Fast LDP-MST: An Efficient Density-Peak-Based Clustering Method for Large-Size Datasets
Recently, a new density-peak-based clustering method, called clustering with local density peaks-based minimum spanning tree (LDP-MST), was proposed, which has several attractive merits, e.g., being able to detect arbitrarily shaped clusters and not very sensitive to noise and parameters. Neverthele...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 35; no. 5; pp. 4767 - 4780 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, a new density-peak-based clustering method, called clustering with local density peaks-based minimum spanning tree (LDP-MST), was proposed, which has several attractive merits, e.g., being able to detect arbitrarily shaped clusters and not very sensitive to noise and parameters. Nevertheless, we also found the limitation of LDP-MST in efficiency. Specifically, LDP-MST has <inline-formula><tex-math notation="LaTeX">O(N\log N+M^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo form="prefix">log</mml:mo><mml:mi>N</mml:mi><mml:mo>+</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq1-3150403.gif"/> </inline-formula> time, where <inline-formula><tex-math notation="LaTeX">N</tex-math> <mml:math><mml:mi>N</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq2-3150403.gif"/> </inline-formula> denotes the dataset size and <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq3-3150403.gif"/> </inline-formula> is an intermediate variable denoting the number of local density peaks. As our experimental results reveal, when processing large-size datasets, the value of <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq4-3150403.gif"/> </inline-formula> could be very large and consequently those steps of LDP-MST involving <inline-formula><tex-math notation="LaTeX">O(M^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq5-3150403.gif"/> </inline-formula> time term would be time-consuming. And in the worst case, the value of <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq6-3150403.gif"/> </inline-formula> could be very close to that of <inline-formula><tex-math notation="LaTeX">N</tex-math> <mml:math><mml:mi>N</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq7-3150403.gif"/> </inline-formula>, which means that the time complexity of LDP-MST could be <inline-formula><tex-math notation="LaTeX">O(N^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>N</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq8-3150403.gif"/> </inline-formula> in the worst case of <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq9-3150403.gif"/> </inline-formula>. In this study, we use more efficient algorithms to implement those steps of LDP-MST that involve the <inline-formula><tex-math notation="LaTeX">O(M^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq10-3150403.gif"/> </inline-formula> time term such that the proposed method, Fast LDP-MST, has <inline-formula><tex-math notation="LaTeX">O(N\log N)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo form="prefix">log</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq11-3150403.gif"/> </inline-formula> time complexity even if <inline-formula><tex-math notation="LaTeX">M\approx N</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mo>≈</mml:mo><mml:mi>N</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq12-3150403.gif"/> </inline-formula>. Our experiments demonstrate that Fast LDP-MST is overall more efficient than LDP-MST on large-size datasets, without sacrificing the merits of LDP-MST in effectiveness, robustness, and user-friendliness. |
---|---|
AbstractList | Recently, a new density-peak-based clustering method, called clustering with local density peaks-based minimum spanning tree (LDP-MST), was proposed, which has several attractive merits, e.g., being able to detect arbitrarily shaped clusters and not very sensitive to noise and parameters. Nevertheless, we also found the limitation of LDP-MST in efficiency. Specifically, LDP-MST has [Formula Omitted] time, where [Formula Omitted] denotes the dataset size and [Formula Omitted] is an intermediate variable denoting the number of local density peaks. As our experimental results reveal, when processing large-size datasets, the value of [Formula Omitted] could be very large and consequently those steps of LDP-MST involving [Formula Omitted] time term would be time-consuming. And in the worst case, the value of [Formula Omitted] could be very close to that of [Formula Omitted], which means that the time complexity of LDP-MST could be [Formula Omitted] in the worst case of [Formula Omitted]. In this study, we use more efficient algorithms to implement those steps of LDP-MST that involve the [Formula Omitted] time term such that the proposed method, Fast LDP-MST, has [Formula Omitted] time complexity even if [Formula Omitted]. Our experiments demonstrate that Fast LDP-MST is overall more efficient than LDP-MST on large-size datasets, without sacrificing the merits of LDP-MST in effectiveness, robustness, and user-friendliness. Recently, a new density-peak-based clustering method, called clustering with local density peaks-based minimum spanning tree (LDP-MST), was proposed, which has several attractive merits, e.g., being able to detect arbitrarily shaped clusters and not very sensitive to noise and parameters. Nevertheless, we also found the limitation of LDP-MST in efficiency. Specifically, LDP-MST has <inline-formula><tex-math notation="LaTeX">O(N\log N+M^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo form="prefix">log</mml:mo><mml:mi>N</mml:mi><mml:mo>+</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq1-3150403.gif"/> </inline-formula> time, where <inline-formula><tex-math notation="LaTeX">N</tex-math> <mml:math><mml:mi>N</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq2-3150403.gif"/> </inline-formula> denotes the dataset size and <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq3-3150403.gif"/> </inline-formula> is an intermediate variable denoting the number of local density peaks. As our experimental results reveal, when processing large-size datasets, the value of <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq4-3150403.gif"/> </inline-formula> could be very large and consequently those steps of LDP-MST involving <inline-formula><tex-math notation="LaTeX">O(M^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq5-3150403.gif"/> </inline-formula> time term would be time-consuming. And in the worst case, the value of <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq6-3150403.gif"/> </inline-formula> could be very close to that of <inline-formula><tex-math notation="LaTeX">N</tex-math> <mml:math><mml:mi>N</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq7-3150403.gif"/> </inline-formula>, which means that the time complexity of LDP-MST could be <inline-formula><tex-math notation="LaTeX">O(N^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>N</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq8-3150403.gif"/> </inline-formula> in the worst case of <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="qiu-ieq9-3150403.gif"/> </inline-formula>. In this study, we use more efficient algorithms to implement those steps of LDP-MST that involve the <inline-formula><tex-math notation="LaTeX">O(M^{2})</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq10-3150403.gif"/> </inline-formula> time term such that the proposed method, Fast LDP-MST, has <inline-formula><tex-math notation="LaTeX">O(N\log N)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo form="prefix">log</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq11-3150403.gif"/> </inline-formula> time complexity even if <inline-formula><tex-math notation="LaTeX">M\approx N</tex-math> <mml:math><mml:mrow><mml:mi>M</mml:mi><mml:mo>≈</mml:mo><mml:mi>N</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="qiu-ieq12-3150403.gif"/> </inline-formula>. Our experiments demonstrate that Fast LDP-MST is overall more efficient than LDP-MST on large-size datasets, without sacrificing the merits of LDP-MST in effectiveness, robustness, and user-friendliness. |
Author | Qiu, Teng Li, Yong-Jie |
Author_xml | – sequence: 1 givenname: Teng orcidid: 0000-0002-6581-2451 surname: Qiu fullname: Qiu, Teng email: qiutengcool@163.com organization: Key Laboratory for Neuroinformation of Ministry of Education, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 2 givenname: Yong-Jie orcidid: 0000-0002-7395-3131 surname: Li fullname: Li, Yong-Jie email: liyj@uestc.edu.cn organization: Key Laboratory for Neuroinformation of Ministry of Education, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China |
BookMark | eNp9kctOAjEUQBujiYB-gHHTxHWxjynTukMeaoRIAsblpNO5g0WcwbYs8OsdAnHhwtXt4pze5Nw2Oq3qChC6YrTLGNW3i-fhqMsp513BJE2oOEEtJqUinGl22rxpwkgikvQctUNYUUpVqlgLvY1NiHgynJHpfHGH-xUelaWzDqqIh1AFF3dkBuaD3JsABR6styGCd9USTyG-1wUua48nxi-BzN034KGJDRjDBTorzTrA5XF20Ot4tBg8ksnLw9OgPyGWaxFJrrTKhaSF6hVWU5EbxW0BMgdIVG6ZsVqbXimVlEUuVckYkzYvecHBKi17ooNuDv9ufP21hRCzVb31VbMy46mWivJeKhoqPVDW1yF4KDProomurqI3bp0xmu0rZvuK2b5idqzYmOyPufHu0_jdv871wXEA8MvrlDW3SMUPQcZ-EA |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_32604_cmc_2024_054775 crossref_primary_10_1016_j_ins_2024_121209 crossref_primary_10_1142_S0218001424500022 crossref_primary_10_1016_j_eswa_2024_123313 crossref_primary_10_1016_j_neunet_2025_107142 crossref_primary_10_1016_j_jtice_2024_105915 crossref_primary_10_1016_j_patcog_2024_111321 crossref_primary_10_1109_ACCESS_2024_3479091 crossref_primary_10_1016_j_engappai_2024_108546 crossref_primary_10_1016_j_patcog_2024_110932 crossref_primary_10_1109_TCYB_2025_3536087 crossref_primary_10_3390_s23052488 crossref_primary_10_1007_s10115_024_02272_7 crossref_primary_10_1109_TNNLS_2023_3329720 crossref_primary_10_1007_s10586_024_04592_3 crossref_primary_10_1016_j_patcog_2024_110308 crossref_primary_10_1007_s44336_024_00008_3 crossref_primary_10_1109_TKDE_2024_3401075 crossref_primary_10_1109_TNNLS_2023_3300916 crossref_primary_10_1080_23249935_2024_2445156 crossref_primary_10_1109_TFUZZ_2024_3456091 crossref_primary_10_1109_TFUZZ_2024_3421576 crossref_primary_10_1016_j_compbiomed_2022_106184 crossref_primary_10_1016_j_knosys_2024_111742 crossref_primary_10_1007_s40815_024_01700_8 crossref_primary_10_1016_j_eswa_2023_121860 crossref_primary_10_1016_j_ins_2024_120114 crossref_primary_10_1016_j_engappai_2023_107172 crossref_primary_10_1109_TII_2023_3268777 |
Cites_doi | 10.1109/TKDE.2016.2609423 10.1109/BigData.2013.6691561 10.1093/bioinformatics/btaa042 10.1109/CVPR.2012.6247750 10.1109/ICDMW.2017.12 10.1109/TPAMI.2006.227 10.1016/j.knosys.2019.105454 10.1038/nmeth.3863 10.1002/SERIES1345 10.1016/j.ins.2016.08.009 10.1038/s41467-017-01689-9 10.1145/3220199.3220215 10.1109/TNNLS.2018.2853407 10.1145/1963405.1963487 10.1145/2733381 10.1109/5.726791 10.1016/j.cell.2015.05.047 10.1109/TPAMI.2020.3008694 10.1016/j.patcog.2020.107624 10.1016/j.knosys.2017.02.027 10.1109/TIT.1975.1055330 10.1109/TPAMI.2018.2889473 10.1007/978-3-642-13657-3_5 10.1016/j.is.2019.02.006 10.1109/IJCNN.2002.1007487 10.1145/355744.355745 10.1109/TKDE.2018.2842191 10.1109/TIT.1982.1056489 10.1126/science.1242072 10.18637/jss.v053.i09 10.1145/1772690.1772862 10.1109/TKDE.2020.3034611 10.1007/BF01908075 10.1145/342009.335415 10.1007/978-3-540-88693-8_52 10.1016/j.patrec.2009.09.011 10.1109/TSMC.2021.3049490 10.1016/j.knosys.2016.02.001 10.1007/s11222-007-9033-z 10.3390/math10050764 10.1016/j.patcog.2020.107731 10.1109/TKDE.2019.2903410 10.1109/TKDE.2019.2930056 10.1007/s10489-018-1238-7 10.1109/TNN.2005.845141 10.1016/j.patrec.2019.10.019 10.1145/2723372.2737792 10.1109/TKDE.2011.33 10.1090/S0002-9939-1956-0078686-7 10.5555/3001460.3001507 10.1016/j.patrec.2016.05.007 10.1145/1374376.1374452 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TKDE.2022.3150403 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2191 |
EndPage | 4780 |
ExternalDocumentID | 10_1109_TKDE_2022_3150403 9712197 |
Genre | orig-research |
GrantInformation_xml | – fundername: Guangdong Key R&D Research Project grantid: 2018B030338001 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-b898b350d86dc903ba82cde5bee48bc1ac99a6f5855db58f1115cbf2d2ec89563 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Mon Jun 30 03:07:25 EDT 2025 Tue Jul 01 01:19:40 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Wed Aug 27 02:10:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-b898b350d86dc903ba82cde5bee48bc1ac99a6f5855db58f1115cbf2d2ec89563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7395-3131 0000-0002-6581-2451 |
PQID | 2795802673 |
PQPubID | 85438 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2022_3150403 proquest_journals_2795802673 ieee_primary_9712197 crossref_primary_10_1109_TKDE_2022_3150403 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Jang (ref23) Gunawan (ref22) 2013 ref51 ref50 ref45 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 Macqueen (ref4) Blake (ref48) 1998 ref24 ref26 ref25 ref20 Bondy (ref46) 2008 ref21 ref28 ref27 ref29 Theodoridis (ref39) 2009 |
References_xml | – ident: ref36 doi: 10.1109/TKDE.2016.2609423 – ident: ref15 doi: 10.1109/BigData.2013.6691561 – ident: ref52 doi: 10.1093/bioinformatics/btaa042 – ident: ref19 doi: 10.1109/CVPR.2012.6247750 – volume-title: Pattern Recognition year: 2009 ident: ref39 – ident: ref27 doi: 10.1109/ICDMW.2017.12 – ident: ref10 doi: 10.1109/TPAMI.2006.227 – ident: ref34 doi: 10.1016/j.knosys.2019.105454 – ident: ref51 doi: 10.1038/nmeth.3863 – ident: ref8 doi: 10.1002/SERIES1345 – ident: ref57 doi: 10.1016/j.ins.2016.08.009 – ident: ref56 doi: 10.1038/s41467-017-01689-9 – ident: ref32 doi: 10.1145/3220199.3220215 – ident: ref11 doi: 10.1109/TNNLS.2018.2853407 – ident: ref43 doi: 10.1145/1963405.1963487 – ident: ref26 doi: 10.1145/2733381 – ident: ref50 doi: 10.1109/5.726791 – ident: ref49 doi: 10.1016/j.cell.2015.05.047 – ident: ref7 doi: 10.1109/TPAMI.2020.3008694 – ident: ref24 doi: 10.1016/j.patcog.2020.107624 – ident: ref33 doi: 10.1016/j.knosys.2017.02.027 – ident: ref21 doi: 10.1109/TIT.1975.1055330 – ident: ref55 doi: 10.1109/TPAMI.2018.2889473 – ident: ref13 doi: 10.1007/978-3-642-13657-3_5 – ident: ref44 doi: 10.1016/j.is.2019.02.006 – year: 2013 ident: ref22 article-title: A faster algorithm for DBSCAN – ident: ref12 doi: 10.1109/IJCNN.2002.1007487 – ident: ref41 doi: 10.1145/355744.355745 – ident: ref16 doi: 10.1109/TKDE.2018.2842191 – ident: ref5 doi: 10.1109/TIT.1982.1056489 – ident: ref30 doi: 10.1126/science.1242072 – volume-title: Graph Theory, Volume 244 of Graduate Texts in Mathematics year: 2008 ident: ref46 – ident: ref9 doi: 10.18637/jss.v053.i09 – start-page: 3019 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref23 article-title: DBSCAN++: Towards fast and scalable density clustering – ident: ref6 doi: 10.1145/1772690.1772862 – ident: ref37 doi: 10.1109/TKDE.2020.3034611 – ident: ref47 doi: 10.1007/BF01908075 – ident: ref38 doi: 10.1145/342009.335415 – ident: ref28 doi: 10.1007/978-3-540-88693-8_52 – ident: ref1 doi: 10.1016/j.patrec.2009.09.011 – ident: ref35 doi: 10.1109/TSMC.2021.3049490 – ident: ref58 doi: 10.1016/j.knosys.2016.02.001 – ident: ref17 doi: 10.1007/s11222-007-9033-z – year: 1998 ident: ref48 article-title: UCI repository of machine learning databases – ident: ref29 doi: 10.3390/math10050764 – ident: ref54 doi: 10.1016/j.patcog.2020.107731 – ident: ref18 doi: 10.1109/TKDE.2019.2903410 – ident: ref3 doi: 10.1109/TKDE.2019.2930056 – ident: ref53 doi: 10.1007/s10489-018-1238-7 – ident: ref2 doi: 10.1109/TNN.2005.845141 – start-page: 281 volume-title: Proc. 5th Berkeley Symp. Math. Statist. Prob. ident: ref4 article-title: Some methods for classification and analysis of multivariate observations – ident: ref31 doi: 10.1016/j.patrec.2019.10.019 – ident: ref25 doi: 10.1145/2723372.2737792 – ident: ref14 doi: 10.1109/TKDE.2011.33 – ident: ref45 doi: 10.1090/S0002-9939-1956-0078686-7 – ident: ref20 doi: 10.5555/3001460.3001507 – ident: ref40 doi: 10.1016/j.patrec.2016.05.007 – ident: ref42 doi: 10.1145/1374376.1374452 |
SSID | ssj0008781 |
Score | 2.5962164 |
Snippet | Recently, a new density-peak-based clustering method, called clustering with local density peaks-based minimum spanning tree (LDP-MST), was proposed, which has... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4767 |
SubjectTerms | Algorithms Clustering Clustering algorithms Clustering methods Complexity Datasets Density Density-peak-based clustering Directed acyclic graph Graph theory in-tree large-size datasets minimal spanning tree Noise sensitivity Parameter sensitivity Robustness Sensitivity Time complexity Visualization |
Title | Fast LDP-MST: An Efficient Density-Peak-Based Clustering Method for Large-Size Datasets |
URI | https://ieeexplore.ieee.org/document/9712197 https://www.proquest.com/docview/2795802673 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJz34QiOKpgdPxsKyu2VbbyoQo2BMgMhts31sYjBoZDnor3faXYivGLOXHjpNk-k8vu10PoATpj3BuU4tyOE0NFFKBUdzD3XbGOZCnn07PLhrX4_DmwmblOBs9RbGGOOKz0zDDt1dvn5WC_urrCmiFhpYVIYyArf8rdbK6_LIEZIiukBMFIRRcYPZ8kRzdNvpIhL0fQSoDA9t8CUGOVKVH57YhZfeJgyWG8urSqaNRSYb6v1bz8b_7nwLNoo8k1zkB2MbSma2A5tLDgdSmPQOrH9qSFiFh14yz0i_c08Hw9E5uZiRrmsxgYuTji11z94oOtEpvcTgp8nV08L2WUBRMnBM1ARTYNK3xeV0-PhuSCfJcGI234Vxrzu6uqYF9QJVGP8zKrngMmCe5m2thBfIhPtKGyaNCblUrUQJkbRTxBpMS8ZT9JhMydTXvlEcIVewB5XZ88zsA8GVvDDhOhIoi58IW16qhAxE4LKxGnhLZcSq6Etu6TGeYodPPBFb_cVWf3GhvxqcrkRe8qYcf02uWn2sJhaqqEF9qfG4MNt57EeCccvJFRz8LnUIa5ZvPq94rEMle12YI8xKMnnsjuMHAdjbUA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTxsxEB5Remg5QHmpKbT1AS6VHDbeddau1ANlE4UmQZWSCG7L-rFSBQqo2QjBb-Gv9L917DgRtFVvSGgve_B4Zc_zW49nAPa4iaQQpnQgR9DEpiWVAtU9MU1ruXd57u5w_6TZGSXfzvjZEtwv7sJYa33yma27V3-Wb6701P0qO5BpAxUsDSmUXXt7gwBt8uU4Q27uM9ZuDY86NPQQoBodWUWVkELFPDKiabSMYlUIpo3lytpEKN0otJRFs8SgmRvFRYmqz7UqmWFWC8QOMc77Al5inMHZ7HbYws6L1LdARTyDKCxO0nBm2ojkwbCbtRB7MoaQmKOaxI-8nm_j8pft9w6tvQa_5lsxy2O5qE8rVdd3f1SJfK579QZWQyRNDmeivw5LdrwBa_MuFSQYrQ1YeVBycRNO28WkIr3sO-0Php_J4Zi0fBENXAzJXDJ_dUvRTVzQr-jeDTm6nLpKEkhK-r7XNsEgn_Rc-jwd_LizJCsqHFhNtmD0JIvdhuXx1di-BYIzRUkhTCqRFh-ZNKJSSxXL2MebNYjmzM91qLzuGoBc5h6BRTJ38pI7ecmDvNTg04LkelZ25H-DNx3_FwMD62uwO5ewPBimSc5SyYXrOha_-zfVR3jVGfZ7ee_4pLsDr_E7Ib9zF5arn1P7HmOwSn3wqkDg_Knl6Te2GzsJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+LDP-MST%3A+An+Efficient+Density-Peak-Based+Clustering+Method+for+Large-Size+Datasets&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Qiu%2C+Teng&rft.au=Li%2C+Yong-Jie&rft.date=2023-05-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=35&rft.issue=5&rft.spage=4767&rft.epage=4780&rft_id=info:doi/10.1109%2FTKDE.2022.3150403&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2022_3150403 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |