An algorithm for variational inclusion problems including quasi-nonexpansive mappings with applications in osteoporosis prediction
This paper has proposed a novel algorithm for solving fixed point problems for quasi-nonexpansive mappings and variational inclusion problems within a real Hilbert space. The proposed method exhibits weak convergence under reasonable assumptions. Furthermore, we applied this algorithm for data class...
Saved in:
Published in | AIMS mathematics Vol. 10; no. 2; pp. 2541 - 2561 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2025118 |
Cover
Loading…
Abstract | This paper has proposed a novel algorithm for solving fixed point problems for quasi-nonexpansive mappings and variational inclusion problems within a real Hilbert space. The proposed method exhibits weak convergence under reasonable assumptions. Furthermore, we applied this algorithm for data classification to osteoporosis risk prediction, utilizing an extreme learning machine. From the experimental results, our proposed algorithm consistently outperforms existing algorithms across multiple evaluation metrics. Specifically, it achieved higher accuracy, precision, and F1-score across most of the training boxes compared to other methods. The area under the curve (AUC) values from the receiver operating characteristic (ROC) curves further validated the effectiveness of our approach, indicating superior generalization and classification performance. These results highlight the efficiency and robustness of our proposed algorithm, demonstrating its potential for enhancing osteoporosis risk-prediction models through improved convergence and classification capabilities. |
---|---|
AbstractList | This paper has proposed a novel algorithm for solving fixed point problems for quasi-nonexpansive mappings and variational inclusion problems within a real Hilbert space. The proposed method exhibits weak convergence under reasonable assumptions. Furthermore, we applied this algorithm for data classification to osteoporosis risk prediction, utilizing an extreme learning machine. From the experimental results, our proposed algorithm consistently outperforms existing algorithms across multiple evaluation metrics. Specifically, it achieved higher accuracy, precision, and F1-score across most of the training boxes compared to other methods. The area under the curve (AUC) values from the receiver operating characteristic (ROC) curves further validated the effectiveness of our approach, indicating superior generalization and classification performance. These results highlight the efficiency and robustness of our proposed algorithm, demonstrating its potential for enhancing osteoporosis risk-prediction models through improved convergence and classification capabilities. |
Author | Liawrungrueang, Wongthawat Mouktonglang, Thanasak Cholamjiak, Watcharaporn Suparatulatorn, Raweerote |
Author_xml | – sequence: 1 givenname: Raweerote surname: Suparatulatorn fullname: Suparatulatorn, Raweerote – sequence: 2 givenname: Wongthawat surname: Liawrungrueang fullname: Liawrungrueang, Wongthawat – sequence: 3 givenname: Thanasak surname: Mouktonglang fullname: Mouktonglang, Thanasak – sequence: 4 givenname: Watcharaporn surname: Cholamjiak fullname: Cholamjiak, Watcharaporn |
BookMark | eNpNkU1PwzAMhiM0JMbYjR-QH0BH89ElOU4TH5MmcYFz5WbJlqltStINuPLLSdmEOPm1LT-y_V6jUetbg9AtyWdMMX7fQL-b0ZwWhMgLNKZcsGyupBz901doGuM-z3NKKKeCj9H3osVQb31w_a7B1gd8hOCgd76FGrtW14eYNO6Cr2rTxFNp49otfj9AdNmwxWcHbXRHgxvoutSK-CPhcEpqp39Zwxz2sTe-88FHFxPQbJweejfo0kIdzfQcJ-jt8eF1-ZytX55Wy8U601SxPtM5oVYqUklDZKGE1MYKyQhUnFE1J5YJqjQXAoBpWkgrbGEpq6TcFDb9hE3Q6sTdeNiXXXANhK_Sgyt_Cz5sSwi907UpqznJSYIoNVdcSaFEZQ1XhFnCIX04se5OLJ2uicHYPx7Jy8GOcrCjPNvBfgD-moKM |
Cites_doi | 10.1137/S0363012998338806 10.2307/2032162 10.1016/0041-5553(64)90137-5 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.media.2020.101692 10.1186/s13660-024-02965-y 10.1007/978-1-4419-9467-7 10.1137/0716071 10.1109/IC3INA48034.2019.8949568 10.1002/cmm4.1088 10.1007/978-1-4615-5197-3_3 10.1007/s10851-014-0523-2 10.1007/s10092-018-0292-1 10.1016/j.chaos.2022.112048 10.1007/s11784-018-0526-5 10.1186/1687-1812-2013-69 10.3390/math7121175 10.1007/s10915-021-01608-7 10.1016/0022-247X(79)90234-8 |
ContentType | Journal Article |
CorporateAuthor | Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand Department of Orthopaedics, School of Medicine, University of Phayao, Phayao 56000, Thailand School of Science, University of Phayao, Phayao 56000, Thailand Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand |
CorporateAuthor_xml | – name: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand – name: Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand – name: Department of Orthopaedics, School of Medicine, University of Phayao, Phayao 56000, Thailand – name: School of Science, University of Phayao, Phayao 56000, Thailand |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2025118 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 2561 |
ExternalDocumentID | oai_doaj_org_article_b6101c259969498797bfe4913f14a251 10_3934_math_2025118 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c293t-c012f891b8e185978cef7831ab432961f3729c477aa3c258f7f5f23b88d5f1183 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 00:38:24 EDT 2025 Tue Jul 01 05:27:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-c012f891b8e185978cef7831ab432961f3729c477aa3c258f7f5f23b88d5f1183 |
OpenAccessLink | https://doaj.org/article/b6101c259969498797bfe4913f14a251 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b6101c259969498797bfe4913f14a251 crossref_primary_10_3934_math_2025118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250201 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 20250201 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2025 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2025118-4 key-10.3934/math.2025118-3 key-10.3934/math.2025118-2 key-10.3934/math.2025118-1 key-10.3934/math.2025118-20 key-10.3934/math.2025118-9 key-10.3934/math.2025118-8 key-10.3934/math.2025118-12 key-10.3934/math.2025118-7 key-10.3934/math.2025118-13 key-10.3934/math.2025118-6 key-10.3934/math.2025118-10 key-10.3934/math.2025118-21 key-10.3934/math.2025118-5 key-10.3934/math.2025118-11 key-10.3934/math.2025118-22 key-10.3934/math.2025118-16 key-10.3934/math.2025118-17 key-10.3934/math.2025118-14 key-10.3934/math.2025118-15 key-10.3934/math.2025118-18 key-10.3934/math.2025118-19 |
References_xml | – ident: key-10.3934/math.2025118-17 – ident: key-10.3934/math.2025118-6 doi: 10.1137/S0363012998338806 – ident: key-10.3934/math.2025118-2 doi: 10.2307/2032162 – ident: key-10.3934/math.2025118-14 doi: 10.1016/0041-5553(64)90137-5 – ident: key-10.3934/math.2025118-19 – ident: key-10.3934/math.2025118-20 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: key-10.3934/math.2025118-22 doi: 10.1016/j.media.2020.101692 – ident: key-10.3934/math.2025118-15 doi: 10.1186/s13660-024-02965-y – ident: key-10.3934/math.2025118-16 doi: 10.1007/978-1-4419-9467-7 – ident: key-10.3934/math.2025118-4 doi: 10.1137/0716071 – ident: key-10.3934/math.2025118-21 doi: 10.1109/IC3INA48034.2019.8949568 – ident: key-10.3934/math.2025118-11 doi: 10.1002/cmm4.1088 – ident: key-10.3934/math.2025118-18 doi: 10.1007/978-1-4615-5197-3_3 – ident: key-10.3934/math.2025118-7 doi: 10.1007/s10851-014-0523-2 – ident: key-10.3934/math.2025118-13 doi: 10.1007/s10092-018-0292-1 – ident: key-10.3934/math.2025118-9 doi: 10.1016/j.chaos.2022.112048 – ident: key-10.3934/math.2025118-8 doi: 10.1007/s11784-018-0526-5 – ident: key-10.3934/math.2025118-1 – ident: key-10.3934/math.2025118-3 doi: 10.1186/1687-1812-2013-69 – ident: key-10.3934/math.2025118-10 doi: 10.3390/math7121175 – ident: key-10.3934/math.2025118-12 doi: 10.1007/s10915-021-01608-7 – ident: key-10.3934/math.2025118-5 doi: 10.1016/0022-247X(79)90234-8 |
SSID | ssj0002124274 |
Score | 2.281762 |
Snippet | This paper has proposed a novel algorithm for solving fixed point problems for quasi-nonexpansive mappings and variational inclusion problems within a real... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 2541 |
SubjectTerms | fixed point problem osteoporosis process innovation variational inclusion problem |
Title | An algorithm for variational inclusion problems including quasi-nonexpansive mappings with applications in osteoporosis prediction |
URI | https://doaj.org/article/b6101c259969498797bfe4913f14a251 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gBj1Dh2YnssiKpCKhOVukW2Y5dKfQBpETO_nLskVGFiYXUSy_rs-Lvv7nwm5Mbz2FuZikgJYSPhU9gHmUsjZWwcmLUhFOiHHD1lw7F4nKST1lVfmBNWlweugetZ4HfmEqwiogUIZC1t8EIzHpgwSXV4OgHOa4kp3INhQxagt-pMd6656IH9h7GHyqL-xUGtUv0VpwwOyH5jDNJ-PYhDsuOXR2RvtK2kWh6Tr_6Smvl0BRr-ZUHBwqQfoG4bDx6dLd18g_4u2lwMU9ZNSEj0bWPKWQTy3n_CL49p6nRhsBzDtKTofqXt4DV8R_G8xwrs8VU5K6FDDOHgsxMyHjw83w-j5t6EyAF5ryMHpBOUZlZ5YGOQic4HqTgzVvBEZyxgqM4JKY3hgKwKMqQh4VapIg0ADz8lHRzcGaEyK4rMhdSDHSS8UlYL52QShA6xi23RJbc_SOavdXmMHGQFIp4j4nmDeJfcIczbd7CoddUAU503U53_NdXn_9HJBdnFMdWJ15eks37f-CuwK9b2ulpC38RnzgM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+variational+inclusion+problems+including+quasi-nonexpansive+mappings+with+applications+in+osteoporosis+prediction&rft.jtitle=AIMS+mathematics&rft.au=Raweerote+Suparatulatorn&rft.au=Wongthawat+Liawrungrueang&rft.au=Thanasak+Mouktonglang&rft.au=Watcharaporn+Cholamjiak&rft.date=2025-02-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=10&rft.issue=2&rft.spage=2541&rft.epage=2561&rft_id=info:doi/10.3934%2Fmath.2025118&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b6101c259969498797bfe4913f14a251 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |