Multistage Dual-Attention Guided Fusion Network for Hyperspectral Pansharpening
Deep learning, especially the convolutional neural network, has been widely applied to solve the hyperspectral pansharpening problem. However, most do not explore the intraimage characteristics and the interimage correlation concurrently due to the limited representation ability of the networks, whi...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 14 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0196-2892 1558-0644 |
DOI | 10.1109/TGRS.2021.3114552 |
Cover
Abstract | Deep learning, especially the convolutional neural network, has been widely applied to solve the hyperspectral pansharpening problem. However, most do not explore the intraimage characteristics and the interimage correlation concurrently due to the limited representation ability of the networks, which may lead to insufficient fusion of valuable information encoded in the high-resolution panchromatic images (HR-PANs) and low-resolution hyperspectral images (LR-HSIs). To cope with this problem, we develop a hyperspectral pansharpening method called multistage dual-attention guided fusion network (MDA-Net) to fully extract the important information and accurately fuse them. It employs a three-stream structure, which enables the network to incorporate the intrinsic characteristics of each input and correlation among them simultaneously. In order to combine as much information as possible, we merge the features extracted from three streams in multiple stages, where a dual-attention guided fusion block (DAFB) with spectral and spatial attention mechanisms is utilized to fuse the features efficiently. It identifies the useful components in both spatial and spectral domains, which are beneficial to improving the fusion accuracy. Moreover, we design a multiscale residual dense block (MRDB) to extract dense and hierarchical features, which improves the representation power of the network. Experiments are conducted on both real and simulated datasets. The evaluation results validate the superiority of the MDA-Net. |
---|---|
AbstractList | Deep learning, especially the convolutional neural network, has been widely applied to solve the hyperspectral pansharpening problem. However, most do not explore the intraimage characteristics and the interimage correlation concurrently due to the limited representation ability of the networks, which may lead to insufficient fusion of valuable information encoded in the high-resolution panchromatic images (HR-PANs) and low-resolution hyperspectral images (LR-HSIs). To cope with this problem, we develop a hyperspectral pansharpening method called multistage dual-attention guided fusion network (MDA-Net) to fully extract the important information and accurately fuse them. It employs a three-stream structure, which enables the network to incorporate the intrinsic characteristics of each input and correlation among them simultaneously. In order to combine as much information as possible, we merge the features extracted from three streams in multiple stages, where a dual-attention guided fusion block (DAFB) with spectral and spatial attention mechanisms is utilized to fuse the features efficiently. It identifies the useful components in both spatial and spectral domains, which are beneficial to improving the fusion accuracy. Moreover, we design a multiscale residual dense block (MRDB) to extract dense and hierarchical features, which improves the representation power of the network. Experiments are conducted on both real and simulated datasets. The evaluation results validate the superiority of the MDA-Net. |
Author | Guan, Peiyan Lam, Edmund Y. |
Author_xml | – sequence: 1 givenname: Peiyan orcidid: 0000-0003-1613-2756 surname: Guan fullname: Guan, Peiyan email: pyguan@eee.hku.hk organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR, China – sequence: 2 givenname: Edmund Y. orcidid: 0000-0001-6268-950X surname: Lam fullname: Lam, Edmund Y. email: elam@eee.hku.hk organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR, China |
BookMark | eNp9kM9PwjAUxxuDiYD-AcbLEs_DvnYd65GggAmKUe5Lt71hcXaz7WL4790C8eDB08tLPp_34zsiA1MbJOQa6ASAyrvt8vVtwiiDCQeIhGBnZAhCJCGNo2hAhhRkHLJEsgsycm5PaQfBdEg2T23ltfNqh8F9q6pw5j0ar2sTLFtdYBEsWtd3z-i_a_sRlLUNVocGrWsw91ZVwYsy7l3ZBo02u0tyXqrK4dWpjsl28bCdr8L1Zvk4n63DnEnuwzxTGeUMlYozJUohJWUMJMuAR4BMFSBA8ogmWCouFSLPYsWzhMeYFQB8TG6PYxtbf7XofLqvW2u6jSmLGUuYkJHoqOmRym3tnMUyzbVX_XPd4bpKgaZ9eGkfXtqHl57C60z4YzZWfyp7-Ne5OToaEX95KYRMpOQ_T719QA |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_TGRS_2022_3141765 crossref_primary_10_1109_TGRS_2024_3397740 crossref_primary_10_1109_TGRS_2023_3307604 crossref_primary_10_1109_TGRS_2023_3329531 crossref_primary_10_1109_JAS_2023_123681 crossref_primary_10_1109_TGRS_2023_3309863 crossref_primary_10_1109_TGRS_2024_3394533 crossref_primary_10_1109_JSTARS_2022_3220974 crossref_primary_10_1109_MGRS_2024_3495516 crossref_primary_10_1109_ACCESS_2025_3544476 crossref_primary_10_1109_MGRS_2024_3509139 crossref_primary_10_1109_TGRS_2024_3491109 crossref_primary_10_1109_TIP_2023_3293768 crossref_primary_10_1109_LGRS_2023_3326204 crossref_primary_10_1109_TGRS_2024_3413023 crossref_primary_10_3390_rs15184370 crossref_primary_10_1109_LGRS_2022_3167043 crossref_primary_10_1109_TIM_2022_3222480 crossref_primary_10_1109_TNNLS_2023_3325887 crossref_primary_10_1080_01431161_2022_2109223 crossref_primary_10_1109_TGRS_2024_3414438 crossref_primary_10_1109_TGRS_2022_3206880 crossref_primary_10_1109_TGRS_2023_3339337 crossref_primary_10_1109_TGRS_2024_3392215 crossref_primary_10_1109_TGRS_2022_3176637 crossref_primary_10_3390_rs15112853 crossref_primary_10_1109_TGRS_2022_3220079 |
Cites_doi | 10.1007/978-3-030-01234-2_18 10.1109/TGRS.2020.2986313 10.1109/TIP.2017.2662206 10.1109/TGRS.2007.901007 10.1109/ICCV.2017.193 10.1080/014311600750037499 10.1109/JSTARS.2018.2805923 10.1109/ICCV.2019.00457 10.1109/TGRS.2008.916211 10.3390/rs9040305 10.1109/JSTARS.2019.2910990 10.1364/ao.403366 10.1109/CVPR.2018.00745 10.1109/TIP.2015.2458572 10.1016/j.inffus.2019.07.010 10.3390/s19143071 10.14358/PERS.72.5.591 10.3390/rs10050800 10.1109/JSTARS.2013.2272212 10.1109/LGRS.2004.834804 10.1109/TPAMI.2019.2945027 10.1109/TII.2019.2913853 10.1109/ICIP.2019.8803480 10.1016/j.jag.2017.05.004 10.1109/JSTARS.2018.2794888 10.1007/978-3-030-01234-2_1 10.1109/LGRS.2017.2668299 10.3390/rs8070594 10.1109/LGRS.2007.909934 10.1109/TGRS.2008.917131 10.1109/GEOINFORMATICS.2010.5568105 10.1109/TIP.2016.2542360 10.1109/TPAMI.2018.2873729 10.1109/TGRS.2002.803623 10.1109/TIP.2003.819861 10.1109/MGRS.2015.2440094 10.1109/LGRS.2013.2281996 10.1109/CVPR.2018.00262 10.1109/TGRS.2011.2161320 10.1007/978-3-030-00928-1_48 10.1109/MGRS.2016.2637824 10.1109/TGRS.2014.2375320 10.1109/JSTARS.2019.2917584 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2021.3114552 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 14 |
ExternalDocumentID | 10_1109_TGRS_2021_3114552 9559899 |
Genre | orig-research |
GrantInformation_xml | – fundername: Research Grants Council of Hong Kong (GRF) grantid: 17201818; 17200019; 17201620 funderid: 10.13039/501100002920 – fundername: The University of Hong Kong grantid: 104005864 funderid: 10.13039/501100003803 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c293t-cbab032eaa6ba5f599022192b1341e2ad15193408efa39aee3b6a3b836ebd113 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 08:21:41 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Tue Jul 01 01:34:31 EDT 2025 Wed Aug 27 03:00:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-cbab032eaa6ba5f599022192b1341e2ad15193408efa39aee3b6a3b836ebd113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1613-2756 0000-0001-6268-950X |
PQID | 2622825945 |
PQPubID | 85465 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2622825945 crossref_citationtrail_10_1109_TGRS_2021_3114552 crossref_primary_10_1109_TGRS_2021_3114552 ieee_primary_9559899 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 Yuhas (ref41); 1 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 Wald (ref43) ref25 ref47 ref20 ref42 ref22 ref44 ref21 ref28 ref27 Kingma (ref46) ref29 ref8 ref7 ref9 Gross (ref39) 2016 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref30 doi: 10.1007/978-3-030-01234-2_18 – ident: ref47 doi: 10.1109/TGRS.2020.2986313 – ident: ref13 doi: 10.1109/TIP.2017.2662206 – ident: ref19 doi: 10.1109/TGRS.2007.901007 – ident: ref16 doi: 10.1109/ICCV.2017.193 – ident: ref23 doi: 10.1080/014311600750037499 – ident: ref33 doi: 10.1109/JSTARS.2018.2805923 – ident: ref14 doi: 10.1109/ICCV.2019.00457 – ident: ref18 doi: 10.1109/TGRS.2008.916211 – ident: ref44 doi: 10.3390/rs9040305 – ident: ref34 doi: 10.1109/JSTARS.2019.2910990 – ident: ref11 doi: 10.1364/ao.403366 – ident: ref36 doi: 10.1109/CVPR.2018.00745 – ident: ref26 doi: 10.1109/TIP.2015.2458572 – start-page: 99 volume-title: Proc. 3rd Conf. Fusion Earth Data, Merging Point Meas., Raster Maps Remotely Sensed Images ident: ref43 article-title: Quality of high resolution synthesised images: Is there a simple criterion? – ident: ref17 doi: 10.1016/j.inffus.2019.07.010 – ident: ref5 doi: 10.3390/s19143071 – ident: ref24 doi: 10.14358/PERS.72.5.591 – ident: ref45 doi: 10.3390/rs10050800 – ident: ref4 doi: 10.1109/JSTARS.2013.2272212 – ident: ref20 doi: 10.1109/LGRS.2004.834804 – ident: ref10 doi: 10.1109/TPAMI.2019.2945027 – ident: ref8 doi: 10.1109/TII.2019.2913853 – ident: ref9 doi: 10.1109/ICIP.2019.8803480 – ident: ref3 doi: 10.1016/j.jag.2017.05.004 – ident: ref32 doi: 10.1109/JSTARS.2018.2794888 – ident: ref38 doi: 10.1007/978-3-030-01234-2_1 – ident: ref31 doi: 10.1109/LGRS.2017.2668299 – ident: ref15 doi: 10.3390/rs8070594 – volume-title: Training and investigating residual nets year: 2016 ident: ref39 – volume: 1 start-page: 147 volume-title: Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop ident: ref41 article-title: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm – ident: ref22 doi: 10.1109/LGRS.2007.909934 – ident: ref27 doi: 10.1109/TGRS.2008.917131 – ident: ref40 doi: 10.1109/GEOINFORMATICS.2010.5568105 – ident: ref1 doi: 10.1109/TIP.2016.2542360 – start-page: 1 volume-title: Proc. 3rd Int. Conf. Learn. Represent. (ICLR) ident: ref46 article-title: Adam: A method for stochastic optimization – ident: ref2 doi: 10.1109/TPAMI.2018.2873729 – ident: ref21 doi: 10.1109/TGRS.2002.803623 – ident: ref42 doi: 10.1109/TIP.2003.819861 – ident: ref7 doi: 10.1109/MGRS.2015.2440094 – ident: ref25 doi: 10.1109/LGRS.2013.2281996 – ident: ref12 doi: 10.1109/CVPR.2018.00262 – ident: ref29 doi: 10.1109/TGRS.2011.2161320 – ident: ref37 doi: 10.1007/978-3-030-00928-1_48 – ident: ref6 doi: 10.1109/MGRS.2016.2637824 – ident: ref28 doi: 10.1109/TGRS.2014.2375320 – ident: ref35 doi: 10.1109/JSTARS.2019.2917584 |
SSID | ssj0014517 |
Score | 2.5810544 |
Snippet | Deep learning, especially the convolutional neural network, has been widely applied to solve the hyperspectral pansharpening problem. However, most do not... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Convolutional neural network (CNN) Correlation Data mining Deep learning dual-attention guided fusion Feature extraction Fuses Hyperspectral imaging hyperspectral pansharpening Image resolution Information processing multistage fusion Neural networks Pansharpening Representations Resolution Streaming media |
Title | Multistage Dual-Attention Guided Fusion Network for Hyperspectral Pansharpening |
URI | https://ieeexplore.ieee.org/document/9559899 https://www.proquest.com/docview/2622825945 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xf9OBJ7Nokbd0eRV0XwQe6greSx1TFZRVtL_56Z9Lu4gvx1kNCQybJzDeZ7wvAjtasISJop6miE8Zk9DBLsiiMtZaRs-RikMnJ5xdp7zY-u0vuJmBvzIVBRF98hm3-9Hf57tlWnCrbZ7U0wgeTMEnLrOZqjW8M4kQ01Og0JBAhmxtMEWX7_dPrG0KCUhBAZV1u-cUH-UdVfpzE3r105-F8NLC6quSpXZWmbd-_aTb-d-QLMNfEmcFhvTAWYQKHSzD7SX1wCaZ99ad9W4ZLT8OlOPEeg-NKD8LDsqzLIIPT6tGhC7oVZ9WCi7poPKBIN-gRgq2Jmq_0oytyeQ98l8N5lhXod0_6R72weWkhtOTuy9AabSIlUevU6KRIyEVJOsqkYbk3lNoJDvTiqIOFVplGVCbVynRUisYJoVZhavg8xDUInDEiKw5s0iGokymnsbDCEYYkWHVgVNyCaDT1uW1UyPkxjEHu0UiU5WytnK2VN9Zqwe64y0stwfFX42We_XHDZuJbsDmyb95s0rdcppKZu1mcrP_eawNmJLMdfMZlE6bK1wq3KAYpzbZffB-qRNe0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTgh42GBjWrcCeeAJkS62kzR5nLa1BdaCoEh7i_zjwtCmDrXJy_763TlpNRhCvOXBViyf7bvvfN9ngLdas4aIoJ2myiyMyehhnuRRGGstI2fJxSCTkyfTdPw9_niRXGzA-zUXBhF98Rn2-dPf5bsbW3Oq7IjV0ggfPIJN8vtx0rC11ncGcSJacnQaEoyQ7R2miPKj2ejrN8KCUhBEZWVu-ZsX8s-qPDiLvYMZbsNkNbSmruSqX1emb2__UG3837E_h6020gyOm6XxAjZwvgPP7ukP7sBjX_9pl7vw2RNxKVL8gcFpra_D46pqCiGDUf3ToQuGNefVgmlTNh5QrBuMCcM2VM0F_egLOb1Lvs3hTMtLmA3PZifjsH1rIbTk8KvQGm0iJVHr1OikTMhJSTrMpGHBN5TaCQ714ijDUqtcIyqTamUylaJxQqg96Mxv5rgPgTNG5OXAJhmBnVw5jaUVjlAkAauBUXEXotXUF7bVIefnMK4Lj0eivGBrFWytorVWF96tu_xqRDj-1XiXZ3_dsJ34LvRW9i3abbosZCqZu5vHycHfe72BJ-PZ5Lw4_zD9dAhPJXMffP6lB51qUeMrikgq89ovxDselNsB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistage+Dual-Attention+Guided+Fusion+Network+for+Hyperspectral+Pansharpening&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Guan%2C+Peiyan&rft.au=Lam%2C+Edmund+Y.&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2021.3114552&rft.externalDocID=9559899 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |