Multiresource-Constrained Selective Disassembly With Maximal Profit and Minimal Energy Consumption

Industrial products' reuse, recovery, and recycling are very important due to the exhaustion of ecological resources. Effective product disassembly planning methods can improve the recovery efficiency and reduce harmful impact on the environment. However, the existing approaches pay little atte...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 18; no. 2; pp. 804 - 816
Main Authors Guo, Xiwang, Zhou, MengChu, Liu, Shixin, Qi, Liang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Industrial products' reuse, recovery, and recycling are very important due to the exhaustion of ecological resources. Effective product disassembly planning methods can improve the recovery efficiency and reduce harmful impact on the environment. However, the existing approaches pay little attention to disassembly resources, such as tools and operators that can significantly influence the optimal disassembly sequences. This article considers a multiobjective resource-constrained disassembly optimization problem modeled with timed Petri nets such that energy consumption is minimized, while disassembly profit is maximized. Since its solution complexity has exponential growth with the number of components in a product, a multiobjective genetic algorithm based on an external archive is used to solve it. Its effectiveness is verified by comparing it with nondominated sorting genetic algorithm II and a collaborative resource allocation strategy for a multiobjective evolutionary algorithm based on decomposition. Note to Practitioners -This article establishes a novel dual-objective optimization model for product disassembly subject to multiresource constraints. In an actual disassembly process, a decision-maker may want to minimize energy consumption and maximize disassembly profit. This article considers both objectives and proposes a multiobjective genetic algorithm based on an external archive to solve optimal disassembly problems. The experimental results show that the proposed approach can solve them effectively. The obtained solutions give decision-makers multiple choices to select the right disassembly process when an actual product is disassembled.
AbstractList Industrial products' reuse, recovery, and recycling are very important due to the exhaustion of ecological resources. Effective product disassembly planning methods can improve the recovery efficiency and reduce harmful impact on the environment. However, the existing approaches pay little attention to disassembly resources, such as tools and operators that can significantly influence the optimal disassembly sequences. This article considers a multiobjective resource-constrained disassembly optimization problem modeled with timed Petri nets such that energy consumption is minimized, while disassembly profit is maximized. Since its solution complexity has exponential growth with the number of components in a product, a multiobjective genetic algorithm based on an external archive is used to solve it. Its effectiveness is verified by comparing it with nondominated sorting genetic algorithm II and a collaborative resource allocation strategy for a multiobjective evolutionary algorithm based on decomposition. Note to Practitioners -This article establishes a novel dual-objective optimization model for product disassembly subject to multiresource constraints. In an actual disassembly process, a decision-maker may want to minimize energy consumption and maximize disassembly profit. This article considers both objectives and proposes a multiobjective genetic algorithm based on an external archive to solve optimal disassembly problems. The experimental results show that the proposed approach can solve them effectively. The obtained solutions give decision-makers multiple choices to select the right disassembly process when an actual product is disassembled.
Author Zhou, MengChu
Guo, Xiwang
Liu, Shixin
Qi, Liang
Author_xml – sequence: 1
  givenname: Xiwang
  orcidid: 0000-0002-9142-1251
  surname: Guo
  fullname: Guo, Xiwang
  email: x.w.guo@163.com
  organization: Computer and Communication Engineering College, Liaoning Shihua University, Fushun, China
– sequence: 2
  givenname: MengChu
  orcidid: 0000-0002-5408-8752
  surname: Zhou
  fullname: Zhou, MengChu
  email: zhou@njit.edu
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
– sequence: 3
  givenname: Shixin
  orcidid: 0000-0002-3404-9297
  surname: Liu
  fullname: Liu, Shixin
  email: sxliu@mail.neu.edu.cn
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Liang
  orcidid: 0000-0002-0762-5607
  surname: Qi
  fullname: Qi, Liang
  email: qiliangsdkd@163.com
  organization: Department of Computer Science and Technology, Shandong University of Science and Technology, Qingdao, China
BookMark eNp9kE1Lw0AQhhepYFv9AeIl4Dl1P5PssdT6AS0KrXgMm2RWt6SbursR--9NbPHgQRiYYZh33plnhAa2sYDQJcETQrC8WU9X8wnFFE-olJRSfIKGRIgsZmnGBn3NRSykEGdo5P0GY8oziYeoWLZ1MA5807oS4lljfXDKWKiiFdRQBvMJ0a3xynvYFvU-ejXhPVqqL7NVdfTsGm1CpGwVLY39ac0tuLd91C9qt7tgGnuOTrWqPVwc8xi93M3Xs4d48XT_OJsu4pJKFuKi0qKLpEi5lkRlWVHQkvCECKw1UCrThEElsxQyqljJWZlI0AnRGacVcM7G6Pqwd-eajxZ8yDfdU7azzKkgmBMpMOmmyGGqdI33DnS-c93hbp8TnPco8x5l3qPMjyg7TfpHU5qg-t96VvW_yquD0gDAr5MklCQJY99BIYR9
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3011211
crossref_primary_10_3390_math10234519
crossref_primary_10_1088_1742_6596_1944_1_012034
crossref_primary_10_1109_TCSS_2021_3132355
crossref_primary_10_1016_j_cie_2024_109927
crossref_primary_10_1016_j_jclepro_2022_135209
crossref_primary_10_1109_TCYB_2024_3390947
crossref_primary_10_1080_00207543_2020_1868598
crossref_primary_10_1109_ACCESS_2020_3045980
crossref_primary_10_1109_JAS_2020_1003539
crossref_primary_10_1080_00207543_2021_1967499
crossref_primary_10_1109_TSMC_2021_3049323
crossref_primary_10_1109_TIP_2021_3089905
crossref_primary_10_1007_s00170_021_08389_1
crossref_primary_10_1109_TASE_2021_3072663
crossref_primary_10_1109_TII_2023_3241583
crossref_primary_10_1016_j_aei_2024_103082
crossref_primary_10_1002_cpe_8101
crossref_primary_10_23919_CSMS_2024_0021
crossref_primary_10_53941_ijndi0201001
crossref_primary_10_3390_math12050703
crossref_primary_10_3390_app12104820
crossref_primary_10_1007_s11356_021_14124_w
crossref_primary_10_1007_s40747_021_00478_8
crossref_primary_10_1109_ACCESS_2020_3011509
crossref_primary_10_1007_s11227_024_06540_9
crossref_primary_10_1007_s11356_022_18883_y
crossref_primary_10_1109_TASE_2023_3267714
crossref_primary_10_1093_jcde_qwaa089
crossref_primary_10_1109_TCSS_2022_3217101
crossref_primary_10_1002_cta_3595
crossref_primary_10_1109_ACCESS_2020_3011424
crossref_primary_10_1109_ACCESS_2020_3019703
crossref_primary_10_1080_00207543_2022_2035008
crossref_primary_10_1016_j_enconman_2023_117069
crossref_primary_10_1016_j_jclepro_2022_131708
crossref_primary_10_1016_j_ins_2021_12_063
crossref_primary_10_1016_j_ins_2020_07_003
crossref_primary_10_1109_JAS_2020_1003515
crossref_primary_10_1109_TASE_2021_3133601
crossref_primary_10_1115_1_4051054
crossref_primary_10_2139_ssrn_4149361
crossref_primary_10_3390_su16104180
crossref_primary_10_1109_JIOT_2021_3088417
crossref_primary_10_1109_LRA_2023_3241752
crossref_primary_10_1109_TASE_2024_3418898
crossref_primary_10_1109_TSUSC_2021_3115388
crossref_primary_10_1016_j_rcim_2021_102251
crossref_primary_10_3390_drones7070445
crossref_primary_10_1016_j_rcim_2023_102650
crossref_primary_10_1088_1742_6596_2024_1_012057
crossref_primary_10_1080_01605682_2021_1911603
crossref_primary_10_1109_TAI_2023_3266187
crossref_primary_10_1016_j_neucom_2023_127145
crossref_primary_10_1109_TCYB_2021_3070143
crossref_primary_10_23919_CSMS_2024_0007
crossref_primary_10_1016_j_rcim_2024_102758
Cites_doi 10.3182/20070523-3-ES-4907.00009
10.1016/j.compind.2015.10.011
10.1109/TSMCA.2002.804362
10.1007/978-1-4615-3126-5
10.1016/j.cie.2017.09.009
10.1109/TEVC.2007.894202
10.1109/TEVC.2017.2785351
10.1007/s00500-016-2414-5
10.1109/TASE.2017.2690802
10.1080/09544828.2015.1045841
10.1109/TNNLS.2018.2846646
10.1007/s10845-017-1385-4
10.1109/TII.2013.2272702
10.1109/4235.996017
10.1108/00022661111131221
10.1109/TSMCB.2012.2223671
10.1016/S0278-6125(97)88465-8
10.1109/TCYB.2014.2371918
10.1109/TCYB.2017.2685521
10.1016/j.ejor.2018.01.055
10.1109/TNNLS.2014.2298402
10.1109/JAS.2018.7511138
10.1109/TCYB.2019.2901834
10.1016/j.eswa.2017.11.004
10.1016/j.ress.2005.11.018
10.1016/S0278-6125(02)80162-5
10.1016/S0360-8352(97)00104-6
10.1016/j.rcim.2013.01.006
10.1109/TASE.2015.2425404
10.1016/j.rcim.2008.02.004
10.1016/j.jenvman.2009.09.037
10.1007/s11047-016-9602-1
10.1109/TSMC.2015.2507161
10.1109/TASE.2017.2731981
10.1109/ACCESS.2018.2861319
10.1016/j.cie.2011.12.029
10.1016/j.cor.2011.10.027
10.1016/j.ejor.2015.10.007
10.1109/JAS.2016.7508797
10.1109/TSMCB.2004.833331
10.1109/JAS.2019.1911540
10.1109/5.24143
10.1080/00207543.2017.1341066
10.1109/TITS.2015.2505323
10.1109/TCYB.2015.2424836
10.1007/s10846-015-0289-9
10.1016/j.engappai.2017.06.025
10.1109/70.744614
10.1016/j.cor.2005.03.012
10.1109/TCYB.2015.2478486
10.1109/TEVC.2003.810758
10.1080/00207543.2016.1262082
10.1109/TASE.2019.2953669
10.1109/TSC.2016.2597829
10.1080/09544820802282504
10.1080/24725854.2017.1318229
10.1177/0954405416661001
10.1109/TSMC.2018.2818175
10.1109/TITS.2016.2514277
10.1016/j.rcim.2019.101828
10.1109/TII.2018.2884845
10.1109/TSMCA.2008.2007990
10.1109/TASE.2013.2297623
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2020.2992220
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 816
ExternalDocumentID 10_1109_TASE_2020_2992220
9121663
Genre orig-research
GrantInformation_xml – fundername: The Deanship of Scientific Research (DSR) at King Abdulaziz University
  grantid: RG-21-135-38
  funderid: 10.13039/501100004054
– fundername: Liaoning Province Education Department Scientific Research Foundation of China
  grantid: L2019027
  funderid: 10.13039/501100007620
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2019BF004
  funderid: 10.13039/501100007129
– fundername: Liaoning Province Dr. Research Foundation of China
  grantid: 20170520135
– fundername: NSFC
  grantid: 61573089; 51405075; 61903229
  funderid: 10.13039/501100001809
– fundername: LiaoNing Revitalization Talents Program
  grantid: XLYC1907166
  funderid: 10.13039/501100018617
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-bdf5df56b74f91a88bb2c146150ffe229763ed987e82a3c43c69ef61f842de443
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Sun Jun 29 16:12:03 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Tue Jul 01 02:56:31 EDT 2025
Wed Aug 27 02:41:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-bdf5df56b74f91a88bb2c146150ffe229763ed987e82a3c43c69ef61f842de443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0762-5607
0000-0002-5408-8752
0000-0002-3404-9297
0000-0002-9142-1251
PQID 2510419501
PQPubID 27623
PageCount 13
ParticipantIDs ieee_primary_9121663
crossref_primary_10_1109_TASE_2020_2992220
proquest_journals_2510419501
crossref_citationtrail_10_1109_TASE_2020_2992220
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References wang (ref30) 2016; 3
ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
zuo (ref38) 2015; 16
malik (ref20) 2010; 1
ref16
ref18
ref50
zhou (ref51) 1998
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
mcgovern (ref21) 2007; 40
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
li (ref39) 2013
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
eldos (ref19) 2013
fonseca (ref67) 1993
ref70
dong (ref71) 2014; 25
ref68
ref24
ref23
ref26
ref69
ref25
ref64
ref63
ref66
ref22
ref65
ref28
ref27
wang (ref17) 2012; 4
ref29
ref60
ref62
ref61
References_xml – volume: 40
  start-page: 48
  year: 2007
  ident: ref21
  article-title: Benchmark data set for evaluation of line balancing algorithms
  publication-title: IFAC Proc Volumes
  doi: 10.3182/20070523-3-ES-4907.00009
– ident: ref18
  doi: 10.1016/j.compind.2015.10.011
– ident: ref6
  doi: 10.1109/TSMCA.2002.804362
– ident: ref48
  doi: 10.1007/978-1-4615-3126-5
– ident: ref27
  doi: 10.1016/j.cie.2017.09.009
– ident: ref55
  doi: 10.1109/TEVC.2007.894202
– ident: ref33
  doi: 10.1109/TEVC.2017.2785351
– ident: ref28
  doi: 10.1007/s00500-016-2414-5
– ident: ref65
  doi: 10.1109/TASE.2017.2690802
– start-page: 627
  year: 2013
  ident: ref39
  article-title: A new multiple traveling salesman problem and its genetic algorithm-based solution
  publication-title: Proc IEEE Int Conf Syst Man Cybern
– ident: ref12
  doi: 10.1080/09544828.2015.1045841
– ident: ref70
  doi: 10.1109/TNNLS.2018.2846646
– ident: ref31
  doi: 10.1007/s10845-017-1385-4
– ident: ref49
  doi: 10.1109/TII.2013.2272702
– ident: ref34
  doi: 10.1109/4235.996017
– ident: ref24
  doi: 10.1108/00022661111131221
– ident: ref50
  doi: 10.1109/TSMCB.2012.2223671
– ident: ref4
  doi: 10.1016/S0278-6125(97)88465-8
– ident: ref32
  doi: 10.1109/TCYB.2014.2371918
– volume: 4
  start-page: 3999
  year: 2012
  ident: ref17
  article-title: Object-guided ant colony optimization algorithm with enhanced memory for traveling salesman problem
  publication-title: Res J Appl Sci Eng Technol
– ident: ref61
  doi: 10.1109/TCYB.2017.2685521
– ident: ref14
  doi: 10.1016/j.ejor.2018.01.055
– year: 1993
  ident: ref67
  article-title: Multiobjective genetic algorithms
  publication-title: IEEE colloquium on'Genetic Algorithms for Control Systems Engineering' (DigestNo 19931130)
– volume: 25
  start-page: 1200
  year: 2014
  ident: ref71
  article-title: Gaussian classifier-based evolutionary strategy for multimodal optimization
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2298402
– ident: ref62
  doi: 10.1109/JAS.2018.7511138
– year: 1998
  ident: ref51
  publication-title: Modeling Simulation and Control of Flexible Manufacturing Systems A Petri Net Approach
– ident: ref58
  doi: 10.1109/TCYB.2019.2901834
– ident: ref13
  doi: 10.1016/j.eswa.2017.11.004
– ident: ref53
  doi: 10.1016/j.ress.2005.11.018
– ident: ref1
  doi: 10.1016/S0278-6125(02)80162-5
– ident: ref3
  doi: 10.1016/S0360-8352(97)00104-6
– volume: 1
  start-page: 42
  year: 2010
  ident: ref20
  article-title: Performance comparison between ant algorithm and modified ant algorithm
  publication-title: Int J Adv Comput Sci Appl
– volume: 16
  start-page: 1030
  year: 2015
  ident: ref38
  article-title: Vehicle scheduling of an urban bus line via an improved multiobjective genetic algorithm
  publication-title: IEEE Trans Intell Transp Syst
– ident: ref22
  doi: 10.1016/j.rcim.2013.01.006
– ident: ref43
  doi: 10.1109/TASE.2015.2425404
– ident: ref16
  doi: 10.1016/j.rcim.2008.02.004
– start-page: 584
  year: 2013
  ident: ref19
  article-title: Solving the printed circuit board drilling problem by ant colony optimization algorithm
  publication-title: Proc World Congr Eng Comput
– ident: ref2
  doi: 10.1016/j.jenvman.2009.09.037
– ident: ref42
  doi: 10.1007/s11047-016-9602-1
– ident: ref37
  doi: 10.1109/TSMC.2015.2507161
– ident: ref57
  doi: 10.1109/TASE.2017.2731981
– ident: ref63
  doi: 10.1109/ACCESS.2018.2861319
– ident: ref10
  doi: 10.1016/j.cie.2011.12.029
– ident: ref23
  doi: 10.1016/j.cor.2011.10.027
– ident: ref40
  doi: 10.1016/j.ejor.2015.10.007
– volume: 3
  start-page: 235
  year: 2016
  ident: ref30
  article-title: A hybrid estimation of distribution algorithm for unrelated parallel machine scheduling with sequence-dependent setup times
  publication-title: IEEE/CAA Journal of Automatica Sinica
  doi: 10.1109/JAS.2016.7508797
– ident: ref8
  doi: 10.1109/TSMCB.2004.833331
– ident: ref69
  doi: 10.1109/JAS.2019.1911540
– ident: ref52
  doi: 10.1109/5.24143
– ident: ref64
  doi: 10.1080/00207543.2017.1341066
– ident: ref45
  doi: 10.1109/TITS.2015.2505323
– ident: ref29
  doi: 10.1109/TCYB.2015.2424836
– ident: ref26
  doi: 10.1007/s10846-015-0289-9
– ident: ref11
  doi: 10.1016/j.engappai.2017.06.025
– ident: ref5
  doi: 10.1109/70.744614
– ident: ref47
  doi: 10.1016/j.cor.2005.03.012
– ident: ref25
  doi: 10.1109/TCYB.2015.2478486
– ident: ref54
  doi: 10.1109/TEVC.2003.810758
– ident: ref41
  doi: 10.1080/00207543.2016.1262082
– ident: ref68
  doi: 10.1109/TASE.2019.2953669
– ident: ref56
  doi: 10.1109/TNNLS.2018.2846646
– ident: ref60
  doi: 10.1109/TSC.2016.2597829
– ident: ref9
  doi: 10.1080/09544820802282504
– ident: ref46
  doi: 10.1080/24725854.2017.1318229
– ident: ref15
  doi: 10.1177/0954405416661001
– ident: ref35
  doi: 10.1109/TSMC.2018.2818175
– ident: ref36
  doi: 10.1109/TITS.2016.2514277
– ident: ref59
  doi: 10.1016/j.rcim.2019.101828
– ident: ref66
  doi: 10.1109/TII.2018.2884845
– ident: ref7
  doi: 10.1109/TSMCA.2008.2007990
– ident: ref44
  doi: 10.1109/TASE.2013.2297623
SSID ssj0024890
Score 2.5489397
Snippet Industrial products' reuse, recovery, and recycling are very important due to the exhaustion of ecological resources. Effective product disassembly planning...
Industrial products’ reuse, recovery, and recycling are very important due to the exhaustion of ecological resources. Effective product disassembly planning...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 804
SubjectTerms Archives & records
Biological system modeling
Constraints
Decision making
Disassembly sequence
Disassembly sequences
Dismantling
Ecological effects
Energy consumption
Evolutionary algorithms
Genetic algorithms
intelligent algorithm
multiobjective
Multiple objective analysis
multiresource constraints
Optimization
Petri nets
Petri nets (PNs)
Planning
Recovering
Recycling
Resource allocation
Selective disassembly
Sorting algorithms
Title Multiresource-Constrained Selective Disassembly With Maximal Profit and Minimal Energy Consumption
URI https://ieeexplore.ieee.org/document/9121663
https://www.proquest.com/docview/2510419501
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD6oT_rgXZw38uCT2NmmaZc8ik5EmAgq7q00zQkOt060A_XXm5N1c6iI0IdSkpLypeeSc_kADi1qCv7QuVseOgfF6EBSoW4LuUShY2nRd_u8Ti_vxVU36c7B8bQWBhF98hk26dbH8s2wGNFR2YmKeOQ05DzMO8dtXKv11VdP-vMUsgiCRCVJHcGMQnVyd3rbdp4gD5ucurAStfeMDvKkKj8ksVcvFyvQmSxsnFXy1BxVull8fOvZ-N-Vr8JybWey0_HGWIM5LNdhaab74AZoX3z7Up_fB0Td6Qkj0LBbz47jBCE777068xoHuv_OHnrVI-vkb72Be_MNkX1XLC8N6_RK_6jt6wjZma_q9KJoE-4v2ndnl0FNuRAUTu9XgTY2cVeqW8KqKJdSa14Q9XcSWoucO-MlRqNkCyXP40LERarQppGVghsUIt6ChXJY4jYw3jKRdCIiMcKZAdYqG2JCQVSrihxT1YBwAkJW1P3I6Sv7mfdLQpURbhnhltW4NeBoOuV53Izjr8EbhMN0YA1BA_YmSGf17_qaOSMvFESIG-38PmsXFjkls_iUnT1YqF5GuO-skUof-G34CT_h27U
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOFAOPFt1gVIfOCGyJI6dtY-ILloKi5BYBLcojsfqqhAQZCXor6_Hm90iihBSDlFkR44-Z2Y8rw9gx6Gh4A_53YrYH1CsiRQV6naQKxQmVQ5Dt8-zrHcpfl7L6xnYm9bCIGJIPsM23YZYvr0rR-Qq29cJT7yGnIV5r_dlMq7W-tdZTwWPCtkEkdRSNjHMJNb7g4OLrj8L8rjNqQ8rkXu_0EKBVuU_WRwUzNEy9CdLG-eV_G6PatMu_7zq2vjRta_AUmNpsoPx1liFGazWYPFF_8F1MKH89qHx4EdE3hkoI9Cyi8CP40Uh-zF89AY23pqbZ3Y1rH-xfvE0vPVvPie675oVlWX9YRUedUMlITsMdZ1BGH2Gy6Pu4LAXNaQLUek1fx0Z66S_MtMRTieFUsbwksi_Zewccu7NlxStVh1UvEhLkZaZRpclTgluUYj0C8xVdxV-BcY7NlFeSEgrvCHgnHYxSgqjOl0WmOkWxBMQ8rLpSE5feZOHk0msc8ItJ9zyBrcW7E6n3I_bcbw3eJ1wmA5sIGjB1gTpvPlhH3Nv5sWCKHGTjbdnfYeF3qB_mp8en51swidOqS0hgWcL5uqHEX7ztklttsOW_AveU97-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiresource-Constrained+Selective+Disassembly+With+Maximal+Profit+and+Minimal+Energy+Consumption&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Guo%2C+Xiwang&rft.au=Zhou%2C+MengChu&rft.au=Liu%2C+Shixin&rft.au=Qi%2C+Liang&rft.date=2021-04-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=18&rft.issue=2&rft.spage=804&rft.epage=816&rft_id=info:doi/10.1109%2FTASE.2020.2992220&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2020_2992220
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon