Multiresource-Constrained Selective Disassembly With Maximal Profit and Minimal Energy Consumption
Industrial products' reuse, recovery, and recycling are very important due to the exhaustion of ecological resources. Effective product disassembly planning methods can improve the recovery efficiency and reduce harmful impact on the environment. However, the existing approaches pay little atte...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 18; no. 2; pp. 804 - 816 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Industrial products' reuse, recovery, and recycling are very important due to the exhaustion of ecological resources. Effective product disassembly planning methods can improve the recovery efficiency and reduce harmful impact on the environment. However, the existing approaches pay little attention to disassembly resources, such as tools and operators that can significantly influence the optimal disassembly sequences. This article considers a multiobjective resource-constrained disassembly optimization problem modeled with timed Petri nets such that energy consumption is minimized, while disassembly profit is maximized. Since its solution complexity has exponential growth with the number of components in a product, a multiobjective genetic algorithm based on an external archive is used to solve it. Its effectiveness is verified by comparing it with nondominated sorting genetic algorithm II and a collaborative resource allocation strategy for a multiobjective evolutionary algorithm based on decomposition. Note to Practitioners -This article establishes a novel dual-objective optimization model for product disassembly subject to multiresource constraints. In an actual disassembly process, a decision-maker may want to minimize energy consumption and maximize disassembly profit. This article considers both objectives and proposes a multiobjective genetic algorithm based on an external archive to solve optimal disassembly problems. The experimental results show that the proposed approach can solve them effectively. The obtained solutions give decision-makers multiple choices to select the right disassembly process when an actual product is disassembled. |
---|---|
AbstractList | Industrial products' reuse, recovery, and recycling are very important due to the exhaustion of ecological resources. Effective product disassembly planning methods can improve the recovery efficiency and reduce harmful impact on the environment. However, the existing approaches pay little attention to disassembly resources, such as tools and operators that can significantly influence the optimal disassembly sequences. This article considers a multiobjective resource-constrained disassembly optimization problem modeled with timed Petri nets such that energy consumption is minimized, while disassembly profit is maximized. Since its solution complexity has exponential growth with the number of components in a product, a multiobjective genetic algorithm based on an external archive is used to solve it. Its effectiveness is verified by comparing it with nondominated sorting genetic algorithm II and a collaborative resource allocation strategy for a multiobjective evolutionary algorithm based on decomposition. Note to Practitioners -This article establishes a novel dual-objective optimization model for product disassembly subject to multiresource constraints. In an actual disassembly process, a decision-maker may want to minimize energy consumption and maximize disassembly profit. This article considers both objectives and proposes a multiobjective genetic algorithm based on an external archive to solve optimal disassembly problems. The experimental results show that the proposed approach can solve them effectively. The obtained solutions give decision-makers multiple choices to select the right disassembly process when an actual product is disassembled. |
Author | Zhou, MengChu Guo, Xiwang Liu, Shixin Qi, Liang |
Author_xml | – sequence: 1 givenname: Xiwang orcidid: 0000-0002-9142-1251 surname: Guo fullname: Guo, Xiwang email: x.w.guo@163.com organization: Computer and Communication Engineering College, Liaoning Shihua University, Fushun, China – sequence: 2 givenname: MengChu orcidid: 0000-0002-5408-8752 surname: Zhou fullname: Zhou, MengChu email: zhou@njit.edu organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA – sequence: 3 givenname: Shixin orcidid: 0000-0002-3404-9297 surname: Liu fullname: Liu, Shixin email: sxliu@mail.neu.edu.cn organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 4 givenname: Liang orcidid: 0000-0002-0762-5607 surname: Qi fullname: Qi, Liang email: qiliangsdkd@163.com organization: Department of Computer Science and Technology, Shandong University of Science and Technology, Qingdao, China |
BookMark | eNp9kE1Lw0AQhhepYFv9AeIl4Dl1P5PssdT6AS0KrXgMm2RWt6SbursR--9NbPHgQRiYYZh33plnhAa2sYDQJcETQrC8WU9X8wnFFE-olJRSfIKGRIgsZmnGBn3NRSykEGdo5P0GY8oziYeoWLZ1MA5807oS4lljfXDKWKiiFdRQBvMJ0a3xynvYFvU-ejXhPVqqL7NVdfTsGm1CpGwVLY39ac0tuLd91C9qt7tgGnuOTrWqPVwc8xi93M3Xs4d48XT_OJsu4pJKFuKi0qKLpEi5lkRlWVHQkvCECKw1UCrThEElsxQyqljJWZlI0AnRGacVcM7G6Pqwd-eajxZ8yDfdU7azzKkgmBMpMOmmyGGqdI33DnS-c93hbp8TnPco8x5l3qPMjyg7TfpHU5qg-t96VvW_yquD0gDAr5MklCQJY99BIYR9 |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3011211 crossref_primary_10_3390_math10234519 crossref_primary_10_1088_1742_6596_1944_1_012034 crossref_primary_10_1109_TCSS_2021_3132355 crossref_primary_10_1016_j_cie_2024_109927 crossref_primary_10_1016_j_jclepro_2022_135209 crossref_primary_10_1109_TCYB_2024_3390947 crossref_primary_10_1080_00207543_2020_1868598 crossref_primary_10_1109_ACCESS_2020_3045980 crossref_primary_10_1109_JAS_2020_1003539 crossref_primary_10_1080_00207543_2021_1967499 crossref_primary_10_1109_TSMC_2021_3049323 crossref_primary_10_1109_TIP_2021_3089905 crossref_primary_10_1007_s00170_021_08389_1 crossref_primary_10_1109_TASE_2021_3072663 crossref_primary_10_1109_TII_2023_3241583 crossref_primary_10_1016_j_aei_2024_103082 crossref_primary_10_1002_cpe_8101 crossref_primary_10_23919_CSMS_2024_0021 crossref_primary_10_53941_ijndi0201001 crossref_primary_10_3390_math12050703 crossref_primary_10_3390_app12104820 crossref_primary_10_1007_s11356_021_14124_w crossref_primary_10_1007_s40747_021_00478_8 crossref_primary_10_1109_ACCESS_2020_3011509 crossref_primary_10_1007_s11227_024_06540_9 crossref_primary_10_1007_s11356_022_18883_y crossref_primary_10_1109_TASE_2023_3267714 crossref_primary_10_1093_jcde_qwaa089 crossref_primary_10_1109_TCSS_2022_3217101 crossref_primary_10_1002_cta_3595 crossref_primary_10_1109_ACCESS_2020_3011424 crossref_primary_10_1109_ACCESS_2020_3019703 crossref_primary_10_1080_00207543_2022_2035008 crossref_primary_10_1016_j_enconman_2023_117069 crossref_primary_10_1016_j_jclepro_2022_131708 crossref_primary_10_1016_j_ins_2021_12_063 crossref_primary_10_1016_j_ins_2020_07_003 crossref_primary_10_1109_JAS_2020_1003515 crossref_primary_10_1109_TASE_2021_3133601 crossref_primary_10_1115_1_4051054 crossref_primary_10_2139_ssrn_4149361 crossref_primary_10_3390_su16104180 crossref_primary_10_1109_JIOT_2021_3088417 crossref_primary_10_1109_LRA_2023_3241752 crossref_primary_10_1109_TASE_2024_3418898 crossref_primary_10_1109_TSUSC_2021_3115388 crossref_primary_10_1016_j_rcim_2021_102251 crossref_primary_10_3390_drones7070445 crossref_primary_10_1016_j_rcim_2023_102650 crossref_primary_10_1088_1742_6596_2024_1_012057 crossref_primary_10_1080_01605682_2021_1911603 crossref_primary_10_1109_TAI_2023_3266187 crossref_primary_10_1016_j_neucom_2023_127145 crossref_primary_10_1109_TCYB_2021_3070143 crossref_primary_10_23919_CSMS_2024_0007 crossref_primary_10_1016_j_rcim_2024_102758 |
Cites_doi | 10.3182/20070523-3-ES-4907.00009 10.1016/j.compind.2015.10.011 10.1109/TSMCA.2002.804362 10.1007/978-1-4615-3126-5 10.1016/j.cie.2017.09.009 10.1109/TEVC.2007.894202 10.1109/TEVC.2017.2785351 10.1007/s00500-016-2414-5 10.1109/TASE.2017.2690802 10.1080/09544828.2015.1045841 10.1109/TNNLS.2018.2846646 10.1007/s10845-017-1385-4 10.1109/TII.2013.2272702 10.1109/4235.996017 10.1108/00022661111131221 10.1109/TSMCB.2012.2223671 10.1016/S0278-6125(97)88465-8 10.1109/TCYB.2014.2371918 10.1109/TCYB.2017.2685521 10.1016/j.ejor.2018.01.055 10.1109/TNNLS.2014.2298402 10.1109/JAS.2018.7511138 10.1109/TCYB.2019.2901834 10.1016/j.eswa.2017.11.004 10.1016/j.ress.2005.11.018 10.1016/S0278-6125(02)80162-5 10.1016/S0360-8352(97)00104-6 10.1016/j.rcim.2013.01.006 10.1109/TASE.2015.2425404 10.1016/j.rcim.2008.02.004 10.1016/j.jenvman.2009.09.037 10.1007/s11047-016-9602-1 10.1109/TSMC.2015.2507161 10.1109/TASE.2017.2731981 10.1109/ACCESS.2018.2861319 10.1016/j.cie.2011.12.029 10.1016/j.cor.2011.10.027 10.1016/j.ejor.2015.10.007 10.1109/JAS.2016.7508797 10.1109/TSMCB.2004.833331 10.1109/JAS.2019.1911540 10.1109/5.24143 10.1080/00207543.2017.1341066 10.1109/TITS.2015.2505323 10.1109/TCYB.2015.2424836 10.1007/s10846-015-0289-9 10.1016/j.engappai.2017.06.025 10.1109/70.744614 10.1016/j.cor.2005.03.012 10.1109/TCYB.2015.2478486 10.1109/TEVC.2003.810758 10.1080/00207543.2016.1262082 10.1109/TASE.2019.2953669 10.1109/TSC.2016.2597829 10.1080/09544820802282504 10.1080/24725854.2017.1318229 10.1177/0954405416661001 10.1109/TSMC.2018.2818175 10.1109/TITS.2016.2514277 10.1016/j.rcim.2019.101828 10.1109/TII.2018.2884845 10.1109/TSMCA.2008.2007990 10.1109/TASE.2013.2297623 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TASE.2020.2992220 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 816 |
ExternalDocumentID | 10_1109_TASE_2020_2992220 9121663 |
Genre | orig-research |
GrantInformation_xml | – fundername: The Deanship of Scientific Research (DSR) at King Abdulaziz University grantid: RG-21-135-38 funderid: 10.13039/501100004054 – fundername: Liaoning Province Education Department Scientific Research Foundation of China grantid: L2019027 funderid: 10.13039/501100007620 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2019BF004 funderid: 10.13039/501100007129 – fundername: Liaoning Province Dr. Research Foundation of China grantid: 20170520135 – fundername: NSFC grantid: 61573089; 51405075; 61903229 funderid: 10.13039/501100001809 – fundername: LiaoNing Revitalization Talents Program grantid: XLYC1907166 funderid: 10.13039/501100018617 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-bdf5df56b74f91a88bb2c146150ffe229763ed987e82a3c43c69ef61f842de443 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Sun Jun 29 16:12:03 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Tue Jul 01 02:56:31 EDT 2025 Wed Aug 27 02:41:08 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-bdf5df56b74f91a88bb2c146150ffe229763ed987e82a3c43c69ef61f842de443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0762-5607 0000-0002-5408-8752 0000-0002-3404-9297 0000-0002-9142-1251 |
PQID | 2510419501 |
PQPubID | 27623 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9121663 crossref_primary_10_1109_TASE_2020_2992220 proquest_journals_2510419501 crossref_citationtrail_10_1109_TASE_2020_2992220 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | wang (ref30) 2016; 3 ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 zuo (ref38) 2015; 16 malik (ref20) 2010; 1 ref16 ref18 ref50 zhou (ref51) 1998 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 mcgovern (ref21) 2007; 40 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 li (ref39) 2013 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 eldos (ref19) 2013 fonseca (ref67) 1993 ref70 dong (ref71) 2014; 25 ref68 ref24 ref23 ref26 ref69 ref25 ref64 ref63 ref66 ref22 ref65 ref28 ref27 wang (ref17) 2012; 4 ref29 ref60 ref62 ref61 |
References_xml | – volume: 40 start-page: 48 year: 2007 ident: ref21 article-title: Benchmark data set for evaluation of line balancing algorithms publication-title: IFAC Proc Volumes doi: 10.3182/20070523-3-ES-4907.00009 – ident: ref18 doi: 10.1016/j.compind.2015.10.011 – ident: ref6 doi: 10.1109/TSMCA.2002.804362 – ident: ref48 doi: 10.1007/978-1-4615-3126-5 – ident: ref27 doi: 10.1016/j.cie.2017.09.009 – ident: ref55 doi: 10.1109/TEVC.2007.894202 – ident: ref33 doi: 10.1109/TEVC.2017.2785351 – ident: ref28 doi: 10.1007/s00500-016-2414-5 – ident: ref65 doi: 10.1109/TASE.2017.2690802 – start-page: 627 year: 2013 ident: ref39 article-title: A new multiple traveling salesman problem and its genetic algorithm-based solution publication-title: Proc IEEE Int Conf Syst Man Cybern – ident: ref12 doi: 10.1080/09544828.2015.1045841 – ident: ref70 doi: 10.1109/TNNLS.2018.2846646 – ident: ref31 doi: 10.1007/s10845-017-1385-4 – ident: ref49 doi: 10.1109/TII.2013.2272702 – ident: ref34 doi: 10.1109/4235.996017 – ident: ref24 doi: 10.1108/00022661111131221 – ident: ref50 doi: 10.1109/TSMCB.2012.2223671 – ident: ref4 doi: 10.1016/S0278-6125(97)88465-8 – ident: ref32 doi: 10.1109/TCYB.2014.2371918 – volume: 4 start-page: 3999 year: 2012 ident: ref17 article-title: Object-guided ant colony optimization algorithm with enhanced memory for traveling salesman problem publication-title: Res J Appl Sci Eng Technol – ident: ref61 doi: 10.1109/TCYB.2017.2685521 – ident: ref14 doi: 10.1016/j.ejor.2018.01.055 – year: 1993 ident: ref67 article-title: Multiobjective genetic algorithms publication-title: IEEE colloquium on'Genetic Algorithms for Control Systems Engineering' (DigestNo 19931130) – volume: 25 start-page: 1200 year: 2014 ident: ref71 article-title: Gaussian classifier-based evolutionary strategy for multimodal optimization publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2298402 – ident: ref62 doi: 10.1109/JAS.2018.7511138 – year: 1998 ident: ref51 publication-title: Modeling Simulation and Control of Flexible Manufacturing Systems A Petri Net Approach – ident: ref58 doi: 10.1109/TCYB.2019.2901834 – ident: ref13 doi: 10.1016/j.eswa.2017.11.004 – ident: ref53 doi: 10.1016/j.ress.2005.11.018 – ident: ref1 doi: 10.1016/S0278-6125(02)80162-5 – ident: ref3 doi: 10.1016/S0360-8352(97)00104-6 – volume: 1 start-page: 42 year: 2010 ident: ref20 article-title: Performance comparison between ant algorithm and modified ant algorithm publication-title: Int J Adv Comput Sci Appl – volume: 16 start-page: 1030 year: 2015 ident: ref38 article-title: Vehicle scheduling of an urban bus line via an improved multiobjective genetic algorithm publication-title: IEEE Trans Intell Transp Syst – ident: ref22 doi: 10.1016/j.rcim.2013.01.006 – ident: ref43 doi: 10.1109/TASE.2015.2425404 – ident: ref16 doi: 10.1016/j.rcim.2008.02.004 – start-page: 584 year: 2013 ident: ref19 article-title: Solving the printed circuit board drilling problem by ant colony optimization algorithm publication-title: Proc World Congr Eng Comput – ident: ref2 doi: 10.1016/j.jenvman.2009.09.037 – ident: ref42 doi: 10.1007/s11047-016-9602-1 – ident: ref37 doi: 10.1109/TSMC.2015.2507161 – ident: ref57 doi: 10.1109/TASE.2017.2731981 – ident: ref63 doi: 10.1109/ACCESS.2018.2861319 – ident: ref10 doi: 10.1016/j.cie.2011.12.029 – ident: ref23 doi: 10.1016/j.cor.2011.10.027 – ident: ref40 doi: 10.1016/j.ejor.2015.10.007 – volume: 3 start-page: 235 year: 2016 ident: ref30 article-title: A hybrid estimation of distribution algorithm for unrelated parallel machine scheduling with sequence-dependent setup times publication-title: IEEE/CAA Journal of Automatica Sinica doi: 10.1109/JAS.2016.7508797 – ident: ref8 doi: 10.1109/TSMCB.2004.833331 – ident: ref69 doi: 10.1109/JAS.2019.1911540 – ident: ref52 doi: 10.1109/5.24143 – ident: ref64 doi: 10.1080/00207543.2017.1341066 – ident: ref45 doi: 10.1109/TITS.2015.2505323 – ident: ref29 doi: 10.1109/TCYB.2015.2424836 – ident: ref26 doi: 10.1007/s10846-015-0289-9 – ident: ref11 doi: 10.1016/j.engappai.2017.06.025 – ident: ref5 doi: 10.1109/70.744614 – ident: ref47 doi: 10.1016/j.cor.2005.03.012 – ident: ref25 doi: 10.1109/TCYB.2015.2478486 – ident: ref54 doi: 10.1109/TEVC.2003.810758 – ident: ref41 doi: 10.1080/00207543.2016.1262082 – ident: ref68 doi: 10.1109/TASE.2019.2953669 – ident: ref56 doi: 10.1109/TNNLS.2018.2846646 – ident: ref60 doi: 10.1109/TSC.2016.2597829 – ident: ref9 doi: 10.1080/09544820802282504 – ident: ref46 doi: 10.1080/24725854.2017.1318229 – ident: ref15 doi: 10.1177/0954405416661001 – ident: ref35 doi: 10.1109/TSMC.2018.2818175 – ident: ref36 doi: 10.1109/TITS.2016.2514277 – ident: ref59 doi: 10.1016/j.rcim.2019.101828 – ident: ref66 doi: 10.1109/TII.2018.2884845 – ident: ref7 doi: 10.1109/TSMCA.2008.2007990 – ident: ref44 doi: 10.1109/TASE.2013.2297623 |
SSID | ssj0024890 |
Score | 2.5489397 |
Snippet | Industrial products' reuse, recovery, and recycling are very important due to the exhaustion of ecological resources. Effective product disassembly planning... Industrial products’ reuse, recovery, and recycling are very important due to the exhaustion of ecological resources. Effective product disassembly planning... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 804 |
SubjectTerms | Archives & records Biological system modeling Constraints Decision making Disassembly sequence Disassembly sequences Dismantling Ecological effects Energy consumption Evolutionary algorithms Genetic algorithms intelligent algorithm multiobjective Multiple objective analysis multiresource constraints Optimization Petri nets Petri nets (PNs) Planning Recovering Recycling Resource allocation Selective disassembly Sorting algorithms |
Title | Multiresource-Constrained Selective Disassembly With Maximal Profit and Minimal Energy Consumption |
URI | https://ieeexplore.ieee.org/document/9121663 https://www.proquest.com/docview/2510419501 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD6oT_rgXZw38uCT2NmmaZc8ik5EmAgq7q00zQkOt060A_XXm5N1c6iI0IdSkpLypeeSc_kADi1qCv7QuVseOgfF6EBSoW4LuUShY2nRd_u8Ti_vxVU36c7B8bQWBhF98hk26dbH8s2wGNFR2YmKeOQ05DzMO8dtXKv11VdP-vMUsgiCRCVJHcGMQnVyd3rbdp4gD5ucurAStfeMDvKkKj8ksVcvFyvQmSxsnFXy1BxVull8fOvZ-N-Vr8JybWey0_HGWIM5LNdhaab74AZoX3z7Up_fB0Td6Qkj0LBbz47jBCE777068xoHuv_OHnrVI-vkb72Be_MNkX1XLC8N6_RK_6jt6wjZma_q9KJoE-4v2ndnl0FNuRAUTu9XgTY2cVeqW8KqKJdSa14Q9XcSWoucO-MlRqNkCyXP40LERarQppGVghsUIt6ChXJY4jYw3jKRdCIiMcKZAdYqG2JCQVSrihxT1YBwAkJW1P3I6Sv7mfdLQpURbhnhltW4NeBoOuV53Izjr8EbhMN0YA1BA_YmSGf17_qaOSMvFESIG-38PmsXFjkls_iUnT1YqF5GuO-skUof-G34CT_h27U |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOFAOPFt1gVIfOCGyJI6dtY-ILloKi5BYBLcojsfqqhAQZCXor6_Hm90iihBSDlFkR44-Z2Y8rw9gx6Gh4A_53YrYH1CsiRQV6naQKxQmVQ5Dt8-zrHcpfl7L6xnYm9bCIGJIPsM23YZYvr0rR-Qq29cJT7yGnIV5r_dlMq7W-tdZTwWPCtkEkdRSNjHMJNb7g4OLrj8L8rjNqQ8rkXu_0EKBVuU_WRwUzNEy9CdLG-eV_G6PatMu_7zq2vjRta_AUmNpsoPx1liFGazWYPFF_8F1MKH89qHx4EdE3hkoI9Cyi8CP40Uh-zF89AY23pqbZ3Y1rH-xfvE0vPVvPie675oVlWX9YRUedUMlITsMdZ1BGH2Gy6Pu4LAXNaQLUek1fx0Z66S_MtMRTieFUsbwksi_Zewccu7NlxStVh1UvEhLkZaZRpclTgluUYj0C8xVdxV-BcY7NlFeSEgrvCHgnHYxSgqjOl0WmOkWxBMQ8rLpSE5feZOHk0msc8ItJ9zyBrcW7E6n3I_bcbw3eJ1wmA5sIGjB1gTpvPlhH3Nv5sWCKHGTjbdnfYeF3qB_mp8en51swidOqS0hgWcL5uqHEX7ztklttsOW_AveU97- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiresource-Constrained+Selective+Disassembly+With+Maximal+Profit+and+Minimal+Energy+Consumption&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Guo%2C+Xiwang&rft.au=Zhou%2C+MengChu&rft.au=Liu%2C+Shixin&rft.au=Qi%2C+Liang&rft.date=2021-04-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=18&rft.issue=2&rft.spage=804&rft.epage=816&rft_id=info:doi/10.1109%2FTASE.2020.2992220&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2020_2992220 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |