Facial Expression and EEG Fusion for Investigating Continuous Emotions of Deaf Subjects
Emotion recognition has received increasing attention in human-computer interaction (HCI) and psychological assessment. Compared with single modal emotion recognition, the multimodal paradigm has an outperformance because of introducing complementary information for emotion recognition. However, cur...
Saved in:
Published in | IEEE sensors journal Vol. 21; no. 15; pp. 16894 - 16903 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emotion recognition has received increasing attention in human-computer interaction (HCI) and psychological assessment. Compared with single modal emotion recognition, the multimodal paradigm has an outperformance because of introducing complementary information for emotion recognition. However, current research is mainly focused on normal people, the deaf subjects need to understand emotional changes in real life. In this paper, we propose a multimodal continuous emotion recognition method for deaf subjects based on facial expression and electroencephalograph (EEG) signals. Twelve emotion movie clips as stimulus were selected and annotated by ten postgraduates who majored in psychology. The EEG signals and facial expressions of deaf subjects were collected when they watched the stimulus clips. The differential entropy (DE) features of EEG were extracted by time-frequency analysis and the six facial features were extracted by facial landmark. Long short-term memory networks (LSTM) were utilized to accomplish the feature level fusion and captured the temporal dynamics of emotions. The result shows that the EEG signal is better than the dynamic emotional capture of facial expressions and deaf subjects in continuous emotion recognition. Multi-modality can compensate for the information of a single modality, which achieves a better performance. Finally, from the neural activities of deaf subjects, the result reveals that the prefrontal lobe region may be strongly related to negative emotion processing, and the lateral temporal lobe region may be strongly related to positive emotion processing. |
---|---|
AbstractList | Emotion recognition has received increasing attention in human-computer interaction (HCI) and psychological assessment. Compared with single modal emotion recognition, the multimodal paradigm has an outperformance because of introducing complementary information for emotion recognition. However, current research is mainly focused on normal people, the deaf subjects need to understand emotional changes in real life. In this paper, we propose a multimodal continuous emotion recognition method for deaf subjects based on facial expression and electroencephalograph (EEG) signals. Twelve emotion movie clips as stimulus were selected and annotated by ten postgraduates who majored in psychology. The EEG signals and facial expressions of deaf subjects were collected when they watched the stimulus clips. The differential entropy (DE) features of EEG were extracted by time-frequency analysis and the six facial features were extracted by facial landmark. Long short-term memory networks (LSTM) were utilized to accomplish the feature level fusion and captured the temporal dynamics of emotions. The result shows that the EEG signal is better than the dynamic emotional capture of facial expressions and deaf subjects in continuous emotion recognition. Multi-modality can compensate for the information of a single modality, which achieves a better performance. Finally, from the neural activities of deaf subjects, the result reveals that the prefrontal lobe region may be strongly related to negative emotion processing, and the lateral temporal lobe region may be strongly related to positive emotion processing. |
Author | Mao, Zemin Song, Xiaolin Gao, Qiang Liu, Junjie Yang, Yi Song, Yu |
Author_xml | – sequence: 1 givenname: Yi orcidid: 0000-0001-8679-9359 surname: Yang fullname: Yang, Yi email: yyflying@yeah.net organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems & School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China – sequence: 2 givenname: Qiang surname: Gao fullname: Gao, Qiang organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, TUT Maritime College, Tianjin University of Technology, Tianjin, China – sequence: 3 givenname: Xiaolin surname: Song fullname: Song, Xiaolin email: songxiaolin16@hotmail.com organization: Engineering Training Center, Tianjin University of Technology, Tianjin, China – sequence: 4 givenname: Yu orcidid: 0000-0002-9295-7795 surname: Song fullname: Song, Yu email: jasonsongrain@hotmail.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems & School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China – sequence: 5 givenname: Zemin surname: Mao fullname: Mao, Zemin organization: Technical College for the Deaf, Tianjin University of Technology, Tianjin, China – sequence: 6 givenname: Junjie orcidid: 0000-0002-8827-1141 surname: Liu fullname: Liu, Junjie organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems & School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China |
BookMark | eNp9UE1LAzEQDaJgW_0B4iXgeWu-drM5St3Wiuihit5CNk1KSpvUZFf037triwcPwsCbgffmzbwhOPbBGwAuMBpjjMT1_aJ6HBNE8JgiXqKSH4EBzvMyw5yVx31PUcYofzsFw5TWCGHBcz4Ar1OlndrA6nMXTUoueKj8ElbVDE7bn9GGCOf-w6TGrVTj_ApOgu-wDW2C1TY0HSnBYOGtURYu2nptdJPOwIlVm2TODzgCL9PqeXKXPTzN5pObh0wTQZtMa5FrVCpLRM5tIVhd15ZwIUyJLDKa6GVNC24RExrVWGDKrRBLo7HRRVd0BK72e3cxvLfdkXId2ug7S0nyvGACI0Y6Ft6zdAwpRWPlLrqtil8SI9nnJ_v8ZJ-fPOTXafgfjXaN6r9tonKbf5WXe6Uzxvw6CUZYgQr6DaaFgAk |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_JBHI_2022_3212475 crossref_primary_10_2139_ssrn_4066353 crossref_primary_10_1007_s13042_021_01414_5 crossref_primary_10_1109_JSEN_2024_3440340 crossref_primary_10_3390_s23010498 crossref_primary_10_1016_j_dibe_2023_100198 crossref_primary_10_1109_JSEN_2023_3239507 crossref_primary_10_1109_TIM_2021_3121473 crossref_primary_10_1016_j_measurement_2022_111724 crossref_primary_10_1631_FITEE_2300781 crossref_primary_10_1109_TAFFC_2024_3394436 crossref_primary_10_1109_JSEN_2024_3389674 crossref_primary_10_1016_j_measurement_2022_111648 crossref_primary_10_1109_JSEN_2021_3108471 crossref_primary_10_1080_10447318_2023_2228983 crossref_primary_10_1109_TIM_2024_3400341 crossref_primary_10_3390_s23125461 crossref_primary_10_3390_diagnostics13050977 crossref_primary_10_1002_aisy_202300050 crossref_primary_10_1109_JBHI_2021_3092412 crossref_primary_10_1109_TIM_2023_3347790 |
Cites_doi | 10.1109/TAFFC.2014.2339834 10.1109/TSMCA.2011.2116000 10.1587/transinf.2015EDP7251 10.1109/TAMD.2015.2431497 10.1109/JBHI.2017.2688239 10.5815/ijigsp.2011.05.05 10.1109/JSEN.2020.3027181 10.3233/THC-181538 10.1016/j.imavis.2012.10.002 10.1109/ACCESS.2019.2891579 10.3758/s13428-017-0915-5 10.1016/0005-7916(94)90063-9 10.1016/S0304-3940(98)00122-0 10.1109/TAFFC.2015.2436926 10.1109/TCYB.2017.2788081 10.1109/ACCESS.2019.2927768 10.1155/2017/2107451 10.1126/science.3992243 10.1109/ACCESS.2020.2978163 10.1109/TAFFC.2017.2712143 10.1016/j.jneumeth.2003.10.009 10.1109/T-AFFC.2011.15 10.1016/j.bspc.2020.101867 10.1109/EMBC.2018.8512407 10.1145/2682899 10.1109/ACCESS.2019.2934529 10.1109/TSMC.2017.2756447 10.1109/JSEN.2018.2883497 10.1109/NER.2013.6695876 10.1111/j.1468-1331.2011.03406.x 10.1109/TMM.2018.2887016 10.1109/T-AFFC.2011.25 10.1109/ACCESS.2019.2914872 10.1109/TSMCB.2008.927269 10.1109/TBME.2012.2217495 10.1109/TCYB.2018.2797176 10.1007/s11042-020-09354-y 10.1109/ACCESS.2019.2949707 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2021.3078087 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering Psychology |
EISSN | 1558-1748 |
EndPage | 16903 |
ExternalDocumentID | 10_1109_JSEN_2021_3078087 9424606 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research on Advanced Technology and Engineering Application Team, Tianjin, China grantid: 20160524 – fundername: Natural Science Foundation of Tianjin grantid: 18JCYBJC87700 funderid: 10.13039/501100006606 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-cc95c08af2957f694bbbf2799e80f0ec2cdb367f049c0b19137f99dec1ec6ec63 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:20:40 EDT 2025 Thu Apr 24 22:54:30 EDT 2025 Tue Jul 01 03:37:03 EDT 2025 Wed Aug 27 02:40:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-cc95c08af2957f694bbbf2799e80f0ec2cdb367f049c0b19137f99dec1ec6ec63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9295-7795 0000-0001-8679-9359 0000-0002-8827-1141 |
PQID | 2556491042 |
PQPubID | 75733 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9424606 crossref_primary_10_1109_JSEN_2021_3078087 proquest_journals_2556491042 crossref_citationtrail_10_1109_JSEN_2021_3078087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref24 ref23 ekman (ref6) 1978; 47 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref5 |
References_xml | – ident: ref38 doi: 10.1109/TAFFC.2014.2339834 – ident: ref10 doi: 10.1109/TSMCA.2011.2116000 – ident: ref17 doi: 10.1587/transinf.2015EDP7251 – ident: ref13 doi: 10.1109/TAMD.2015.2431497 – ident: ref29 doi: 10.1109/JBHI.2017.2688239 – ident: ref11 doi: 10.5815/ijigsp.2011.05.05 – ident: ref21 doi: 10.1109/JSEN.2020.3027181 – ident: ref3 doi: 10.3233/THC-181538 – ident: ref30 doi: 10.1016/j.imavis.2012.10.002 – volume: 47 start-page: 38 year: 1978 ident: ref6 article-title: Facial action coding system (FACS): A technique for the measurement of facial actions publication-title: Rivista di Psichiatria – ident: ref24 doi: 10.1109/ACCESS.2019.2891579 – ident: ref33 doi: 10.3758/s13428-017-0915-5 – ident: ref7 doi: 10.1016/0005-7916(94)90063-9 – ident: ref37 doi: 10.1016/S0304-3940(98)00122-0 – ident: ref18 doi: 10.1109/TAFFC.2015.2436926 – ident: ref14 doi: 10.1109/TCYB.2017.2788081 – ident: ref15 doi: 10.1109/ACCESS.2019.2927768 – ident: ref32 doi: 10.1155/2017/2107451 – ident: ref35 doi: 10.1126/science.3992243 – ident: ref16 doi: 10.1109/ACCESS.2020.2978163 – ident: ref39 doi: 10.1109/TAFFC.2017.2712143 – ident: ref34 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref27 doi: 10.1109/T-AFFC.2011.15 – ident: ref20 doi: 10.1016/j.bspc.2020.101867 – ident: ref31 doi: 10.1109/EMBC.2018.8512407 – ident: ref22 doi: 10.1145/2682899 – ident: ref4 doi: 10.1109/ACCESS.2019.2934529 – ident: ref1 doi: 10.1109/TSMC.2017.2756447 – ident: ref19 doi: 10.1109/JSEN.2018.2883497 – ident: ref12 doi: 10.1109/NER.2013.6695876 – ident: ref8 doi: 10.1111/j.1468-1331.2011.03406.x – ident: ref2 doi: 10.1109/TMM.2018.2887016 – ident: ref28 doi: 10.1109/T-AFFC.2011.25 – ident: ref26 doi: 10.1109/ACCESS.2019.2914872 – ident: ref5 doi: 10.1109/TSMCB.2008.927269 – ident: ref36 doi: 10.1109/TBME.2012.2217495 – ident: ref23 doi: 10.1109/TCYB.2018.2797176 – ident: ref9 doi: 10.1007/s11042-020-09354-y – ident: ref25 doi: 10.1109/ACCESS.2019.2949707 |
SSID | ssj0019757 |
Score | 2.4374282 |
Snippet | Emotion recognition has received increasing attention in human-computer interaction (HCI) and psychological assessment. Compared with single modal emotion... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16894 |
SubjectTerms | Brain modeling Clips Continuous emotion recognition deaf EEG Electroencephalography Emotion recognition Emotions facial expression Feature extraction Human-computer interface Motion pictures Psychology Sensors Time-frequency analysis |
Title | Facial Expression and EEG Fusion for Investigating Continuous Emotions of Deaf Subjects |
URI | https://ieeexplore.ieee.org/document/9424606 https://www.proquest.com/docview/2556491042 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pa9swFH60vSw9rF3S0qw_0GGnUieyrcjWsXROQ6C9rGG5GUt6asuGU5YYlv71lWzFhK2MgQ82SEbwSU_f03v6HsCXyGAcIsqAW3IQMD7CoGC8CELJdSpGSmLoLjjf3fPJjE3no_kOXLV3YRCxTj7DgXutY_l6oSp3VDYULGLc6WvvWsetuavVRgxEUqt62gVMAxYncx_BDKkYTr9l99YTjMKBndApddlzW3tQXVTlL0tcby_jA7jbDKzJKvkxqFZyoF7_0Gz835EfwkfPM8l1MzE-wQ6WXdjfUh_swgdfAP1p3YVOawjXPfg-LtxBOsl--yzZkhSlJll2S8ZV_WmZLtlS6CgfiVO5ei6rRbUkWVMZaEkWhnzFwhBrnNxpz_IIZuPs4WYS-AIMgbIsYBUoZdGiaWEiMUoMF0xKaaJECEypoagipWXME2O9DEWl9fzixAihUYWouH3iY9grFyWeADFUaqYFNxGXLNVcJLKIra3RXBappaB9oBtIcuXVyV2RjJ957aVQkTsUc4di7lHsw2Xb5aWR5vhX455DpW3oAenD2Qb33C_eZe5U2ZilUSz6_H6vU-i4fzd5gGewt_pV4bnlJit5UU_KNwr24E8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5CcAAOYyuglV_zgdO0FCdxnPg4jXQdo70MRG9RbD_DtCmdaCMBfz124kYVm9CkHBLJVix99vP3_J6_B3AaGYxDRBlwSw4CxhMMSsbLIJRcZyJREkN3wXk84aNrdjFNpmvwqbsLg4hN8hkO3GsTy9czVbujsjPBIsadvvaG3feTsL2t1cUMRNroetolTAMWp1MfwwypOLv4kU-sLxiFAzulM-ry51Z2oaasyl-2uNlghjswXg6tzSv5NagXcqCeXqg2_u_Y38IbzzTJ53ZqvIM1rHqwvaI_2INNXwL97rEHW50pfNyFm2HpjtJJ_uDzZCtSVprk-VcyrJtPy3XJikZHdUucztXPqp7Vc5K3tYHmZGbIOZaGWPPkznvme3A9zK--jAJfgiFQlgcsAqUsXjQrTSSS1HDBpJQmSoXAjBqKKlJaxjw11s9QVFrfL06NEBpViIrbJ96H9WpW4XsghkrNtOAm4pJlmotUlrG1NprLMrMktA90CUmhvD65K5Pxu2j8FCoKh2LhUCw8in342HX504pzvNZ416HSNfSA9OFoiXvhl--8cLpszBIpFh38u9cH2BxdjS-Ly2-T74ew5f7TZgUewfrivsZjy1QW8qSZoM_muuOY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facial+Expression+and+EEG+Fusion+for+Investigating+Continuous+Emotions+of+Deaf+Subjects&rft.jtitle=IEEE+sensors+journal&rft.au=Yang%2C+Yi&rft.au=Gao%2C+Qiang&rft.au=Song%2C+Xiaolin&rft.au=Song%2C+Yu&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=21&rft.issue=15&rft.spage=16894&rft.epage=16903&rft_id=info:doi/10.1109%2FJSEN.2021.3078087&rft.externalDocID=9424606 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |