An algorithm for variational inclusion problems including quasi-nonexpansive mappings with applications in osteoporosis prediction

This paper has proposed a novel algorithm for solving fixed point problems for quasi-nonexpansive mappings and variational inclusion problems within a real Hilbert space. The proposed method exhibits weak convergence under reasonable assumptions. Furthermore, we applied this algorithm for data class...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 10; no. 2; pp. 2541 - 2561
Main Authors Suparatulatorn, Raweerote, Liawrungrueang, Wongthawat, Mouktonglang, Thanasak, Cholamjiak, Watcharaporn
Format Journal Article
LanguageEnglish
Published AIMS Press 01.02.2025
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2025118

Cover

Loading…
Abstract This paper has proposed a novel algorithm for solving fixed point problems for quasi-nonexpansive mappings and variational inclusion problems within a real Hilbert space. The proposed method exhibits weak convergence under reasonable assumptions. Furthermore, we applied this algorithm for data classification to osteoporosis risk prediction, utilizing an extreme learning machine. From the experimental results, our proposed algorithm consistently outperforms existing algorithms across multiple evaluation metrics. Specifically, it achieved higher accuracy, precision, and F1-score across most of the training boxes compared to other methods. The area under the curve (AUC) values from the receiver operating characteristic (ROC) curves further validated the effectiveness of our approach, indicating superior generalization and classification performance. These results highlight the efficiency and robustness of our proposed algorithm, demonstrating its potential for enhancing osteoporosis risk-prediction models through improved convergence and classification capabilities.
AbstractList This paper has proposed a novel algorithm for solving fixed point problems for quasi-nonexpansive mappings and variational inclusion problems within a real Hilbert space. The proposed method exhibits weak convergence under reasonable assumptions. Furthermore, we applied this algorithm for data classification to osteoporosis risk prediction, utilizing an extreme learning machine. From the experimental results, our proposed algorithm consistently outperforms existing algorithms across multiple evaluation metrics. Specifically, it achieved higher accuracy, precision, and F1-score across most of the training boxes compared to other methods. The area under the curve (AUC) values from the receiver operating characteristic (ROC) curves further validated the effectiveness of our approach, indicating superior generalization and classification performance. These results highlight the efficiency and robustness of our proposed algorithm, demonstrating its potential for enhancing osteoporosis risk-prediction models through improved convergence and classification capabilities.
Author Liawrungrueang, Wongthawat
Mouktonglang, Thanasak
Cholamjiak, Watcharaporn
Suparatulatorn, Raweerote
Author_xml – sequence: 1
  givenname: Raweerote
  surname: Suparatulatorn
  fullname: Suparatulatorn, Raweerote
– sequence: 2
  givenname: Wongthawat
  surname: Liawrungrueang
  fullname: Liawrungrueang, Wongthawat
– sequence: 3
  givenname: Thanasak
  surname: Mouktonglang
  fullname: Mouktonglang, Thanasak
– sequence: 4
  givenname: Watcharaporn
  surname: Cholamjiak
  fullname: Cholamjiak, Watcharaporn
BookMark eNpNkU1PwzAMhiM0JMbYjR-QH0BH89ElOU4TH5MmcYFz5WbJlqltStINuPLLSdmEOPm1LT-y_V6jUetbg9AtyWdMMX7fQL-b0ZwWhMgLNKZcsGyupBz901doGuM-z3NKKKeCj9H3osVQb31w_a7B1gd8hOCgd76FGrtW14eYNO6Cr2rTxFNp49otfj9AdNmwxWcHbXRHgxvoutSK-CPhcEpqp39Zwxz2sTe-88FHFxPQbJweejfo0kIdzfQcJ-jt8eF1-ZytX55Wy8U601SxPtM5oVYqUklDZKGE1MYKyQhUnFE1J5YJqjQXAoBpWkgrbGEpq6TcFDb9hE3Q6sTdeNiXXXANhK_Sgyt_Cz5sSwi907UpqznJSYIoNVdcSaFEZQ1XhFnCIX04se5OLJ2uicHYPx7Jy8GOcrCjPNvBfgD-moKM
Cites_doi 10.1137/S0363012998338806
10.2307/2032162
10.1016/0041-5553(64)90137-5
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.media.2020.101692
10.1186/s13660-024-02965-y
10.1007/978-1-4419-9467-7
10.1137/0716071
10.1109/IC3INA48034.2019.8949568
10.1002/cmm4.1088
10.1007/978-1-4615-5197-3_3
10.1007/s10851-014-0523-2
10.1007/s10092-018-0292-1
10.1016/j.chaos.2022.112048
10.1007/s11784-018-0526-5
10.1186/1687-1812-2013-69
10.3390/math7121175
10.1007/s10915-021-01608-7
10.1016/0022-247X(79)90234-8
ContentType Journal Article
CorporateAuthor Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
Department of Orthopaedics, School of Medicine, University of Phayao, Phayao 56000, Thailand
School of Science, University of Phayao, Phayao 56000, Thailand
Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
CorporateAuthor_xml – name: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
– name: Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
– name: Department of Orthopaedics, School of Medicine, University of Phayao, Phayao 56000, Thailand
– name: School of Science, University of Phayao, Phayao 56000, Thailand
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2025118
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 2561
ExternalDocumentID oai_doaj_org_article_b6101c259969498797bfe4913f14a251
10_3934_math_2025118
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c293t-c012f891b8e185978cef7831ab432961f3729c477aa3c258f7f5f23b88d5f1183
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 00:38:24 EDT 2025
Tue Jul 01 05:27:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-c012f891b8e185978cef7831ab432961f3729c477aa3c258f7f5f23b88d5f1183
OpenAccessLink https://doaj.org/article/b6101c259969498797bfe4913f14a251
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_b6101c259969498797bfe4913f14a251
crossref_primary_10_3934_math_2025118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 20250201
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2025
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2025118-4
key-10.3934/math.2025118-3
key-10.3934/math.2025118-2
key-10.3934/math.2025118-1
key-10.3934/math.2025118-20
key-10.3934/math.2025118-9
key-10.3934/math.2025118-8
key-10.3934/math.2025118-12
key-10.3934/math.2025118-7
key-10.3934/math.2025118-13
key-10.3934/math.2025118-6
key-10.3934/math.2025118-10
key-10.3934/math.2025118-21
key-10.3934/math.2025118-5
key-10.3934/math.2025118-11
key-10.3934/math.2025118-22
key-10.3934/math.2025118-16
key-10.3934/math.2025118-17
key-10.3934/math.2025118-14
key-10.3934/math.2025118-15
key-10.3934/math.2025118-18
key-10.3934/math.2025118-19
References_xml – ident: key-10.3934/math.2025118-17
– ident: key-10.3934/math.2025118-6
  doi: 10.1137/S0363012998338806
– ident: key-10.3934/math.2025118-2
  doi: 10.2307/2032162
– ident: key-10.3934/math.2025118-14
  doi: 10.1016/0041-5553(64)90137-5
– ident: key-10.3934/math.2025118-19
– ident: key-10.3934/math.2025118-20
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: key-10.3934/math.2025118-22
  doi: 10.1016/j.media.2020.101692
– ident: key-10.3934/math.2025118-15
  doi: 10.1186/s13660-024-02965-y
– ident: key-10.3934/math.2025118-16
  doi: 10.1007/978-1-4419-9467-7
– ident: key-10.3934/math.2025118-4
  doi: 10.1137/0716071
– ident: key-10.3934/math.2025118-21
  doi: 10.1109/IC3INA48034.2019.8949568
– ident: key-10.3934/math.2025118-11
  doi: 10.1002/cmm4.1088
– ident: key-10.3934/math.2025118-18
  doi: 10.1007/978-1-4615-5197-3_3
– ident: key-10.3934/math.2025118-7
  doi: 10.1007/s10851-014-0523-2
– ident: key-10.3934/math.2025118-13
  doi: 10.1007/s10092-018-0292-1
– ident: key-10.3934/math.2025118-9
  doi: 10.1016/j.chaos.2022.112048
– ident: key-10.3934/math.2025118-8
  doi: 10.1007/s11784-018-0526-5
– ident: key-10.3934/math.2025118-1
– ident: key-10.3934/math.2025118-3
  doi: 10.1186/1687-1812-2013-69
– ident: key-10.3934/math.2025118-10
  doi: 10.3390/math7121175
– ident: key-10.3934/math.2025118-12
  doi: 10.1007/s10915-021-01608-7
– ident: key-10.3934/math.2025118-5
  doi: 10.1016/0022-247X(79)90234-8
SSID ssj0002124274
Score 2.281762
Snippet This paper has proposed a novel algorithm for solving fixed point problems for quasi-nonexpansive mappings and variational inclusion problems within a real...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 2541
SubjectTerms fixed point problem
osteoporosis
process innovation
variational inclusion problem
Title An algorithm for variational inclusion problems including quasi-nonexpansive mappings with applications in osteoporosis prediction
URI https://doaj.org/article/b6101c259969498797bfe4913f14a251
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gBj1Dh2YnssiKpCKhOVukW2Y5dKfQBpETO_nLskVGFiYXUSy_rs-Lvv7nwm5Mbz2FuZikgJYSPhU9gHmUsjZWwcmLUhFOiHHD1lw7F4nKST1lVfmBNWlweugetZ4HfmEqwiogUIZC1t8EIzHpgwSXV4OgHOa4kp3INhQxagt-pMd6656IH9h7GHyqL-xUGtUv0VpwwOyH5jDNJ-PYhDsuOXR2RvtK2kWh6Tr_6Smvl0BRr-ZUHBwqQfoG4bDx6dLd18g_4u2lwMU9ZNSEj0bWPKWQTy3n_CL49p6nRhsBzDtKTofqXt4DV8R_G8xwrs8VU5K6FDDOHgsxMyHjw83w-j5t6EyAF5ryMHpBOUZlZ5YGOQic4HqTgzVvBEZyxgqM4JKY3hgKwKMqQh4VapIg0ADz8lHRzcGaEyK4rMhdSDHSS8UlYL52QShA6xi23RJbc_SOavdXmMHGQFIp4j4nmDeJfcIczbd7CoddUAU503U53_NdXn_9HJBdnFMdWJ15eks37f-CuwK9b2ulpC38RnzgM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+variational+inclusion+problems+including+quasi-nonexpansive+mappings+with+applications+in+osteoporosis+prediction&rft.jtitle=AIMS+mathematics&rft.au=Raweerote+Suparatulatorn&rft.au=Wongthawat+Liawrungrueang&rft.au=Thanasak+Mouktonglang&rft.au=Watcharaporn+Cholamjiak&rft.date=2025-02-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=10&rft.issue=2&rft.spage=2541&rft.epage=2561&rft_id=info:doi/10.3934%2Fmath.2025118&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b6101c259969498797bfe4913f14a251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon