Efficient Federated Meta-Learning Over Multi-Access Wireless Networks
Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today's edge learning arena. However, its performance is often limited by slow convergence and corresponding low communication efficiency. In addition, since the av...
Saved in:
Published in | IEEE journal on selected areas in communications Vol. 40; no. 5; pp. 1556 - 1570 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today's edge learning arena. However, its performance is often limited by slow convergence and corresponding low communication efficiency. In addition, since the available radio spectrum and IoT devices' energy capacity are usually insufficient, it is crucial to control the resource allocation and energy consumption when deploying FML in practical wireless networks. To overcome the challenges, in this paper, we rigorously analyze the contribution of each device to the global loss reduction in each round and develop an FML algorithm (called NUFM) with a non-uniform device selection scheme to accelerate the convergence. After that, we formulate a resource allocation problem integrating NUFM in multi-access wireless systems to jointly improve the convergence rate and minimize the wall-clock time along with energy cost. By deconstructing the original problem step by step, we devise a joint device selection and resource allocation strategy to solve the problem with theoretical guarantees. Further, we show that the computational complexity of NUFM can be reduced from <inline-formula> <tex-math notation="LaTeX">O(d^{2}) </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">O(d) </tex-math></inline-formula> (with the model dimension <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>) via combining two first-order approximation techniques. Extensive simulation results demonstrate the effectiveness and superiority of the proposed methods in comparison with existing baselines. |
---|---|
AbstractList | Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today’s edge learning arena. However, its performance is often limited by slow convergence and corresponding low communication efficiency. In addition, since the available radio spectrum and IoT devices’ energy capacity are usually insufficient, it is crucial to control the resource allocation and energy consumption when deploying FML in practical wireless networks. To overcome the challenges, in this paper, we rigorously analyze the contribution of each device to the global loss reduction in each round and develop an FML algorithm (called NUFM) with a non-uniform device selection scheme to accelerate the convergence. After that, we formulate a resource allocation problem integrating NUFM in multi-access wireless systems to jointly improve the convergence rate and minimize the wall-clock time along with energy cost. By deconstructing the original problem step by step, we devise a joint device selection and resource allocation strategy to solve the problem with theoretical guarantees. Further, we show that the computational complexity of NUFM can be reduced from [Formula Omitted] to [Formula Omitted] (with the model dimension [Formula Omitted]) via combining two first-order approximation techniques. Extensive simulation results demonstrate the effectiveness and superiority of the proposed methods in comparison with existing baselines. Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today's edge learning arena. However, its performance is often limited by slow convergence and corresponding low communication efficiency. In addition, since the available radio spectrum and IoT devices' energy capacity are usually insufficient, it is crucial to control the resource allocation and energy consumption when deploying FML in practical wireless networks. To overcome the challenges, in this paper, we rigorously analyze the contribution of each device to the global loss reduction in each round and develop an FML algorithm (called NUFM) with a non-uniform device selection scheme to accelerate the convergence. After that, we formulate a resource allocation problem integrating NUFM in multi-access wireless systems to jointly improve the convergence rate and minimize the wall-clock time along with energy cost. By deconstructing the original problem step by step, we devise a joint device selection and resource allocation strategy to solve the problem with theoretical guarantees. Further, we show that the computational complexity of NUFM can be reduced from <inline-formula> <tex-math notation="LaTeX">O(d^{2}) </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">O(d) </tex-math></inline-formula> (with the model dimension <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>) via combining two first-order approximation techniques. Extensive simulation results demonstrate the effectiveness and superiority of the proposed methods in comparison with existing baselines. |
Author | Xin, Jiang Ren, Ju Zhang, Yaoxue Yue, Sheng Zhang, Deyu Zhuang, Weihua |
Author_xml | – sequence: 1 givenname: Sheng surname: Yue fullname: Yue, Sheng email: sheng.yue@csu.edu.cn organization: School of Computer Science and Engineering, Central South University, Changsha, China – sequence: 2 givenname: Ju orcidid: 0000-0003-2782-183X surname: Ren fullname: Ren, Ju email: renju@tsinghua.edu.cn organization: Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, China – sequence: 3 givenname: Jiang surname: Xin fullname: Xin, Jiang email: xinjiang@csu.edu.cn organization: School of Computer Science and Engineering, Central South University, Changsha, China – sequence: 4 givenname: Deyu orcidid: 0000-0002-5676-1285 surname: Zhang fullname: Zhang, Deyu email: zdy876@csu.edu.cn organization: School of Computer Science and Engineering, Central South University, Changsha, China – sequence: 5 givenname: Yaoxue surname: Zhang fullname: Zhang, Yaoxue email: zhangyx@tsinghua.edu.cn organization: Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, China – sequence: 6 givenname: Weihua orcidid: 0000-0003-0488-511X surname: Zhuang fullname: Zhuang, Weihua email: wzhuang@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada |
BookMark | eNp9kE1PwzAMhiM0JLbBD0BcKnHuiJO2aY_TtPGhwQ6AOEap66KM0Y4kA_HvabWJAwfkg314H1t-RmzQtA0xdg58AsCLq7vH6WwiuBATCYkUaXHEhpCmecw5zwdsyJWUca4gO2Ej79ecQ5LkYsjm87q2aKkJ0YIqciZQFd1TMPGSjGts8xqtPslF97tNsPEUkbyPXqyjTT88UPhq3Zs_Zce12Xg6O_Qxe17Mn2Y38XJ1fTubLmMUhQwxmhqRoxEEWPUlM1RCmrIWIkGBYFCmKkslmZpnOUJplElUXaoSKuo-GLPL_d6taz925INetzvXdCe1yFIuCpVkeZeCfQpd672jWm-dfTfuWwPXvS3d29K9LX2w1THqD4M2mGDbJjhjN_-SF3vSEtHvpSLLoQCQP9gTegI |
CODEN | ISACEM |
CitedBy_id | crossref_primary_10_1109_JSAC_2022_3143259 crossref_primary_10_1109_TMC_2024_3356178 crossref_primary_10_1109_OJCOMS_2022_3222749 crossref_primary_10_3390_telecom5040063 crossref_primary_10_1002_int_22951 crossref_primary_10_1109_JIOT_2022_3175997 crossref_primary_10_3390_electronics12153295 crossref_primary_10_3390_rs16091640 crossref_primary_10_1109_JIOT_2023_3348498 crossref_primary_10_1016_j_neucom_2022_04_078 crossref_primary_10_1109_JIOT_2024_3383096 crossref_primary_10_1109_JIOT_2022_3184839 crossref_primary_10_3390_jsan12010013 crossref_primary_10_1109_TCOMM_2024_3396748 crossref_primary_10_1109_JIOT_2022_3224239 crossref_primary_10_1016_j_ifacol_2023_10_884 crossref_primary_10_1109_JIOT_2023_3292494 crossref_primary_10_1145_3571072 crossref_primary_10_1109_TVT_2022_3161503 crossref_primary_10_1109_TMC_2023_3316189 crossref_primary_10_1109_TVT_2023_3326877 crossref_primary_10_1109_TWC_2024_3366393 crossref_primary_10_1109_JSTSP_2022_3144020 crossref_primary_10_1109_OJCOMS_2023_3243870 crossref_primary_10_3390_electronics11040670 crossref_primary_10_1109_TVT_2022_3190941 crossref_primary_10_1109_TNET_2022_3200853 crossref_primary_10_1109_ACCESS_2024_3418900 crossref_primary_10_1109_TCOMM_2023_3317300 crossref_primary_10_1109_TNSE_2023_3266942 crossref_primary_10_1109_TWC_2023_3281765 crossref_primary_10_1109_COMST_2022_3218527 crossref_primary_10_3390_electronics12153327 |
Cites_doi | 10.1109/TETC.2020.2986238 10.1109/TWC.2020.3037554 10.1109/JPROC.2019.2941458 10.1109/ICC40277.2020.9149138 10.1007/BF01130406 10.1109/TWC.2020.3025446 10.1109/TWC.2020.3031503 10.1109/TWC.2020.3024629 10.1109/TWC.2020.3042530 10.1109/TPDS.2021.3123535 10.1145/3466772.3467038 10.1109/JSAC.2019.2904348 10.1109/INFOCOM42981.2021.9488679 10.1109/ASAP.2018.8445118 10.1109/TNET.2020.3035770 10.1109/ICDCS47774.2020.00032 10.1145/3298981 10.1109/ICCWorkshops49005.2020.9145118 10.1109/TWC.2020.3015671 10.1109/ICDCS.2019.00099 10.1109/TMC.2021.3119200 10.1109/CVPR.2009.5206848 10.1109/ICC.2019.8761315 10.1109/TWC.2019.2946245 10.1109/JSAC.2020.3036952 10.1109/JSAC.2020.3036971 10.1561/2200000083 10.1109/OJCS.2020.2993259 10.1109/ICDCS.2019.00182 10.1109/ASRU46091.2019.9003775 10.1109/JSAC.2022.3143259 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/JSAC.2022.3143259 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0008 |
EndPage | 1570 |
ExternalDocumentID | 10_1109_JSAC_2022_3143259 9681911 |
Genre | orig-research |
GrantInformation_xml | – fundername: Higher Education Discipline Innovation Project; 111 Project grantid: B18059 funderid: 10.13039/501100013314 – fundername: Young Talents Plan of Hunan Province of China grantid: 2019RS2001 – fundername: Natural Science Foundation of Hunan Province, China grantid: 2020JJ2050 funderid: 10.13039/501100004735 – fundername: National Natural Science Foundation of China grantid: 62122095; 62072472; U19A2067 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2019YFA0706403 funderid: 10.13039/501100012166 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c293t-cafcc0ca2e1cdcdcd36c723abf224c2c1ac357653eaf068c1ba7a47fb7b1de733 |
IEDL.DBID | RIE |
ISSN | 0733-8716 |
IngestDate | Mon Jun 30 10:14:34 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Tue Jul 01 02:06:31 EDT 2025 Wed Aug 27 03:05:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-cafcc0ca2e1cdcdcd36c723abf224c2c1ac357653eaf068c1ba7a47fb7b1de733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0488-511X 0000-0003-2782-183X 0000-0002-5676-1285 |
PQID | 2650297468 |
PQPubID | 85481 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_JSAC_2022_3143259 proquest_journals_2650297468 crossref_citationtrail_10_1109_JSAC_2022_3143259 ieee_primary_9681911 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal on selected areas in communications |
PublicationTitleAbbrev | J-SAC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 Fallah (ref38) ref11 Zhang (ref37) 2020 ref10 ref32 McMahan (ref4) ref2 ref1 Finn (ref5) ref17 ref39 Xiao (ref43) 2017 ref16 ref19 ref18 Cormen (ref40) 2009 Krizhevsky (ref44) 2009 Fallah (ref9) Jiang (ref7) 2019 ref24 ref23 Yu (ref27) Weisstein (ref42) 2011 ref45 ref26 ref25 ref20 ref41 ref22 ref21 ref28 Chen (ref6) 2018 ref29 ref8 ref3 Karimireddy (ref30) Li (ref33) |
References_xml | – year: 2018 ident: ref6 article-title: Federated meta-learning with fast convergence and efficient communication publication-title: arXiv:1802.07876 – ident: ref17 doi: 10.1109/TETC.2020.2986238 – ident: ref36 doi: 10.1109/TWC.2020.3037554 – start-page: 1 volume-title: Proc. NIPS ident: ref9 article-title: Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach – ident: ref1 doi: 10.1109/JPROC.2019.2941458 – ident: ref35 doi: 10.1109/ICC40277.2020.9149138 – ident: ref41 doi: 10.1007/BF01130406 – ident: ref24 doi: 10.1109/TWC.2020.3025446 – year: 2017 ident: ref43 article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms publication-title: arXiv:1708.07747 – ident: ref28 doi: 10.1109/TWC.2020.3031503 – start-page: 1126 volume-title: Proc. ICML ident: ref5 article-title: Model-agnostic meta-learning for fast adaptation of deep networks – ident: ref14 doi: 10.1109/TWC.2020.3024629 – start-page: 1273 volume-title: Proc. AISTATS ident: ref4 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref25 doi: 10.1109/TWC.2020.3042530 – ident: ref20 doi: 10.1109/TPDS.2021.3123535 – ident: ref11 doi: 10.1145/3466772.3467038 – year: 2019 ident: ref7 article-title: Improving federated learning personalization via model agnostic meta learning publication-title: arXiv:1909.12488 – ident: ref29 doi: 10.1109/JSAC.2019.2904348 – volume-title: Hungarian Maximum Matching Algorithm year: 2011 ident: ref42 – ident: ref31 doi: 10.1109/INFOCOM42981.2021.9488679 – ident: ref2 doi: 10.1109/ASAP.2018.8445118 – start-page: 1082 volume-title: Proc. AISTATS ident: ref38 article-title: On the convergence theory of gradient-based model-agnostic meta-learning algorithms – ident: ref15 doi: 10.1109/TNET.2020.3035770 – ident: ref8 doi: 10.1109/ICDCS47774.2020.00032 – ident: ref19 doi: 10.1145/3298981 – year: 2020 ident: ref37 article-title: FedPD: A federated learning framework with optimal rates and adaptivity to non-IID data publication-title: arXiv:2005.11418 – ident: ref23 doi: 10.1109/ICCWorkshops49005.2020.9145118 – ident: ref21 doi: 10.1109/TWC.2020.3015671 – ident: ref32 doi: 10.1109/ICDCS.2019.00099 – ident: ref16 doi: 10.1109/TMC.2021.3119200 – volume-title: Proc. ICLR ident: ref33 article-title: Differentially private meta-learning – ident: ref45 doi: 10.1109/CVPR.2009.5206848 – ident: ref12 doi: 10.1109/ICC.2019.8761315 – start-page: 5132 volume-title: Proc. ICML ident: ref30 article-title: SCAFFOLD: Stochastic controlled averaging for federated learning – ident: ref22 doi: 10.1109/TWC.2019.2946245 – ident: ref13 doi: 10.1109/JSAC.2020.3036952 – volume-title: Introduction to Algorithms year: 2009 ident: ref40 – ident: ref26 doi: 10.1109/JSAC.2020.3036971 – year: 2009 ident: ref44 article-title: Learning multiple layers of features from tiny images – ident: ref10 doi: 10.1561/2200000083 – ident: ref18 doi: 10.1109/OJCS.2020.2993259 – ident: ref3 doi: 10.1109/ICDCS.2019.00182 – start-page: 7184 volume-title: Proc. ICML ident: ref27 article-title: On the linear speedup analysis of communication efficient momentum SGD for distributed non-convex optimization – ident: ref34 doi: 10.1109/ASRU46091.2019.9003775 – ident: ref39 doi: 10.1109/JSAC.2022.3143259 |
SSID | ssj0014482 |
Score | 2.5890114 |
Snippet | Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today's edge learning arena.... Federated meta-learning (FML) has emerged as a promising paradigm to cope with the data limitation and heterogeneity challenges in today’s edge learning arena.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1556 |
SubjectTerms | Algorithms Collaborative work Convergence device selection efficiency Energy consumption Energy costs Federated meta-learning Heterogeneity Internet of Things Learning Loss reduction multi-access systems Radio spectra Resource allocation Resource management Servers Stochastic processes Training Wireless networks |
Title | Efficient Federated Meta-Learning Over Multi-Access Wireless Networks |
URI | https://ieeexplore.ieee.org/document/9681911 https://www.proquest.com/docview/2650297468 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkx78hUYUzQ6ejIW13Vp2JARCSMCDknBb2rfOgwSMjIt_va_dIESNMbv0sC7Ne92-9-29fo-Qewe6LM4UZTzPaaS5pomKY6ojg2guNA_BEcXJVI5m0Xgez2vkcXcWxlrri89s2w19Lj9bwcb9Kusk0tEL5DoHSNzKs1q7jAHSDJ8xUEJQRwKqDCYLk874uddHJsg5EtRIcCdLuodBvqnKjy-xh5fhCZlsF1ZWlby1N4Vpw-c3zcb_rvyUHFdxZtArN8YZqdnlOTnaUx9skMHAy0fgxGDoJCUw6syCiS00rURXX4Mn3OiBP6NLe76zYuCqZRduMC3rx9cXZDYcvPRHtOqqQAGhvaCgc4AQNLcMMncJCYoLbXJEc-DANAgkIbGwOg9lF5jRSkcqN8qwzKJ5L0l9uVraKxLEiUmEEKClsghy1uQaLOQisUzaSEKThFs7p1BJjrvOF4vUU48wSZ1rUueatHJNkzzspryXeht_3dxwpt7dWFm5SVpbZ6bVG7lOOYaiHMmT7F7_PuuGHLpnl8WMLVIvPjb2FgOOwtz5nfYF4MrR1g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5V5QAceBXEQoEc4ILkbWzn0Rw4rMquto9dDrRSb8GeTDhQbRGbFYLfwl_hvzHjeFcVIG6VUC4-2EriGXvm84y_AXgpRlfnTam0aVuVOeNUVea5cplna26dSVGA4mxeTM-yo_P8fAt-bO7CEFFIPqOhNEMsv7nElRyV7VWFwAsdUyiP6dtXBmjLN4dvWZqvjJmMTw-mKtYQUMiGrFPoWsQUnSGNjTy2wNJY51u2XWhQO7TscueWXJsW-6i9K11Wtr70uqFSjjt5g7_BfkZu-tthmxgFA5sQo-BOSmBHjJnqtNo7ej86YOxpDEPizBohQr1i9UIZlz_2_mDQJnfh53oq-jyWT8NV54f4_TeWyP91ru7BnehJJ6Ne9e_DFi0ewO0r_Io7MB4Hggz-0GQipBnsVzfJjDqnIq3sx-QdL-Uk3EJWo1A7MpF84AtpzPsM-eVDOLuW_3gE24vLBT2GJK98Za1FV5TEZpx865CwtRXpgrICB5Cu5VpjJFWX2h4XdQBXaVWLKtSiCnVUhQG83gz53DOK_Kvzjoh20zFKdQC7a-Wp456zrA0724bhYbH_5O-jXsDN6enspD45nB8_hVvynj51cxe2uy8resbuVeefBy1P4MN1q8ovSm00Pg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Federated+Meta-Learning+Over+Multi-Access+Wireless+Networks&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Yue%2C+Sheng&rft.au=Ren%2C+Ju&rft.au=Xin%2C+Jiang&rft.au=Zhang%2C+Deyu&rft.date=2022-05-01&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=40&rft.issue=5&rft.spage=1556&rft.epage=1570&rft_id=info:doi/10.1109%2FJSAC.2022.3143259&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAC_2022_3143259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon |