00149 [cs] – year: 2018 ident: ref29 article-title: PACT: Parameterized clipping activation for quantized neural networks publication-title: arXiv 1805 06085 – ident: ref12 doi: 10.1109/HOTCHIPS.2019.8875632 – ident: ref19 doi: 10.1109/ICASSP.2019.8683521 – ident: ref2 doi: 10.1109/CVPR.2016.90 – ident: ref9 doi: 10.1109/TC.2019.2954495 – volume: 48 start-page: 173 year: 2016 ident: ref23 article-title: Deep speech 2: End-to-end speech recognition in English and Mandarin publication-title: Proc Int Conf Mach Learn (ICML) – start-page: 10 year: 2014 ident: ref10 article-title: 1.1 Computing's energy problem (and what we can do about it) publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers – volume: 18 start-page: 6869 year: 2017 ident: ref28 article-title: Quantized neural networks: Training neural networks with low precision weights and activations publication-title: J Mach Learn Res – start-page: 120c year: 2019 ident: ref35 article-title: A 5.1pJ/Neuron 127.3 $\mu\text{s}$ /inference RNN-based speech recognition processor using 16 computing-in-memory SRAM macros in 65 nm CMOS publication-title: Proc Symp VLSI Circuits – start-page: 496 year: 2018 ident: ref32 article-title: A 65 nm 4 Kb algorithm-dependent computing-in-memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W fully parallel product-sum operation for binary DNN edge processors publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers – ident: ref21 doi: 10.1109/JSSC.2018.2869150 – ident: ref22 doi: 10.1109/LSSC.2019.2902738 – start-page: 1097 year: 2012 ident: ref1 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref13 doi: 10.1109/MSSC.2019.2922889 – ident: ref18 doi: 10.1109/JETCAS.2019.2912352 – ident: ref3 doi: 10.1109/CVPR.2016.91 – ident: ref7 doi: 10.1145/3007787.3001163 – start-page: 490 year: 2018 ident: ref16 article-title: A 42 pJ/decision 3.12 TOPS/W robust in-memory machine learning classifier with on-chip training publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers – ident: ref25 doi: 10.1109/PATMOS.2017.8106976 – ident: ref15 doi: 10.1109/ISCA.2018.00015 – ident: ref26 doi: 10.1109/TCSI.2016.2537824 – ident: ref34 doi: 10.1109/JSSC.2019.2952773 – ident: ref6 doi: 10.1109/JSSC.2016.2616357 – ident: ref11 doi: 10.1109/JPROC.2017.2761740 – ident: ref20 doi: 10.1109/JSSC.2019.2899730 – ident: ref33 doi: 10.1109/VLSIT.2018.8510687 – ident: ref14 doi: 10.1109/JSSC.2019.2939682 – ident: ref27 doi: 10.1145/3007787.3001139 – ident: ref17 doi: 10.1109/JSSC.2016.2642198 – year: 2014 ident: ref4 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – start-page: 246 year: 2017 ident: ref30 article-title: 14.5 envision: A 0.26-to-10 TOPS/W subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28 nm FDSOI publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers |
SSID | ssj0014481 |
Score | 2.6343362 |
Snippet | In-memory computing (IMC) addresses the cost of accessing data from memory in a manner that introduces a tradeoff between energy/throughput and computation... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2609 |
SubjectTerms | Analog to digital conversion Capacitors Charge-domain compute CMOS Computational modeling Computer architecture Computer memory deep learning Energy consumption Hardware hardware accelerators Image classification in-memory computing (IMC) Mapping Mathematical analysis Matrix algebra Matrix methods Microprocessors neural networks (NNs) RISC Signal to noise ratio Software Workload Workloads |
Title | A Programmable Heterogeneous Microprocessor Based on Bit-Scalable In-Memory Computing |
URI | https://ieeexplore.ieee.org/document/9082159 https://www.proquest.com/docview/2438695345 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHDyJWWvSx-aooqzCirAueCt5gqjtot2D_nonSXcRFfHWQxLSTKYzX-ebGYDDXp6kTpiCOqF6NEUXncrcCWqs8uXrpJEhoju4zfuj9OYhe5iD41kujLU2kM9s1z-GWL6p9cT_Kjvx7bnR_M7DPAK3mKs1ixggzIjd8U5RgVH0bQTzNBEnN8PhBSJBlnQZIuyQsPPFBoWmKj--xMG8XK3AYLqxyCp56k4a1dUf32o2_nfnq7Dc-pnkLF6MNZiz1Tosfak-uAGjM3IX2VkvPn-K9D0zpsYLZevJGxl4pt44phHUr-QcrZ0hdUXOHxs6RMGGKdcVHXiq7juJ3SFw3U0YXV3eX_Rp22WBajT1DdXGiCLRqeVCKoU66grLhJSCK4vek-HKGYcvxJjSwjmTOl4gDNLaoPoynvMtWKjqym4DyQrDpVaaIWZEx8z4yjBcikzkkrmeyjuQTM-91G0Jct8J47kMUCQRpRdV6UVVtqLqwNFsyjjW3_hr8IY_-tnA9tQ7sDcVbtlq6FvJUt7LRcbTbOf3Wbuw6NeOfLI9WGheJ3YfHZBGHYSb9wlYotea |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROLQcgJYilqcPnFC9BDuP9REQaKEEIS0rcYv8lKpCgiB7gF_P2M6uEFQVtxzsxJlHZibzzQzA3iBPUidMQZ1QA5qii05l7gQ1Vvn2ddLIkNEtr_LhOL24zW7n4NesFsZaG8Bntu8vQy7fNHrif5Ud-PHcaH6_wELmi3FjtdYsZ4CBRpyPd4gqjMzvcpiHiTi4GI1OMBZkSZ9hjB1Kdt5YoTBW5cO3OBiYs2Uop0eLuJK__Umr-vrlXdfGz559BZY6T5McRdH4DnO2_gGLb_oPrsL4iFxHfNa9r6AiQ4-NaVCkbDN5IqXH6j3EQoLmkRyjvTOkqcnxn5aOkLVhy3lNSw_WfSZxPgTe9yeMz05vToa0m7NANRr7lmpjRJHo1HIhlUItdYVlQkrBlUX_yXDljMMXYkxp4ZxJHS8wENLaoAIznvM1mK-b2q4DyQrDpVaaYdSIrpnxvWG4FJnIJXMDlfcgmdK90l0Tcj8L464KwUgiKs-qyrOq6ljVg_3ZlofYgeN_i1c96WcLO6r3YGvK3KrT0aeKpXyQi4yn2ca_d-3C1-FNeVldnl_93oRv_jkRXbYF8-3jxG6jO9KqnSCFr77e2uI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Programmable+Heterogeneous+Microprocessor+Based+on+Bit-Scalable+In-Memory+Computing&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Jia%2C+Hongyang&rft.au=Valavi%2C+Hossein&rft.au=Tang%2C+Yinqi&rft.au=Zhang%2C+Jintao&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=0018-9200&rft.volume=55&rft.issue=9&rft.spage=2609&rft.epage=2621&rft_id=info:doi/10.1109%2FJSSC.2020.2987714&rft.externalDocID=9082159 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon |