Multistage Dual-Attention Guided Fusion Network for Hyperspectral Pansharpening

Deep learning, especially the convolutional neural network, has been widely applied to solve the hyperspectral pansharpening problem. However, most do not explore the intraimage characteristics and the interimage correlation concurrently due to the limited representation ability of the networks, whi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 14
Main Authors Guan, Peiyan, Lam, Edmund Y.
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2021.3114552

Cover

Abstract Deep learning, especially the convolutional neural network, has been widely applied to solve the hyperspectral pansharpening problem. However, most do not explore the intraimage characteristics and the interimage correlation concurrently due to the limited representation ability of the networks, which may lead to insufficient fusion of valuable information encoded in the high-resolution panchromatic images (HR-PANs) and low-resolution hyperspectral images (LR-HSIs). To cope with this problem, we develop a hyperspectral pansharpening method called multistage dual-attention guided fusion network (MDA-Net) to fully extract the important information and accurately fuse them. It employs a three-stream structure, which enables the network to incorporate the intrinsic characteristics of each input and correlation among them simultaneously. In order to combine as much information as possible, we merge the features extracted from three streams in multiple stages, where a dual-attention guided fusion block (DAFB) with spectral and spatial attention mechanisms is utilized to fuse the features efficiently. It identifies the useful components in both spatial and spectral domains, which are beneficial to improving the fusion accuracy. Moreover, we design a multiscale residual dense block (MRDB) to extract dense and hierarchical features, which improves the representation power of the network. Experiments are conducted on both real and simulated datasets. The evaluation results validate the superiority of the MDA-Net.
AbstractList Deep learning, especially the convolutional neural network, has been widely applied to solve the hyperspectral pansharpening problem. However, most do not explore the intraimage characteristics and the interimage correlation concurrently due to the limited representation ability of the networks, which may lead to insufficient fusion of valuable information encoded in the high-resolution panchromatic images (HR-PANs) and low-resolution hyperspectral images (LR-HSIs). To cope with this problem, we develop a hyperspectral pansharpening method called multistage dual-attention guided fusion network (MDA-Net) to fully extract the important information and accurately fuse them. It employs a three-stream structure, which enables the network to incorporate the intrinsic characteristics of each input and correlation among them simultaneously. In order to combine as much information as possible, we merge the features extracted from three streams in multiple stages, where a dual-attention guided fusion block (DAFB) with spectral and spatial attention mechanisms is utilized to fuse the features efficiently. It identifies the useful components in both spatial and spectral domains, which are beneficial to improving the fusion accuracy. Moreover, we design a multiscale residual dense block (MRDB) to extract dense and hierarchical features, which improves the representation power of the network. Experiments are conducted on both real and simulated datasets. The evaluation results validate the superiority of the MDA-Net.
Author Guan, Peiyan
Lam, Edmund Y.
Author_xml – sequence: 1
  givenname: Peiyan
  orcidid: 0000-0003-1613-2756
  surname: Guan
  fullname: Guan, Peiyan
  email: pyguan@eee.hku.hk
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR, China
– sequence: 2
  givenname: Edmund Y.
  orcidid: 0000-0001-6268-950X
  surname: Lam
  fullname: Lam, Edmund Y.
  email: elam@eee.hku.hk
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR, China
BookMark eNp9kM9PwjAUxxuDiYD-AcbLEs_DvnYd65GggAmKUe5Lt71hcXaz7WL4790C8eDB08tLPp_34zsiA1MbJOQa6ASAyrvt8vVtwiiDCQeIhGBnZAhCJCGNo2hAhhRkHLJEsgsycm5PaQfBdEg2T23ltfNqh8F9q6pw5j0ar2sTLFtdYBEsWtd3z-i_a_sRlLUNVocGrWsw91ZVwYsy7l3ZBo02u0tyXqrK4dWpjsl28bCdr8L1Zvk4n63DnEnuwzxTGeUMlYozJUohJWUMJMuAR4BMFSBA8ogmWCouFSLPYsWzhMeYFQB8TG6PYxtbf7XofLqvW2u6jSmLGUuYkJHoqOmRym3tnMUyzbVX_XPd4bpKgaZ9eGkfXtqHl57C60z4YzZWfyp7-Ne5OToaEX95KYRMpOQ_T719QA
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2022_3141765
crossref_primary_10_1109_TGRS_2024_3397740
crossref_primary_10_1109_TGRS_2023_3307604
crossref_primary_10_1109_TGRS_2023_3329531
crossref_primary_10_1109_JAS_2023_123681
crossref_primary_10_1109_TGRS_2023_3309863
crossref_primary_10_1109_TGRS_2024_3394533
crossref_primary_10_1109_JSTARS_2022_3220974
crossref_primary_10_1109_MGRS_2024_3495516
crossref_primary_10_1109_ACCESS_2025_3544476
crossref_primary_10_1109_MGRS_2024_3509139
crossref_primary_10_1109_TGRS_2024_3491109
crossref_primary_10_1109_TIP_2023_3293768
crossref_primary_10_1109_LGRS_2023_3326204
crossref_primary_10_1109_TGRS_2024_3413023
crossref_primary_10_3390_rs15184370
crossref_primary_10_1109_LGRS_2022_3167043
crossref_primary_10_1109_TIM_2022_3222480
crossref_primary_10_1109_TNNLS_2023_3325887
crossref_primary_10_1080_01431161_2022_2109223
crossref_primary_10_1109_TGRS_2024_3414438
crossref_primary_10_1109_TGRS_2022_3206880
crossref_primary_10_1109_TGRS_2023_3339337
crossref_primary_10_1109_TGRS_2024_3392215
crossref_primary_10_1109_TGRS_2022_3176637
crossref_primary_10_3390_rs15112853
crossref_primary_10_1109_TGRS_2022_3220079
Cites_doi 10.1007/978-3-030-01234-2_18
10.1109/TGRS.2020.2986313
10.1109/TIP.2017.2662206
10.1109/TGRS.2007.901007
10.1109/ICCV.2017.193
10.1080/014311600750037499
10.1109/JSTARS.2018.2805923
10.1109/ICCV.2019.00457
10.1109/TGRS.2008.916211
10.3390/rs9040305
10.1109/JSTARS.2019.2910990
10.1364/ao.403366
10.1109/CVPR.2018.00745
10.1109/TIP.2015.2458572
10.1016/j.inffus.2019.07.010
10.3390/s19143071
10.14358/PERS.72.5.591
10.3390/rs10050800
10.1109/JSTARS.2013.2272212
10.1109/LGRS.2004.834804
10.1109/TPAMI.2019.2945027
10.1109/TII.2019.2913853
10.1109/ICIP.2019.8803480
10.1016/j.jag.2017.05.004
10.1109/JSTARS.2018.2794888
10.1007/978-3-030-01234-2_1
10.1109/LGRS.2017.2668299
10.3390/rs8070594
10.1109/LGRS.2007.909934
10.1109/TGRS.2008.917131
10.1109/GEOINFORMATICS.2010.5568105
10.1109/TIP.2016.2542360
10.1109/TPAMI.2018.2873729
10.1109/TGRS.2002.803623
10.1109/TIP.2003.819861
10.1109/MGRS.2015.2440094
10.1109/LGRS.2013.2281996
10.1109/CVPR.2018.00262
10.1109/TGRS.2011.2161320
10.1007/978-3-030-00928-1_48
10.1109/MGRS.2016.2637824
10.1109/TGRS.2014.2375320
10.1109/JSTARS.2019.2917584
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3114552
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 14
ExternalDocumentID 10_1109_TGRS_2021_3114552
9559899
Genre orig-research
GrantInformation_xml – fundername: Research Grants Council of Hong Kong (GRF)
  grantid: 17201818; 17200019; 17201620
  funderid: 10.13039/501100002920
– fundername: The University of Hong Kong
  grantid: 104005864
  funderid: 10.13039/501100003803
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-cbab032eaa6ba5f599022192b1341e2ad15193408efa39aee3b6a3b836ebd113
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:21:41 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Tue Jul 01 01:34:31 EDT 2025
Wed Aug 27 03:00:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-cbab032eaa6ba5f599022192b1341e2ad15193408efa39aee3b6a3b836ebd113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1613-2756
0000-0001-6268-950X
PQID 2622825945
PQPubID 85465
PageCount 14
ParticipantIDs proquest_journals_2622825945
crossref_citationtrail_10_1109_TGRS_2021_3114552
crossref_primary_10_1109_TGRS_2021_3114552
ieee_primary_9559899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
Yuhas (ref41); 1
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
Wald (ref43)
ref25
ref47
ref20
ref42
ref22
ref44
ref21
ref28
ref27
Kingma (ref46)
ref29
ref8
ref7
ref9
Gross (ref39) 2016
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref30
  doi: 10.1007/978-3-030-01234-2_18
– ident: ref47
  doi: 10.1109/TGRS.2020.2986313
– ident: ref13
  doi: 10.1109/TIP.2017.2662206
– ident: ref19
  doi: 10.1109/TGRS.2007.901007
– ident: ref16
  doi: 10.1109/ICCV.2017.193
– ident: ref23
  doi: 10.1080/014311600750037499
– ident: ref33
  doi: 10.1109/JSTARS.2018.2805923
– ident: ref14
  doi: 10.1109/ICCV.2019.00457
– ident: ref18
  doi: 10.1109/TGRS.2008.916211
– ident: ref44
  doi: 10.3390/rs9040305
– ident: ref34
  doi: 10.1109/JSTARS.2019.2910990
– ident: ref11
  doi: 10.1364/ao.403366
– ident: ref36
  doi: 10.1109/CVPR.2018.00745
– ident: ref26
  doi: 10.1109/TIP.2015.2458572
– start-page: 99
  volume-title: Proc. 3rd Conf. Fusion Earth Data, Merging Point Meas., Raster Maps Remotely Sensed Images
  ident: ref43
  article-title: Quality of high resolution synthesised images: Is there a simple criterion?
– ident: ref17
  doi: 10.1016/j.inffus.2019.07.010
– ident: ref5
  doi: 10.3390/s19143071
– ident: ref24
  doi: 10.14358/PERS.72.5.591
– ident: ref45
  doi: 10.3390/rs10050800
– ident: ref4
  doi: 10.1109/JSTARS.2013.2272212
– ident: ref20
  doi: 10.1109/LGRS.2004.834804
– ident: ref10
  doi: 10.1109/TPAMI.2019.2945027
– ident: ref8
  doi: 10.1109/TII.2019.2913853
– ident: ref9
  doi: 10.1109/ICIP.2019.8803480
– ident: ref3
  doi: 10.1016/j.jag.2017.05.004
– ident: ref32
  doi: 10.1109/JSTARS.2018.2794888
– ident: ref38
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref31
  doi: 10.1109/LGRS.2017.2668299
– ident: ref15
  doi: 10.3390/rs8070594
– volume-title: Training and investigating residual nets
  year: 2016
  ident: ref39
– volume: 1
  start-page: 147
  volume-title: Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop
  ident: ref41
  article-title: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm
– ident: ref22
  doi: 10.1109/LGRS.2007.909934
– ident: ref27
  doi: 10.1109/TGRS.2008.917131
– ident: ref40
  doi: 10.1109/GEOINFORMATICS.2010.5568105
– ident: ref1
  doi: 10.1109/TIP.2016.2542360
– start-page: 1
  volume-title: Proc. 3rd Int. Conf. Learn. Represent. (ICLR)
  ident: ref46
  article-title: Adam: A method for stochastic optimization
– ident: ref2
  doi: 10.1109/TPAMI.2018.2873729
– ident: ref21
  doi: 10.1109/TGRS.2002.803623
– ident: ref42
  doi: 10.1109/TIP.2003.819861
– ident: ref7
  doi: 10.1109/MGRS.2015.2440094
– ident: ref25
  doi: 10.1109/LGRS.2013.2281996
– ident: ref12
  doi: 10.1109/CVPR.2018.00262
– ident: ref29
  doi: 10.1109/TGRS.2011.2161320
– ident: ref37
  doi: 10.1007/978-3-030-00928-1_48
– ident: ref6
  doi: 10.1109/MGRS.2016.2637824
– ident: ref28
  doi: 10.1109/TGRS.2014.2375320
– ident: ref35
  doi: 10.1109/JSTARS.2019.2917584
SSID ssj0014517
Score 2.5810544
Snippet Deep learning, especially the convolutional neural network, has been widely applied to solve the hyperspectral pansharpening problem. However, most do not...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Convolutional neural network (CNN)
Correlation
Data mining
Deep learning
dual-attention guided fusion
Feature extraction
Fuses
Hyperspectral imaging
hyperspectral pansharpening
Image resolution
Information processing
multistage fusion
Neural networks
Pansharpening
Representations
Resolution
Streaming media
Title Multistage Dual-Attention Guided Fusion Network for Hyperspectral Pansharpening
URI https://ieeexplore.ieee.org/document/9559899
https://www.proquest.com/docview/2622825945
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xf9OBJ7Nokbd0eRV0XwQe6greSx1TFZRVtL_56Z9Lu4gvx1kNCQybJzDeZ7wvAjtasISJop6miE8Zk9DBLsiiMtZaRs-RikMnJ5xdp7zY-u0vuJmBvzIVBRF98hm3-9Hf57tlWnCrbZ7U0wgeTMEnLrOZqjW8M4kQ01Og0JBAhmxtMEWX7_dPrG0KCUhBAZV1u-cUH-UdVfpzE3r105-F8NLC6quSpXZWmbd-_aTb-d-QLMNfEmcFhvTAWYQKHSzD7SX1wCaZ99ad9W4ZLT8OlOPEeg-NKD8LDsqzLIIPT6tGhC7oVZ9WCi7poPKBIN-gRgq2Jmq_0oytyeQ98l8N5lhXod0_6R72weWkhtOTuy9AabSIlUevU6KRIyEVJOsqkYbk3lNoJDvTiqIOFVplGVCbVynRUisYJoVZhavg8xDUInDEiKw5s0iGokymnsbDCEYYkWHVgVNyCaDT1uW1UyPkxjEHu0UiU5WytnK2VN9Zqwe64y0stwfFX42We_XHDZuJbsDmyb95s0rdcppKZu1mcrP_eawNmJLMdfMZlE6bK1wq3KAYpzbZffB-qRNe0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTgh42GBjWrcCeeAJkS62kzR5nLa1BdaCoEh7i_zjwtCmDrXJy_763TlpNRhCvOXBViyf7bvvfN9ngLdas4aIoJ2myiyMyehhnuRRGGstI2fJxSCTkyfTdPw9_niRXGzA-zUXBhF98Rn2-dPf5bsbW3Oq7IjV0ggfPIJN8vtx0rC11ncGcSJacnQaEoyQ7R2miPKj2ejrN8KCUhBEZWVu-ZsX8s-qPDiLvYMZbsNkNbSmruSqX1emb2__UG3837E_h6020gyOm6XxAjZwvgPP7ukP7sBjX_9pl7vw2RNxKVL8gcFpra_D46pqCiGDUf3ToQuGNefVgmlTNh5QrBuMCcM2VM0F_egLOb1Lvs3hTMtLmA3PZifjsH1rIbTk8KvQGm0iJVHr1OikTMhJSTrMpGHBN5TaCQ714ijDUqtcIyqTamUylaJxQqg96Mxv5rgPgTNG5OXAJhmBnVw5jaUVjlAkAauBUXEXotXUF7bVIefnMK4Lj0eivGBrFWytorVWF96tu_xqRDj-1XiXZ3_dsJ34LvRW9i3abbosZCqZu5vHycHfe72BJ-PZ5Lw4_zD9dAhPJXMffP6lB51qUeMrikgq89ovxDselNsB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multistage+Dual-Attention+Guided+Fusion+Network+for+Hyperspectral+Pansharpening&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Guan%2C+Peiyan&rft.au=Lam%2C+Edmund+Y.&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTGRS.2021.3114552&rft.externalDocID=9559899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon