Fast LDP-MST: An Efficient Density-Peak-Based Clustering Method for Large-Size Datasets

Recently, a new density-peak-based clustering method, called clustering with local density peaks-based minimum spanning tree (LDP-MST), was proposed, which has several attractive merits, e.g., being able to detect arbitrarily shaped clusters and not very sensitive to noise and parameters. Neverthele...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 35; no. 5; pp. 4767 - 4780
Main Authors Qiu, Teng, Li, Yong-Jie
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, a new density-peak-based clustering method, called clustering with local density peaks-based minimum spanning tree (LDP-MST), was proposed, which has several attractive merits, e.g., being able to detect arbitrarily shaped clusters and not very sensitive to noise and parameters. Nevertheless, we also found the limitation of LDP-MST in efficiency. Specifically, LDP-MST has <inline-formula><tex-math notation="LaTeX">O(N\log N+M^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo form="prefix">log</mml:mo><mml:mi>N</mml:mi><mml:mo>+</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq1-3150403.gif"/> </inline-formula> time, where <inline-formula><tex-math notation="LaTeX">N</tex-math> <mml:math><mml:mi>N</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq2-3150403.gif"/> </inline-formula> denotes the dataset size and <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq3-3150403.gif"/> </inline-formula> is an intermediate variable denoting the number of local density peaks. As our experimental results reveal, when processing large-size datasets, the value of <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq4-3150403.gif"/> </inline-formula> could be very large and consequently those steps of LDP-MST involving <inline-formula><tex-math notation="LaTeX">O(M^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq5-3150403.gif"/> </inline-formula> time term would be time-consuming. And in the worst case, the value of <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq6-3150403.gif"/> </inline-formula> could be very close to that of <inline-formula><tex-math notation="LaTeX">N</tex-math> <mml:math><mml:mi>N</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq7-3150403.gif"/> </inline-formula>, which means that the time complexity of LDP-MST could be <inline-formula><tex-math notation="LaTeX">O(N^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>N</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq8-3150403.gif"/> </inline-formula> in the worst case of <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq9-3150403.gif"/> </inline-formula>. In this study, we use more efficient algorithms to implement those steps of LDP-MST that involve the <inline-formula><tex-math notation="LaTeX">O(M^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq10-3150403.gif"/> </inline-formula> time term such that the proposed method, Fast LDP-MST, has <inline-formula><tex-math notation="LaTeX">O(N\log N)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo form="prefix">log</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq11-3150403.gif"/> </inline-formula> time complexity even if <inline-formula><tex-math notation="LaTeX">M\approx N</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mo>≈</mml:mo><mml:mi>N</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq12-3150403.gif"/> </inline-formula>. Our experiments demonstrate that Fast LDP-MST is overall more efficient than LDP-MST on large-size datasets, without sacrificing the merits of LDP-MST in effectiveness, robustness, and user-friendliness.
AbstractList Recently, a new density-peak-based clustering method, called clustering with local density peaks-based minimum spanning tree (LDP-MST), was proposed, which has several attractive merits, e.g., being able to detect arbitrarily shaped clusters and not very sensitive to noise and parameters. Nevertheless, we also found the limitation of LDP-MST in efficiency. Specifically, LDP-MST has [Formula Omitted] time, where [Formula Omitted] denotes the dataset size and [Formula Omitted] is an intermediate variable denoting the number of local density peaks. As our experimental results reveal, when processing large-size datasets, the value of [Formula Omitted] could be very large and consequently those steps of LDP-MST involving [Formula Omitted] time term would be time-consuming. And in the worst case, the value of [Formula Omitted] could be very close to that of [Formula Omitted], which means that the time complexity of LDP-MST could be [Formula Omitted] in the worst case of [Formula Omitted]. In this study, we use more efficient algorithms to implement those steps of LDP-MST that involve the [Formula Omitted] time term such that the proposed method, Fast LDP-MST, has [Formula Omitted] time complexity even if [Formula Omitted]. Our experiments demonstrate that Fast LDP-MST is overall more efficient than LDP-MST on large-size datasets, without sacrificing the merits of LDP-MST in effectiveness, robustness, and user-friendliness.
Recently, a new density-peak-based clustering method, called clustering with local density peaks-based minimum spanning tree (LDP-MST), was proposed, which has several attractive merits, e.g., being able to detect arbitrarily shaped clusters and not very sensitive to noise and parameters. Nevertheless, we also found the limitation of LDP-MST in efficiency. Specifically, LDP-MST has <inline-formula><tex-math notation="LaTeX">O(N\log N+M^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo form="prefix">log</mml:mo><mml:mi>N</mml:mi><mml:mo>+</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq1-3150403.gif"/> </inline-formula> time, where <inline-formula><tex-math notation="LaTeX">N</tex-math> <mml:math><mml:mi>N</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq2-3150403.gif"/> </inline-formula> denotes the dataset size and <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq3-3150403.gif"/> </inline-formula> is an intermediate variable denoting the number of local density peaks. As our experimental results reveal, when processing large-size datasets, the value of <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq4-3150403.gif"/> </inline-formula> could be very large and consequently those steps of LDP-MST involving <inline-formula><tex-math notation="LaTeX">O(M^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq5-3150403.gif"/> </inline-formula> time term would be time-consuming. And in the worst case, the value of <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq6-3150403.gif"/> </inline-formula> could be very close to that of <inline-formula><tex-math notation="LaTeX">N</tex-math> <mml:math><mml:mi>N</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq7-3150403.gif"/> </inline-formula>, which means that the time complexity of LDP-MST could be <inline-formula><tex-math notation="LaTeX">O(N^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>N</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq8-3150403.gif"/> </inline-formula> in the worst case of <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq9-3150403.gif"/> </inline-formula>. In this study, we use more efficient algorithms to implement those steps of LDP-MST that involve the <inline-formula><tex-math notation="LaTeX">O(M^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq10-3150403.gif"/> </inline-formula> time term such that the proposed method, Fast LDP-MST, has <inline-formula><tex-math notation="LaTeX">O(N\log N)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo form="prefix">log</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq11-3150403.gif"/> </inline-formula> time complexity even if <inline-formula><tex-math notation="LaTeX">M\approx N</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mo>≈</mml:mo><mml:mi>N</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq12-3150403.gif"/> </inline-formula>. Our experiments demonstrate that Fast LDP-MST is overall more efficient than LDP-MST on large-size datasets, without sacrificing the merits of LDP-MST in effectiveness, robustness, and user-friendliness.
Author Qiu, Teng
Li, Yong-Jie
Author_xml – sequence: 1
  givenname: Teng
  orcidid: 0000-0002-6581-2451
  surname: Qiu
  fullname: Qiu, Teng
  email: qiutengcool@163.com
  organization: Key Laboratory for Neuroinformation of Ministry of Education, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 2
  givenname: Yong-Jie
  orcidid: 0000-0002-7395-3131
  surname: Li
  fullname: Li, Yong-Jie
  email: liyj@uestc.edu.cn
  organization: Key Laboratory for Neuroinformation of Ministry of Education, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
BookMark eNp9kctOAjEUQBujiYB-gHHTxHWxjynTukMeaoRIAsblpNO5g0WcwbYs8OsdAnHhwtXt4pze5Nw2Oq3qChC6YrTLGNW3i-fhqMsp513BJE2oOEEtJqUinGl22rxpwkgikvQctUNYUUpVqlgLvY1NiHgynJHpfHGH-xUelaWzDqqIh1AFF3dkBuaD3JsABR6styGCd9USTyG-1wUua48nxi-BzN034KGJDRjDBTorzTrA5XF20Ot4tBg8ksnLw9OgPyGWaxFJrrTKhaSF6hVWU5EbxW0BMgdIVG6ZsVqbXimVlEUuVckYkzYvecHBKi17ooNuDv9ufP21hRCzVb31VbMy46mWivJeKhoqPVDW1yF4KDProomurqI3bp0xmu0rZvuK2b5idqzYmOyPufHu0_jdv871wXEA8MvrlDW3SMUPQcZ-EA
CODEN ITKEEH
CitedBy_id crossref_primary_10_32604_cmc_2024_054775
crossref_primary_10_1016_j_ins_2024_121209
crossref_primary_10_1142_S0218001424500022
crossref_primary_10_1016_j_eswa_2024_123313
crossref_primary_10_1016_j_neunet_2025_107142
crossref_primary_10_1016_j_jtice_2024_105915
crossref_primary_10_1016_j_patcog_2024_111321
crossref_primary_10_1109_ACCESS_2024_3479091
crossref_primary_10_1016_j_engappai_2024_108546
crossref_primary_10_1016_j_patcog_2024_110932
crossref_primary_10_1109_TCYB_2025_3536087
crossref_primary_10_3390_s23052488
crossref_primary_10_1007_s10115_024_02272_7
crossref_primary_10_1109_TNNLS_2023_3329720
crossref_primary_10_1007_s10586_024_04592_3
crossref_primary_10_1016_j_patcog_2024_110308
crossref_primary_10_1007_s44336_024_00008_3
crossref_primary_10_1109_TKDE_2024_3401075
crossref_primary_10_1109_TNNLS_2023_3300916
crossref_primary_10_1080_23249935_2024_2445156
crossref_primary_10_1109_TFUZZ_2024_3456091
crossref_primary_10_1109_TFUZZ_2024_3421576
crossref_primary_10_1016_j_compbiomed_2022_106184
crossref_primary_10_1016_j_knosys_2024_111742
crossref_primary_10_1007_s40815_024_01700_8
crossref_primary_10_1016_j_eswa_2023_121860
crossref_primary_10_1016_j_ins_2024_120114
crossref_primary_10_1016_j_engappai_2023_107172
crossref_primary_10_1109_TII_2023_3268777
Cites_doi 10.1109/TKDE.2016.2609423
10.1109/BigData.2013.6691561
10.1093/bioinformatics/btaa042
10.1109/CVPR.2012.6247750
10.1109/ICDMW.2017.12
10.1109/TPAMI.2006.227
10.1016/j.knosys.2019.105454
10.1038/nmeth.3863
10.1002/SERIES1345
10.1016/j.ins.2016.08.009
10.1038/s41467-017-01689-9
10.1145/3220199.3220215
10.1109/TNNLS.2018.2853407
10.1145/1963405.1963487
10.1145/2733381
10.1109/5.726791
10.1016/j.cell.2015.05.047
10.1109/TPAMI.2020.3008694
10.1016/j.patcog.2020.107624
10.1016/j.knosys.2017.02.027
10.1109/TIT.1975.1055330
10.1109/TPAMI.2018.2889473
10.1007/978-3-642-13657-3_5
10.1016/j.is.2019.02.006
10.1109/IJCNN.2002.1007487
10.1145/355744.355745
10.1109/TKDE.2018.2842191
10.1109/TIT.1982.1056489
10.1126/science.1242072
10.18637/jss.v053.i09
10.1145/1772690.1772862
10.1109/TKDE.2020.3034611
10.1007/BF01908075
10.1145/342009.335415
10.1007/978-3-540-88693-8_52
10.1016/j.patrec.2009.09.011
10.1109/TSMC.2021.3049490
10.1016/j.knosys.2016.02.001
10.1007/s11222-007-9033-z
10.3390/math10050764
10.1016/j.patcog.2020.107731
10.1109/TKDE.2019.2903410
10.1109/TKDE.2019.2930056
10.1007/s10489-018-1238-7
10.1109/TNN.2005.845141
10.1016/j.patrec.2019.10.019
10.1145/2723372.2737792
10.1109/TKDE.2011.33
10.1090/S0002-9939-1956-0078686-7
10.5555/3001460.3001507
10.1016/j.patrec.2016.05.007
10.1145/1374376.1374452
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2022.3150403
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 4780
ExternalDocumentID 10_1109_TKDE_2022_3150403
9712197
Genre orig-research
GrantInformation_xml – fundername: Guangdong Key R&D Research Project
  grantid: 2018B030338001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-b898b350d86dc903ba82cde5bee48bc1ac99a6f5855db58f1115cbf2d2ec89563
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 03:07:25 EDT 2025
Tue Jul 01 01:19:40 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Wed Aug 27 02:10:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-b898b350d86dc903ba82cde5bee48bc1ac99a6f5855db58f1115cbf2d2ec89563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7395-3131
0000-0002-6581-2451
PQID 2795802673
PQPubID 85438
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2022_3150403
proquest_journals_2795802673
ieee_primary_9712197
crossref_primary_10_1109_TKDE_2022_3150403
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Jang (ref23)
Gunawan (ref22) 2013
ref51
ref50
ref45
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
Macqueen (ref4)
Blake (ref48) 1998
ref24
ref26
ref25
ref20
Bondy (ref46) 2008
ref21
ref28
ref27
ref29
Theodoridis (ref39) 2009
References_xml – ident: ref36
  doi: 10.1109/TKDE.2016.2609423
– ident: ref15
  doi: 10.1109/BigData.2013.6691561
– ident: ref52
  doi: 10.1093/bioinformatics/btaa042
– ident: ref19
  doi: 10.1109/CVPR.2012.6247750
– volume-title: Pattern Recognition
  year: 2009
  ident: ref39
– ident: ref27
  doi: 10.1109/ICDMW.2017.12
– ident: ref10
  doi: 10.1109/TPAMI.2006.227
– ident: ref34
  doi: 10.1016/j.knosys.2019.105454
– ident: ref51
  doi: 10.1038/nmeth.3863
– ident: ref8
  doi: 10.1002/SERIES1345
– ident: ref57
  doi: 10.1016/j.ins.2016.08.009
– ident: ref56
  doi: 10.1038/s41467-017-01689-9
– ident: ref32
  doi: 10.1145/3220199.3220215
– ident: ref11
  doi: 10.1109/TNNLS.2018.2853407
– ident: ref43
  doi: 10.1145/1963405.1963487
– ident: ref26
  doi: 10.1145/2733381
– ident: ref50
  doi: 10.1109/5.726791
– ident: ref49
  doi: 10.1016/j.cell.2015.05.047
– ident: ref7
  doi: 10.1109/TPAMI.2020.3008694
– ident: ref24
  doi: 10.1016/j.patcog.2020.107624
– ident: ref33
  doi: 10.1016/j.knosys.2017.02.027
– ident: ref21
  doi: 10.1109/TIT.1975.1055330
– ident: ref55
  doi: 10.1109/TPAMI.2018.2889473
– ident: ref13
  doi: 10.1007/978-3-642-13657-3_5
– ident: ref44
  doi: 10.1016/j.is.2019.02.006
– year: 2013
  ident: ref22
  article-title: A faster algorithm for DBSCAN
– ident: ref12
  doi: 10.1109/IJCNN.2002.1007487
– ident: ref41
  doi: 10.1145/355744.355745
– ident: ref16
  doi: 10.1109/TKDE.2018.2842191
– ident: ref5
  doi: 10.1109/TIT.1982.1056489
– ident: ref30
  doi: 10.1126/science.1242072
– volume-title: Graph Theory, Volume 244 of Graduate Texts in Mathematics
  year: 2008
  ident: ref46
– ident: ref9
  doi: 10.18637/jss.v053.i09
– start-page: 3019
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref23
  article-title: DBSCAN++: Towards fast and scalable density clustering
– ident: ref6
  doi: 10.1145/1772690.1772862
– ident: ref37
  doi: 10.1109/TKDE.2020.3034611
– ident: ref47
  doi: 10.1007/BF01908075
– ident: ref38
  doi: 10.1145/342009.335415
– ident: ref28
  doi: 10.1007/978-3-540-88693-8_52
– ident: ref1
  doi: 10.1016/j.patrec.2009.09.011
– ident: ref35
  doi: 10.1109/TSMC.2021.3049490
– ident: ref58
  doi: 10.1016/j.knosys.2016.02.001
– ident: ref17
  doi: 10.1007/s11222-007-9033-z
– year: 1998
  ident: ref48
  article-title: UCI repository of machine learning databases
– ident: ref29
  doi: 10.3390/math10050764
– ident: ref54
  doi: 10.1016/j.patcog.2020.107731
– ident: ref18
  doi: 10.1109/TKDE.2019.2903410
– ident: ref3
  doi: 10.1109/TKDE.2019.2930056
– ident: ref53
  doi: 10.1007/s10489-018-1238-7
– ident: ref2
  doi: 10.1109/TNN.2005.845141
– start-page: 281
  volume-title: Proc. 5th Berkeley Symp. Math. Statist. Prob.
  ident: ref4
  article-title: Some methods for classification and analysis of multivariate observations
– ident: ref31
  doi: 10.1016/j.patrec.2019.10.019
– ident: ref25
  doi: 10.1145/2723372.2737792
– ident: ref14
  doi: 10.1109/TKDE.2011.33
– ident: ref45
  doi: 10.1090/S0002-9939-1956-0078686-7
– ident: ref20
  doi: 10.5555/3001460.3001507
– ident: ref40
  doi: 10.1016/j.patrec.2016.05.007
– ident: ref42
  doi: 10.1145/1374376.1374452
SSID ssj0008781
Score 2.5962164
Snippet Recently, a new density-peak-based clustering method, called clustering with local density peaks-based minimum spanning tree (LDP-MST), was proposed, which has...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4767
SubjectTerms Algorithms
Clustering
Clustering algorithms
Clustering methods
Complexity
Datasets
Density
Density-peak-based clustering
Directed acyclic graph
Graph theory
in-tree
large-size datasets
minimal spanning tree
Noise sensitivity
Parameter sensitivity
Robustness
Sensitivity
Time complexity
Visualization
Title Fast LDP-MST: An Efficient Density-Peak-Based Clustering Method for Large-Size Datasets
URI https://ieeexplore.ieee.org/document/9712197
https://www.proquest.com/docview/2795802673
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJz34QiOKpgdPxsKyu2VbbyoQo2BMgMhts31sYjBoZDnor3faXYivGLOXHjpNk-k8vu10PoATpj3BuU4tyOE0NFFKBUdzD3XbGOZCnn07PLhrX4_DmwmblOBs9RbGGOOKz0zDDt1dvn5WC_urrCmiFhpYVIYyArf8rdbK6_LIEZIiukBMFIRRcYPZ8kRzdNvpIhL0fQSoDA9t8CUGOVKVH57YhZfeJgyWG8urSqaNRSYb6v1bz8b_7nwLNoo8k1zkB2MbSma2A5tLDgdSmPQOrH9qSFiFh14yz0i_c08Hw9E5uZiRrmsxgYuTji11z94oOtEpvcTgp8nV08L2WUBRMnBM1ARTYNK3xeV0-PhuSCfJcGI234Vxrzu6uqYF9QJVGP8zKrngMmCe5m2thBfIhPtKGyaNCblUrUQJkbRTxBpMS8ZT9JhMydTXvlEcIVewB5XZ88zsA8GVvDDhOhIoi58IW16qhAxE4LKxGnhLZcSq6Etu6TGeYodPPBFb_cVWf3GhvxqcrkRe8qYcf02uWn2sJhaqqEF9qfG4MNt57EeCccvJFRz8LnUIa5ZvPq94rEMle12YI8xKMnnsjuMHAdjbUA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxsxEB5Remg5QHmpKbT1AS6VHDbeddau1ANlE4UmQZWSCG7L-rFSBQqo2QjBb-Gv9L917DgRtFVvSGgve_B4Zc_zW49nAPa4iaQQpnQgR9DEpiWVAtU9MU1ruXd57u5w_6TZGSXfzvjZEtwv7sJYa33yma27V3-Wb6701P0qO5BpAxUsDSmUXXt7gwBt8uU4Q27uM9ZuDY86NPQQoBodWUWVkELFPDKiabSMYlUIpo3lytpEKN0otJRFs8SgmRvFRYmqz7UqmWFWC8QOMc77Al5inMHZ7HbYws6L1LdARTyDKCxO0nBm2ojkwbCbtRB7MoaQmKOaxI-8nm_j8pft9w6tvQa_5lsxy2O5qE8rVdd3f1SJfK579QZWQyRNDmeivw5LdrwBa_MuFSQYrQ1YeVBycRNO28WkIr3sO-0Php_J4Zi0fBENXAzJXDJ_dUvRTVzQr-jeDTm6nLpKEkhK-r7XNsEgn_Rc-jwd_LizJCsqHFhNtmD0JIvdhuXx1di-BYIzRUkhTCqRFh-ZNKJSSxXL2MebNYjmzM91qLzuGoBc5h6BRTJ38pI7ecmDvNTg04LkelZ25H-DNx3_FwMD62uwO5ewPBimSc5SyYXrOha_-zfVR3jVGfZ7ee_4pLsDr_E7Ib9zF5arn1P7HmOwSn3wqkDg_Knl6Te2GzsJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+LDP-MST%3A+An+Efficient+Density-Peak-Based+Clustering+Method+for+Large-Size+Datasets&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Qiu%2C+Teng&rft.au=Li%2C+Yong-Jie&rft.date=2023-05-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=5&rft.spage=4767&rft.epage=4780&rft_id=info:doi/10.1109%2FTKDE.2022.3150403&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2022_3150403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon