Efficient Federated Meta-Learning Over Multi-Access Wireless Networks

Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today's edge learning arena. However, its performance is often limited by slow convergence and corresponding low communication efficiency. In addition, since the av...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 40; no. 5; pp. 1556 - 1570
Main Authors Yue, Sheng, Ren, Ju, Xin, Jiang, Zhang, Deyu, Zhang, Yaoxue, Zhuang, Weihua
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today's edge learning arena. However, its performance is often limited by slow convergence and corresponding low communication efficiency. In addition, since the available radio spectrum and IoT devices' energy capacity are usually insufficient, it is crucial to control the resource allocation and energy consumption when deploying FML in practical wireless networks. To overcome the challenges, in this paper, we rigorously analyze the contribution of each device to the global loss reduction in each round and develop an FML algorithm (called NUFM) with a non-uniform device selection scheme to accelerate the convergence. After that, we formulate a resource allocation problem integrating NUFM in multi-access wireless systems to jointly improve the convergence rate and minimize the wall-clock time along with energy cost. By deconstructing the original problem step by step, we devise a joint device selection and resource allocation strategy to solve the problem with theoretical guarantees. Further, we show that the computational complexity of NUFM can be reduced from <inline-formula> <tex-math notation="LaTeX">O(d^{2}) </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">O(d) </tex-math></inline-formula> (with the model dimension <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>) via combining two first-order approximation techniques. Extensive simulation results demonstrate the effectiveness and superiority of the proposed methods in comparison with existing baselines.
AbstractList Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today’s edge learning arena. However, its performance is often limited by slow convergence and corresponding low communication efficiency. In addition, since the available radio spectrum and IoT devices’ energy capacity are usually insufficient, it is crucial to control the resource allocation and energy consumption when deploying FML in practical wireless networks. To overcome the challenges, in this paper, we rigorously analyze the contribution of each device to the global loss reduction in each round and develop an FML algorithm (called NUFM) with a non-uniform device selection scheme to accelerate the convergence. After that, we formulate a resource allocation problem integrating NUFM in multi-access wireless systems to jointly improve the convergence rate and minimize the wall-clock time along with energy cost. By deconstructing the original problem step by step, we devise a joint device selection and resource allocation strategy to solve the problem with theoretical guarantees. Further, we show that the computational complexity of NUFM can be reduced from [Formula Omitted] to [Formula Omitted] (with the model dimension [Formula Omitted]) via combining two first-order approximation techniques. Extensive simulation results demonstrate the effectiveness and superiority of the proposed methods in comparison with existing baselines.
Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today's edge learning arena. However, its performance is often limited by slow convergence and corresponding low communication efficiency. In addition, since the available radio spectrum and IoT devices' energy capacity are usually insufficient, it is crucial to control the resource allocation and energy consumption when deploying FML in practical wireless networks. To overcome the challenges, in this paper, we rigorously analyze the contribution of each device to the global loss reduction in each round and develop an FML algorithm (called NUFM) with a non-uniform device selection scheme to accelerate the convergence. After that, we formulate a resource allocation problem integrating NUFM in multi-access wireless systems to jointly improve the convergence rate and minimize the wall-clock time along with energy cost. By deconstructing the original problem step by step, we devise a joint device selection and resource allocation strategy to solve the problem with theoretical guarantees. Further, we show that the computational complexity of NUFM can be reduced from <inline-formula> <tex-math notation="LaTeX">O(d^{2}) </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">O(d) </tex-math></inline-formula> (with the model dimension <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>) via combining two first-order approximation techniques. Extensive simulation results demonstrate the effectiveness and superiority of the proposed methods in comparison with existing baselines.
Author Xin, Jiang
Ren, Ju
Zhang, Yaoxue
Yue, Sheng
Zhang, Deyu
Zhuang, Weihua
Author_xml – sequence: 1
  givenname: Sheng
  surname: Yue
  fullname: Yue, Sheng
  email: sheng.yue@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 2
  givenname: Ju
  orcidid: 0000-0003-2782-183X
  surname: Ren
  fullname: Ren, Ju
  email: renju@tsinghua.edu.cn
  organization: Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Jiang
  surname: Xin
  fullname: Xin, Jiang
  email: xinjiang@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 4
  givenname: Deyu
  orcidid: 0000-0002-5676-1285
  surname: Zhang
  fullname: Zhang, Deyu
  email: zdy876@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 5
  givenname: Yaoxue
  surname: Zhang
  fullname: Zhang, Yaoxue
  email: zhangyx@tsinghua.edu.cn
  organization: Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Weihua
  orcidid: 0000-0003-0488-511X
  surname: Zhuang
  fullname: Zhuang, Weihua
  email: wzhuang@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
BookMark eNp9kE1PwzAMhiM0JLbBD0BcKnHuiJO2aY_TtPGhwQ6AOEap66KM0Y4kA_HvabWJAwfkg314H1t-RmzQtA0xdg58AsCLq7vH6WwiuBATCYkUaXHEhpCmecw5zwdsyJWUca4gO2Ej79ecQ5LkYsjm87q2aKkJ0YIqciZQFd1TMPGSjGts8xqtPslF97tNsPEUkbyPXqyjTT88UPhq3Zs_Zce12Xg6O_Qxe17Mn2Y38XJ1fTubLmMUhQwxmhqRoxEEWPUlM1RCmrIWIkGBYFCmKkslmZpnOUJplElUXaoSKuo-GLPL_d6taz925INetzvXdCe1yFIuCpVkeZeCfQpd672jWm-dfTfuWwPXvS3d29K9LX2w1THqD4M2mGDbJjhjN_-SF3vSEtHvpSLLoQCQP9gTegI
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_JSAC_2022_3143259
crossref_primary_10_1109_TMC_2024_3356178
crossref_primary_10_1109_OJCOMS_2022_3222749
crossref_primary_10_3390_telecom5040063
crossref_primary_10_1002_int_22951
crossref_primary_10_1109_JIOT_2022_3175997
crossref_primary_10_3390_electronics12153295
crossref_primary_10_3390_rs16091640
crossref_primary_10_1109_JIOT_2023_3348498
crossref_primary_10_1016_j_neucom_2022_04_078
crossref_primary_10_1109_JIOT_2024_3383096
crossref_primary_10_1109_JIOT_2022_3184839
crossref_primary_10_3390_jsan12010013
crossref_primary_10_1109_TCOMM_2024_3396748
crossref_primary_10_1109_JIOT_2022_3224239
crossref_primary_10_1016_j_ifacol_2023_10_884
crossref_primary_10_1109_JIOT_2023_3292494
crossref_primary_10_1145_3571072
crossref_primary_10_1109_TVT_2022_3161503
crossref_primary_10_1109_TMC_2023_3316189
crossref_primary_10_1109_TVT_2023_3326877
crossref_primary_10_1109_TWC_2024_3366393
crossref_primary_10_1109_JSTSP_2022_3144020
crossref_primary_10_1109_OJCOMS_2023_3243870
crossref_primary_10_3390_electronics11040670
crossref_primary_10_1109_TVT_2022_3190941
crossref_primary_10_1109_TNET_2022_3200853
crossref_primary_10_1109_ACCESS_2024_3418900
crossref_primary_10_1109_TCOMM_2023_3317300
crossref_primary_10_1109_TNSE_2023_3266942
crossref_primary_10_1109_TWC_2023_3281765
crossref_primary_10_1109_COMST_2022_3218527
crossref_primary_10_3390_electronics12153327
Cites_doi 10.1109/TETC.2020.2986238
10.1109/TWC.2020.3037554
10.1109/JPROC.2019.2941458
10.1109/ICC40277.2020.9149138
10.1007/BF01130406
10.1109/TWC.2020.3025446
10.1109/TWC.2020.3031503
10.1109/TWC.2020.3024629
10.1109/TWC.2020.3042530
10.1109/TPDS.2021.3123535
10.1145/3466772.3467038
10.1109/JSAC.2019.2904348
10.1109/INFOCOM42981.2021.9488679
10.1109/ASAP.2018.8445118
10.1109/TNET.2020.3035770
10.1109/ICDCS47774.2020.00032
10.1145/3298981
10.1109/ICCWorkshops49005.2020.9145118
10.1109/TWC.2020.3015671
10.1109/ICDCS.2019.00099
10.1109/TMC.2021.3119200
10.1109/CVPR.2009.5206848
10.1109/ICC.2019.8761315
10.1109/TWC.2019.2946245
10.1109/JSAC.2020.3036952
10.1109/JSAC.2020.3036971
10.1561/2200000083
10.1109/OJCS.2020.2993259
10.1109/ICDCS.2019.00182
10.1109/ASRU46091.2019.9003775
10.1109/JSAC.2022.3143259
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2022.3143259
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 1570
ExternalDocumentID 10_1109_JSAC_2022_3143259
9681911
Genre orig-research
GrantInformation_xml – fundername: Higher Education Discipline Innovation Project; 111 Project
  grantid: B18059
  funderid: 10.13039/501100013314
– fundername: Young Talents Plan of Hunan Province of China
  grantid: 2019RS2001
– fundername: Natural Science Foundation of Hunan Province, China
  grantid: 2020JJ2050
  funderid: 10.13039/501100004735
– fundername: National Natural Science Foundation of China
  grantid: 62122095; 62072472; U19A2067
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2019YFA0706403
  funderid: 10.13039/501100012166
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-cafcc0ca2e1cdcdcd36c723abf224c2c1ac357653eaf068c1ba7a47fb7b1de733
IEDL.DBID RIE
ISSN 0733-8716
IngestDate Mon Jun 30 10:14:34 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Tue Jul 01 02:06:31 EDT 2025
Wed Aug 27 03:05:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-cafcc0ca2e1cdcdcd36c723abf224c2c1ac357653eaf068c1ba7a47fb7b1de733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0488-511X
0000-0003-2782-183X
0000-0002-5676-1285
PQID 2650297468
PQPubID 85481
PageCount 15
ParticipantIDs crossref_primary_10_1109_JSAC_2022_3143259
proquest_journals_2650297468
crossref_citationtrail_10_1109_JSAC_2022_3143259
ieee_primary_9681911
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
Fallah (ref38)
ref11
Zhang (ref37) 2020
ref10
ref32
McMahan (ref4)
ref2
ref1
Finn (ref5)
ref17
ref39
Xiao (ref43) 2017
ref16
ref19
ref18
Cormen (ref40) 2009
Krizhevsky (ref44) 2009
Fallah (ref9)
Jiang (ref7) 2019
ref24
ref23
Yu (ref27)
Weisstein (ref42) 2011
ref45
ref26
ref25
ref20
ref41
ref22
ref21
ref28
Chen (ref6) 2018
ref29
ref8
ref3
Karimireddy (ref30)
Li (ref33)
References_xml – year: 2018
  ident: ref6
  article-title: Federated meta-learning with fast convergence and efficient communication
  publication-title: arXiv:1802.07876
– ident: ref17
  doi: 10.1109/TETC.2020.2986238
– ident: ref36
  doi: 10.1109/TWC.2020.3037554
– start-page: 1
  volume-title: Proc. NIPS
  ident: ref9
  article-title: Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach
– ident: ref1
  doi: 10.1109/JPROC.2019.2941458
– ident: ref35
  doi: 10.1109/ICC40277.2020.9149138
– ident: ref41
  doi: 10.1007/BF01130406
– ident: ref24
  doi: 10.1109/TWC.2020.3025446
– year: 2017
  ident: ref43
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
  publication-title: arXiv:1708.07747
– ident: ref28
  doi: 10.1109/TWC.2020.3031503
– start-page: 1126
  volume-title: Proc. ICML
  ident: ref5
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– ident: ref14
  doi: 10.1109/TWC.2020.3024629
– start-page: 1273
  volume-title: Proc. AISTATS
  ident: ref4
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref25
  doi: 10.1109/TWC.2020.3042530
– ident: ref20
  doi: 10.1109/TPDS.2021.3123535
– ident: ref11
  doi: 10.1145/3466772.3467038
– year: 2019
  ident: ref7
  article-title: Improving federated learning personalization via model agnostic meta learning
  publication-title: arXiv:1909.12488
– ident: ref29
  doi: 10.1109/JSAC.2019.2904348
– volume-title: Hungarian Maximum Matching Algorithm
  year: 2011
  ident: ref42
– ident: ref31
  doi: 10.1109/INFOCOM42981.2021.9488679
– ident: ref2
  doi: 10.1109/ASAP.2018.8445118
– start-page: 1082
  volume-title: Proc. AISTATS
  ident: ref38
  article-title: On the convergence theory of gradient-based model-agnostic meta-learning algorithms
– ident: ref15
  doi: 10.1109/TNET.2020.3035770
– ident: ref8
  doi: 10.1109/ICDCS47774.2020.00032
– ident: ref19
  doi: 10.1145/3298981
– year: 2020
  ident: ref37
  article-title: FedPD: A federated learning framework with optimal rates and adaptivity to non-IID data
  publication-title: arXiv:2005.11418
– ident: ref23
  doi: 10.1109/ICCWorkshops49005.2020.9145118
– ident: ref21
  doi: 10.1109/TWC.2020.3015671
– ident: ref32
  doi: 10.1109/ICDCS.2019.00099
– ident: ref16
  doi: 10.1109/TMC.2021.3119200
– volume-title: Proc. ICLR
  ident: ref33
  article-title: Differentially private meta-learning
– ident: ref45
  doi: 10.1109/CVPR.2009.5206848
– ident: ref12
  doi: 10.1109/ICC.2019.8761315
– start-page: 5132
  volume-title: Proc. ICML
  ident: ref30
  article-title: SCAFFOLD: Stochastic controlled averaging for federated learning
– ident: ref22
  doi: 10.1109/TWC.2019.2946245
– ident: ref13
  doi: 10.1109/JSAC.2020.3036952
– volume-title: Introduction to Algorithms
  year: 2009
  ident: ref40
– ident: ref26
  doi: 10.1109/JSAC.2020.3036971
– year: 2009
  ident: ref44
  article-title: Learning multiple layers of features from tiny images
– ident: ref10
  doi: 10.1561/2200000083
– ident: ref18
  doi: 10.1109/OJCS.2020.2993259
– ident: ref3
  doi: 10.1109/ICDCS.2019.00182
– start-page: 7184
  volume-title: Proc. ICML
  ident: ref27
  article-title: On the linear speedup analysis of communication efficient momentum SGD for distributed non-convex optimization
– ident: ref34
  doi: 10.1109/ASRU46091.2019.9003775
– ident: ref39
  doi: 10.1109/JSAC.2022.3143259
SSID ssj0014482
Score 2.5890114
Snippet Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today's edge learning arena....
Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today’s edge learning arena....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1556
SubjectTerms Algorithms
Collaborative work
Convergence
device selection
efficiency
Energy consumption
Energy costs
Federated meta-learning
Heterogeneity
Internet of Things
Learning
Loss reduction
multi-access systems
Radio spectra
Resource allocation
Resource management
Servers
Stochastic processes
Training
Wireless networks
Title Efficient Federated Meta-Learning Over Multi-Access Wireless Networks
URI https://ieeexplore.ieee.org/document/9681911
https://www.proquest.com/docview/2650297468
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkx78hUYUzQ6ejIW13Vp2JARCSMCDknBb2rfOgwSMjIt_va_dIESNMbv0sC7Ne92-9-29fo-Qewe6LM4UZTzPaaS5pomKY6ojg2guNA_BEcXJVI5m0Xgez2vkcXcWxlrri89s2w19Lj9bwcb9Kusk0tEL5DoHSNzKs1q7jAHSDJ8xUEJQRwKqDCYLk874uddHJsg5EtRIcCdLuodBvqnKjy-xh5fhCZlsF1ZWlby1N4Vpw-c3zcb_rvyUHFdxZtArN8YZqdnlOTnaUx9skMHAy0fgxGDoJCUw6syCiS00rURXX4Mn3OiBP6NLe76zYuCqZRduMC3rx9cXZDYcvPRHtOqqQAGhvaCgc4AQNLcMMncJCYoLbXJEc-DANAgkIbGwOg9lF5jRSkcqN8qwzKJ5L0l9uVraKxLEiUmEEKClsghy1uQaLOQisUzaSEKThFs7p1BJjrvOF4vUU48wSZ1rUueatHJNkzzspryXeht_3dxwpt7dWFm5SVpbZ6bVG7lOOYaiHMmT7F7_PuuGHLpnl8WMLVIvPjb2FgOOwtz5nfYF4MrR1g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5V5QAceBXEQoEc4ILkbWzn0Rw4rMquto9dDrRSb8GeTDhQbRGbFYLfwl_hvzHjeFcVIG6VUC4-2EriGXvm84y_AXgpRlfnTam0aVuVOeNUVea5cplna26dSVGA4mxeTM-yo_P8fAt-bO7CEFFIPqOhNEMsv7nElRyV7VWFwAsdUyiP6dtXBmjLN4dvWZqvjJmMTw-mKtYQUMiGrFPoWsQUnSGNjTy2wNJY51u2XWhQO7TscueWXJsW-6i9K11Wtr70uqFSjjt5g7_BfkZu-tthmxgFA5sQo-BOSmBHjJnqtNo7ej86YOxpDEPizBohQr1i9UIZlz_2_mDQJnfh53oq-jyWT8NV54f4_TeWyP91ru7BnehJJ6Ne9e_DFi0ewO0r_Io7MB4Hggz-0GQipBnsVzfJjDqnIq3sx-QdL-Uk3EJWo1A7MpF84AtpzPsM-eVDOLuW_3gE24vLBT2GJK98Za1FV5TEZpx865CwtRXpgrICB5Cu5VpjJFWX2h4XdQBXaVWLKtSiCnVUhQG83gz53DOK_Kvzjoh20zFKdQC7a-Wp456zrA0724bhYbH_5O-jXsDN6enspD45nB8_hVvynj51cxe2uy8resbuVeefBy1P4MN1q8ovSm00Pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Federated+Meta-Learning+Over+Multi-Access+Wireless+Networks&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Yue%2C+Sheng&rft.au=Ren%2C+Ju&rft.au=Xin%2C+Jiang&rft.au=Zhang%2C+Deyu&rft.date=2022-05-01&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=40&rft.issue=5&rft.spage=1556&rft.epage=1570&rft_id=info:doi/10.1109%2FJSAC.2022.3143259&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAC_2022_3143259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon