Design and Analysis of an Efficient Multiresource Allocation System for Cooperative Computing in Internet of Things
By migrating tasks from the end devices to the edge or cloud, cooperative computing in the Internet of Things can support time-sensitive, high-dimensional, and complex applications while utilizing existing resources, such as the network bandwidth, computing resources, and storage capacity. How to de...
Saved in:
Published in | IEEE internet of things journal Vol. 9; no. 16; pp. 14463 - 14477 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
15.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By migrating tasks from the end devices to the edge or cloud, cooperative computing in the Internet of Things can support time-sensitive, high-dimensional, and complex applications while utilizing existing resources, such as the network bandwidth, computing resources, and storage capacity. How to design the multiresource allocation system efficiently is a significant research problem. In this article, we design a multiresource allocation system for cooperative computing in the Internet of Things based on deep reinforcement learning by redefining latency calculation models for communication, computation, and caching with the consideration of practical interference factors, such as the Gaussian noise and data loss. The proposed system uses actor-critic as the base model for rapidly approximating the optimal policy by updating parameters of the actor and critic in respective gradient directions. The balance control parameter is introduced to fit the desired learning rate and actual learning rate. At the same time, we use the method of double experience pool to limit the exploration direction of the optimal policy, which reduces the time complexity and space complexity of the problem solution and improves the adaptability and reliability of the scheme. Experiments have demonstrated that multiresource allocation algorithm based on deep reinforcement learning (DRL-MRA) performs well in terms of the average service latency under resource-constrained conditions, and the improvement is significant with the increase of network size. |
---|---|
AbstractList | By migrating tasks from the end devices to the edge or cloud, cooperative computing in the Internet of Things can support time-sensitive, high-dimensional, and complex applications while utilizing existing resources, such as the network bandwidth, computing resources, and storage capacity. How to design the multiresource allocation system efficiently is a significant research problem. In this article, we design a multiresource allocation system for cooperative computing in the Internet of Things based on deep reinforcement learning by redefining latency calculation models for communication, computation, and caching with the consideration of practical interference factors, such as the Gaussian noise and data loss. The proposed system uses actor-critic as the base model for rapidly approximating the optimal policy by updating parameters of the actor and critic in respective gradient directions. The balance control parameter is introduced to fit the desired learning rate and actual learning rate. At the same time, we use the method of double experience pool to limit the exploration direction of the optimal policy, which reduces the time complexity and space complexity of the problem solution and improves the adaptability and reliability of the scheme. Experiments have demonstrated that multiresource allocation algorithm based on deep reinforcement learning (DRL-MRA) performs well in terms of the average service latency under resource-constrained conditions, and the improvement is significant with the increase of network size. |
Author | Xiong, Neal N. Zhang, Xiaoqi Yu, Zhiyong Cheng, Hongju |
Author_xml | – sequence: 1 givenname: Xiaoqi surname: Zhang fullname: Zhang, Xiaoqi email: n190310009@fzu.edu.cn organization: Department of Computer Science, Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou, China – sequence: 2 givenname: Hongju orcidid: 0000-0002-0768-7859 surname: Cheng fullname: Cheng, Hongju email: cscheng@fzu.edu.cn organization: Department of Computer Science, Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou, China – sequence: 3 givenname: Zhiyong orcidid: 0000-0002-2051-9462 surname: Yu fullname: Yu, Zhiyong email: yuzhiyong@fzu.edu.cn organization: Department of Computer Science, Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou, China – sequence: 4 givenname: Neal N. orcidid: 0000-0002-0394-4635 surname: Xiong fullname: Xiong, Neal N. email: xiongnaixue@gmail.com organization: School of Information Engineering, Ningxia University, Yinchuan, China |
BookMark | eNpNUMFOAjEUbAwmIvIBxksTz-Brt9tljwRRMRgO4nmzdF-xZGnXtpjw95ZgjKf33ryZSWauSc86i4TcMhgzBuXD62K1HnPgbJxBKXIoLkifZ7wYCSl5799-RYYh7AAgyXJWyj4JjxjM1tLaNnRq6_YYTKBOp5vOtTbKoI307dBG4zG4g1dIp23rVB2Ns_T9GCLuqXaezpzr0Cf4G9O-7w7R2C01li5sRG8xnlzXnwkMN-RS123A4e8ckI-n-Xr2Mlqunhez6XKkeJnF0UYCq6WWGlIyBROWlVyoItOYaynrHEAVeaOF4JxJIRtWSNSlwCZX5WQz2WQDcn_27bz7OmCI1S4lSCFDxQsAwXKRQWKxM0t5F4JHXXXe7Gt_rBhUp3qrU73Vqd7qt96kuTtrDCL-8UtRpK_MfgCBi3gt |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_26599_TST_2022_9010006 crossref_primary_10_1002_dac_5395 |
Cites_doi | 10.1109/JIOT.2019.2945640 10.1109/TCYB.2019.2916728 10.1609/aaai.v30i1.10295 10.1109/TSMC.2019.2896323 10.1016/j.adhoc.2020.102202 10.1109/COMST.2019.2926625 10.1109/TNET.2016.2636843 10.1109/WCNC.2017.7925732 10.1587/transfun.2019EAL2136 10.1109/JIOT.2020.2978830 10.1109/CISS.2018.8362276 10.1109/JIOT.2021.3049173 10.1007/s42045-020-00042-x 10.1109/TWC.2017.2703901 10.1038/nature14236 10.1016/j.comnet.2016.10.001 10.1109/JIOT.2020.3039828 10.1109/TMC.2018.2871460 10.1109/MCOM.2018.1701277 10.1109/MCC.2017.27 10.1049/iet-com.2019.0981 10.1109/TCCN.2019.2930521 10.1109/ICC.2017.7996574 10.1109/FiCloud.2017.55 10.1109/TPDS.2014.2316834 10.1109/JIOT.2017.2788802 10.1109/ACCESS.2020.2981434 10.1109/JSAC.2017.2680898 10.1109/TCYB.2019.2935466 10.1109/IWCMC.2018.8450448 10.1109/TWC.2017.2705102 10.1109/TPDS.2014.2381640 10.1109/JSAC.2016.2577278 10.1109/TVT.2017.2737028 10.1109/LCOMM.2017.2776917 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2021.3094507 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 14477 |
ExternalDocumentID | 10_1109_JIOT_2021_3094507 9474506 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science Foundation of Fujian Province of China grantid: 2019J01245 funderid: 10.13039/501100003392 – fundername: National Natural Science Foundation of China grantid: 61772136 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ ABQJQ ABVLG AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE RIG AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-b601a6f6f0021c0813924c73fe5f66a500c75df44221646d176ef94ed5c98b8b3 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Thu Oct 10 15:43:18 EDT 2024 Fri Aug 23 03:58:55 EDT 2024 Wed Jun 26 19:25:14 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-b601a6f6f0021c0813924c73fe5f66a500c75df44221646d176ef94ed5c98b8b3 |
ORCID | 0000-0002-0768-7859 0000-0002-0394-4635 0000-0002-2051-9462 |
PQID | 2700415430 |
PQPubID | 2040421 |
PageCount | 15 |
ParticipantIDs | ieee_primary_9474506 proquest_journals_2700415430 crossref_primary_10_1109_JIOT_2021_3094507 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-15 |
PublicationDateYYYYMMDD | 2022-08-15 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Lillicrap (ref38) Dab (ref39) Haarnoja (ref37) ref24 ref23 ref26 ref25 ref20 Mnih (ref30) ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref36 doi: 10.1109/JIOT.2019.2945640 – ident: ref20 doi: 10.1109/TCYB.2019.2916728 – ident: ref31 doi: 10.1609/aaai.v30i1.10295 – ident: ref16 doi: 10.1109/TSMC.2019.2896323 – start-page: 45 volume-title: Proc. IEEE Int. Symp. Integr. Netw. Manage. ident: ref39 article-title: Q-learning algorithm for joint computation offloading and resource allocation in edge cloud contributor: fullname: Dab – ident: ref18 doi: 10.1016/j.adhoc.2020.102202 – ident: ref11 doi: 10.1109/COMST.2019.2926625 – ident: ref15 doi: 10.1109/TNET.2016.2636843 – ident: ref22 doi: 10.1109/WCNC.2017.7925732 – ident: ref10 doi: 10.1587/transfun.2019EAL2136 – ident: ref32 doi: 10.1109/JIOT.2020.2978830 – ident: ref34 doi: 10.1109/CISS.2018.8362276 – ident: ref2 doi: 10.1109/JIOT.2021.3049173 – start-page: 1928 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref30 article-title: Asynchronous methods for deep reinforcement learning contributor: fullname: Mnih – ident: ref3 doi: 10.1007/s42045-020-00042-x – ident: ref24 doi: 10.1109/TWC.2017.2703901 – ident: ref29 doi: 10.1038/nature14236 – ident: ref19 doi: 10.1016/j.comnet.2016.10.001 – start-page: 1861 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref37 article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor contributor: fullname: Haarnoja – ident: ref12 doi: 10.1109/JIOT.2020.3039828 – ident: ref27 doi: 10.1109/TMC.2018.2871460 – ident: ref28 doi: 10.1109/MCOM.2018.1701277 – ident: ref26 doi: 10.1109/MCC.2017.27 – ident: ref13 doi: 10.1049/iet-com.2019.0981 – ident: ref33 doi: 10.1109/TCCN.2019.2930521 – ident: ref17 doi: 10.1109/ICC.2017.7996574 – ident: ref1 doi: 10.1109/FiCloud.2017.55 – ident: ref8 doi: 10.1109/TPDS.2014.2316834 – ident: ref4 doi: 10.1109/JIOT.2017.2788802 – ident: ref5 doi: 10.1109/ACCESS.2020.2981434 – ident: ref23 doi: 10.1109/JSAC.2017.2680898 – ident: ref21 doi: 10.1109/TCYB.2019.2935466 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref38 article-title: Continuous control with deep reinforcement learning contributor: fullname: Lillicrap – ident: ref7 doi: 10.1109/IWCMC.2018.8450448 – ident: ref14 doi: 10.1109/TWC.2017.2705102 – ident: ref6 doi: 10.1109/TPDS.2014.2381640 – ident: ref9 doi: 10.1109/JSAC.2016.2577278 – ident: ref25 doi: 10.1109/TVT.2017.2737028 – ident: ref35 doi: 10.1109/LCOMM.2017.2776917 |
SSID | ssj0001105196 |
Score | 2.3181386 |
Snippet | By migrating tasks from the end devices to the edge or cloud, cooperative computing in the Internet of Things can support time-sensitive, high-dimensional, and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 14463 |
SubjectTerms | Algorithms Cloud computing Complexity Computational modeling Cooperative computing Data loss Deep learning deep reinforcement learning (DRL) Internet of Things Machine learning Mathematical models Network latency Optimization Parameters Random noise Reinforcement learning resource allocation Resource management Storage capacity Task analysis |
Title | Design and Analysis of an Efficient Multiresource Allocation System for Cooperative Computing in Internet of Things |
URI | https://ieeexplore.ieee.org/document/9474506 https://www.proquest.com/docview/2700415430 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkxd_oRFF04Mn46Bbu3Y7EoQgCXqBhNuydW1iNBuBcfGvt6_d0KgHb1uydUtf2_e9177vQ-hOpCTTkhPPp770WJqbdZCJwJOBiqQUipEIqpHnz3y6ZLNVuGqhh30tjFLKHj5Tfbi0e_l5KXeQKhvETLAQ-LUPRBy7Wq2vfIoPYITXG5c-iQezp5eFCQADv09NDBOCYOw312O1VH4twNarTI7RvPkfd5jkrb-rsr78-EHV-N8fPkFHNbzEQzceTlFLFWfouJFuwPVM7qDtoz25gdMixw0vCS61ucdjSyph2sW2OHdT5_fx8B38HtgRO5pzbPAuHpXlWjn2cOw-Y3whfi2wSzWqClp14qDnaDkZL0ZTr9ZfMJaKaeVlJlhLueYagIA02MFgKSYF1SrUnIOUghRhrhkLAmApy33BlY6ZykMZR1mU0QvULspCXSIsFA01zSNOpGJ-xlJGMuMYDTgFpQ8puui-MU2ydjQbiQ1PSJyAHROwY1LbsYs60NX7B-te7qJeY8yknojbBPbVDUZhlFz9_dY1OgygogFYbsMealebnboxOKPKbu0A-wTpiNFV |
link.rule.ids | 315,783,787,799,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6hMsDCG1GeHpgQafPwIxkRFBVoy1IktihxbAmBEtSmC78en50UBAxsiZQ4kc_2fXf2fR_Aucj8XEvue0EUSI9mhVkHqQg9GapYSqGoH2M18njCh0_0_pk9r8DlshZGKWUPn6keXtq9_KKSC0yV9RMqKEN-7VWGuMJVa31lVAKEI7zZugz8pH9_9zg1IWAY9CITxTCUjP3mfKyayq8l2PqV200Yt3_kjpO89hZ13pMfP8ga__vLW7DRAExy5UbENqyocgc2W_EG0szlXZjf2LMbJCsL0jKTkEqbezKwtBKmXWLLc2dNhp9cvaHnQ0sSR3RODOIl11X1rhx_OHGfMd6QvJTEJRtVja06edA9eLodTK-HXqPAYGyVRLWXm3At45prhALSoAeDpqgUkVZMc45iClKwQlMahshTVgSCK51QVTCZxHmcR_vQKatSHQARKmI6KmLuS0WDnGbUz41rNPAUtT6k6MJFa5r03RFtpDZA8ZMU7ZiiHdPGjl3Yxa5ePtj0cheOW2OmzVScp7izblAKjfzDv986g7XhdDxKR3eThyNYD7G-ATlv2TF06tlCnRjUUeendrB9Agdo1KI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Analysis+of+an+Efficient+Multiresource+Allocation+System+for+Cooperative+Computing+in+Internet+of+Things&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhang%2C+Xiaoqi&rft.au=Cheng%2C+Hongju&rft.au=Yu%2C+Zhiyong&rft.au=Xiong%2C+Neal+N.&rft.date=2022-08-15&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=9&rft.issue=16&rft.spage=14463&rft.epage=14477&rft_id=info:doi/10.1109%2FJIOT.2021.3094507&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2021_3094507 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |