Design and Analysis of an Efficient Multiresource Allocation System for Cooperative Computing in Internet of Things

By migrating tasks from the end devices to the edge or cloud, cooperative computing in the Internet of Things can support time-sensitive, high-dimensional, and complex applications while utilizing existing resources, such as the network bandwidth, computing resources, and storage capacity. How to de...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 9; no. 16; pp. 14463 - 14477
Main Authors Zhang, Xiaoqi, Cheng, Hongju, Yu, Zhiyong, Xiong, Neal N.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By migrating tasks from the end devices to the edge or cloud, cooperative computing in the Internet of Things can support time-sensitive, high-dimensional, and complex applications while utilizing existing resources, such as the network bandwidth, computing resources, and storage capacity. How to design the multiresource allocation system efficiently is a significant research problem. In this article, we design a multiresource allocation system for cooperative computing in the Internet of Things based on deep reinforcement learning by redefining latency calculation models for communication, computation, and caching with the consideration of practical interference factors, such as the Gaussian noise and data loss. The proposed system uses actor-critic as the base model for rapidly approximating the optimal policy by updating parameters of the actor and critic in respective gradient directions. The balance control parameter is introduced to fit the desired learning rate and actual learning rate. At the same time, we use the method of double experience pool to limit the exploration direction of the optimal policy, which reduces the time complexity and space complexity of the problem solution and improves the adaptability and reliability of the scheme. Experiments have demonstrated that multiresource allocation algorithm based on deep reinforcement learning (DRL-MRA) performs well in terms of the average service latency under resource-constrained conditions, and the improvement is significant with the increase of network size.
AbstractList By migrating tasks from the end devices to the edge or cloud, cooperative computing in the Internet of Things can support time-sensitive, high-dimensional, and complex applications while utilizing existing resources, such as the network bandwidth, computing resources, and storage capacity. How to design the multiresource allocation system efficiently is a significant research problem. In this article, we design a multiresource allocation system for cooperative computing in the Internet of Things based on deep reinforcement learning by redefining latency calculation models for communication, computation, and caching with the consideration of practical interference factors, such as the Gaussian noise and data loss. The proposed system uses actor-critic as the base model for rapidly approximating the optimal policy by updating parameters of the actor and critic in respective gradient directions. The balance control parameter is introduced to fit the desired learning rate and actual learning rate. At the same time, we use the method of double experience pool to limit the exploration direction of the optimal policy, which reduces the time complexity and space complexity of the problem solution and improves the adaptability and reliability of the scheme. Experiments have demonstrated that multiresource allocation algorithm based on deep reinforcement learning (DRL-MRA) performs well in terms of the average service latency under resource-constrained conditions, and the improvement is significant with the increase of network size.
Author Xiong, Neal N.
Zhang, Xiaoqi
Yu, Zhiyong
Cheng, Hongju
Author_xml – sequence: 1
  givenname: Xiaoqi
  surname: Zhang
  fullname: Zhang, Xiaoqi
  email: n190310009@fzu.edu.cn
  organization: Department of Computer Science, Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou, China
– sequence: 2
  givenname: Hongju
  orcidid: 0000-0002-0768-7859
  surname: Cheng
  fullname: Cheng, Hongju
  email: cscheng@fzu.edu.cn
  organization: Department of Computer Science, Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou, China
– sequence: 3
  givenname: Zhiyong
  orcidid: 0000-0002-2051-9462
  surname: Yu
  fullname: Yu, Zhiyong
  email: yuzhiyong@fzu.edu.cn
  organization: Department of Computer Science, Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou, China
– sequence: 4
  givenname: Neal N.
  orcidid: 0000-0002-0394-4635
  surname: Xiong
  fullname: Xiong, Neal N.
  email: xiongnaixue@gmail.com
  organization: School of Information Engineering, Ningxia University, Yinchuan, China
BookMark eNpNUMFOAjEUbAwmIvIBxksTz-Brt9tljwRRMRgO4nmzdF-xZGnXtpjw95ZgjKf33ryZSWauSc86i4TcMhgzBuXD62K1HnPgbJxBKXIoLkifZ7wYCSl5799-RYYh7AAgyXJWyj4JjxjM1tLaNnRq6_YYTKBOp5vOtTbKoI307dBG4zG4g1dIp23rVB2Ns_T9GCLuqXaezpzr0Cf4G9O-7w7R2C01li5sRG8xnlzXnwkMN-RS123A4e8ckI-n-Xr2Mlqunhez6XKkeJnF0UYCq6WWGlIyBROWlVyoItOYaynrHEAVeaOF4JxJIRtWSNSlwCZX5WQz2WQDcn_27bz7OmCI1S4lSCFDxQsAwXKRQWKxM0t5F4JHXXXe7Gt_rBhUp3qrU73Vqd7qt96kuTtrDCL-8UtRpK_MfgCBi3gt
CODEN IITJAU
CitedBy_id crossref_primary_10_26599_TST_2022_9010006
crossref_primary_10_1002_dac_5395
Cites_doi 10.1109/JIOT.2019.2945640
10.1109/TCYB.2019.2916728
10.1609/aaai.v30i1.10295
10.1109/TSMC.2019.2896323
10.1016/j.adhoc.2020.102202
10.1109/COMST.2019.2926625
10.1109/TNET.2016.2636843
10.1109/WCNC.2017.7925732
10.1587/transfun.2019EAL2136
10.1109/JIOT.2020.2978830
10.1109/CISS.2018.8362276
10.1109/JIOT.2021.3049173
10.1007/s42045-020-00042-x
10.1109/TWC.2017.2703901
10.1038/nature14236
10.1016/j.comnet.2016.10.001
10.1109/JIOT.2020.3039828
10.1109/TMC.2018.2871460
10.1109/MCOM.2018.1701277
10.1109/MCC.2017.27
10.1049/iet-com.2019.0981
10.1109/TCCN.2019.2930521
10.1109/ICC.2017.7996574
10.1109/FiCloud.2017.55
10.1109/TPDS.2014.2316834
10.1109/JIOT.2017.2788802
10.1109/ACCESS.2020.2981434
10.1109/JSAC.2017.2680898
10.1109/TCYB.2019.2935466
10.1109/IWCMC.2018.8450448
10.1109/TWC.2017.2705102
10.1109/TPDS.2014.2381640
10.1109/JSAC.2016.2577278
10.1109/TVT.2017.2737028
10.1109/LCOMM.2017.2776917
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2021.3094507
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 14477
ExternalDocumentID 10_1109_JIOT_2021_3094507
9474506
Genre orig-research
GrantInformation_xml – fundername: Science Foundation of Fujian Province of China
  grantid: 2019J01245
  funderid: 10.13039/501100003392
– fundername: National Natural Science Foundation of China
  grantid: 61772136
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
RIG
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-b601a6f6f0021c0813924c73fe5f66a500c75df44221646d176ef94ed5c98b8b3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Thu Oct 10 15:43:18 EDT 2024
Fri Aug 23 03:58:55 EDT 2024
Wed Jun 26 19:25:14 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-b601a6f6f0021c0813924c73fe5f66a500c75df44221646d176ef94ed5c98b8b3
ORCID 0000-0002-0768-7859
0000-0002-0394-4635
0000-0002-2051-9462
PQID 2700415430
PQPubID 2040421
PageCount 15
ParticipantIDs ieee_primary_9474506
proquest_journals_2700415430
crossref_primary_10_1109_JIOT_2021_3094507
PublicationCentury 2000
PublicationDate 2022-08-15
PublicationDateYYYYMMDD 2022-08-15
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Lillicrap (ref38)
Dab (ref39)
Haarnoja (ref37)
ref24
ref23
ref26
ref25
ref20
Mnih (ref30)
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref36
  doi: 10.1109/JIOT.2019.2945640
– ident: ref20
  doi: 10.1109/TCYB.2019.2916728
– ident: ref31
  doi: 10.1609/aaai.v30i1.10295
– ident: ref16
  doi: 10.1109/TSMC.2019.2896323
– start-page: 45
  volume-title: Proc. IEEE Int. Symp. Integr. Netw. Manage.
  ident: ref39
  article-title: Q-learning algorithm for joint computation offloading and resource allocation in edge cloud
  contributor:
    fullname: Dab
– ident: ref18
  doi: 10.1016/j.adhoc.2020.102202
– ident: ref11
  doi: 10.1109/COMST.2019.2926625
– ident: ref15
  doi: 10.1109/TNET.2016.2636843
– ident: ref22
  doi: 10.1109/WCNC.2017.7925732
– ident: ref10
  doi: 10.1587/transfun.2019EAL2136
– ident: ref32
  doi: 10.1109/JIOT.2020.2978830
– ident: ref34
  doi: 10.1109/CISS.2018.8362276
– ident: ref2
  doi: 10.1109/JIOT.2021.3049173
– start-page: 1928
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref30
  article-title: Asynchronous methods for deep reinforcement learning
  contributor:
    fullname: Mnih
– ident: ref3
  doi: 10.1007/s42045-020-00042-x
– ident: ref24
  doi: 10.1109/TWC.2017.2703901
– ident: ref29
  doi: 10.1038/nature14236
– ident: ref19
  doi: 10.1016/j.comnet.2016.10.001
– start-page: 1861
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref37
  article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor
  contributor:
    fullname: Haarnoja
– ident: ref12
  doi: 10.1109/JIOT.2020.3039828
– ident: ref27
  doi: 10.1109/TMC.2018.2871460
– ident: ref28
  doi: 10.1109/MCOM.2018.1701277
– ident: ref26
  doi: 10.1109/MCC.2017.27
– ident: ref13
  doi: 10.1049/iet-com.2019.0981
– ident: ref33
  doi: 10.1109/TCCN.2019.2930521
– ident: ref17
  doi: 10.1109/ICC.2017.7996574
– ident: ref1
  doi: 10.1109/FiCloud.2017.55
– ident: ref8
  doi: 10.1109/TPDS.2014.2316834
– ident: ref4
  doi: 10.1109/JIOT.2017.2788802
– ident: ref5
  doi: 10.1109/ACCESS.2020.2981434
– ident: ref23
  doi: 10.1109/JSAC.2017.2680898
– ident: ref21
  doi: 10.1109/TCYB.2019.2935466
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref38
  article-title: Continuous control with deep reinforcement learning
  contributor:
    fullname: Lillicrap
– ident: ref7
  doi: 10.1109/IWCMC.2018.8450448
– ident: ref14
  doi: 10.1109/TWC.2017.2705102
– ident: ref6
  doi: 10.1109/TPDS.2014.2381640
– ident: ref9
  doi: 10.1109/JSAC.2016.2577278
– ident: ref25
  doi: 10.1109/TVT.2017.2737028
– ident: ref35
  doi: 10.1109/LCOMM.2017.2776917
SSID ssj0001105196
Score 2.3181386
Snippet By migrating tasks from the end devices to the edge or cloud, cooperative computing in the Internet of Things can support time-sensitive, high-dimensional, and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 14463
SubjectTerms Algorithms
Cloud computing
Complexity
Computational modeling
Cooperative computing
Data loss
Deep learning
deep reinforcement learning (DRL)
Internet of Things
Machine learning
Mathematical models
Network latency
Optimization
Parameters
Random noise
Reinforcement learning
resource allocation
Resource management
Storage capacity
Task analysis
Title Design and Analysis of an Efficient Multiresource Allocation System for Cooperative Computing in Internet of Things
URI https://ieeexplore.ieee.org/document/9474506
https://www.proquest.com/docview/2700415430
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkxd_oRFF04Mn46Bbu3Y7EoQgCXqBhNuydW1iNBuBcfGvt6_d0KgHb1uydUtf2_e9177vQ-hOpCTTkhPPp770WJqbdZCJwJOBiqQUipEIqpHnz3y6ZLNVuGqhh30tjFLKHj5Tfbi0e_l5KXeQKhvETLAQ-LUPRBy7Wq2vfIoPYITXG5c-iQezp5eFCQADv09NDBOCYOw312O1VH4twNarTI7RvPkfd5jkrb-rsr78-EHV-N8fPkFHNbzEQzceTlFLFWfouJFuwPVM7qDtoz25gdMixw0vCS61ucdjSyph2sW2OHdT5_fx8B38HtgRO5pzbPAuHpXlWjn2cOw-Y3whfi2wSzWqClp14qDnaDkZL0ZTr9ZfMJaKaeVlJlhLueYagIA02MFgKSYF1SrUnIOUghRhrhkLAmApy33BlY6ZykMZR1mU0QvULspCXSIsFA01zSNOpGJ-xlJGMuMYDTgFpQ8puui-MU2ydjQbiQ1PSJyAHROwY1LbsYs60NX7B-te7qJeY8yknojbBPbVDUZhlFz9_dY1OgygogFYbsMealebnboxOKPKbu0A-wTpiNFV
link.rule.ids 315,783,787,799,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6hMsDCG1GeHpgQafPwIxkRFBVoy1IktihxbAmBEtSmC78en50UBAxsiZQ4kc_2fXf2fR_Aucj8XEvue0EUSI9mhVkHqQg9GapYSqGoH2M18njCh0_0_pk9r8DlshZGKWUPn6keXtq9_KKSC0yV9RMqKEN-7VWGuMJVa31lVAKEI7zZugz8pH9_9zg1IWAY9CITxTCUjP3mfKyayq8l2PqV200Yt3_kjpO89hZ13pMfP8ga__vLW7DRAExy5UbENqyocgc2W_EG0szlXZjf2LMbJCsL0jKTkEqbezKwtBKmXWLLc2dNhp9cvaHnQ0sSR3RODOIl11X1rhx_OHGfMd6QvJTEJRtVja06edA9eLodTK-HXqPAYGyVRLWXm3At45prhALSoAeDpqgUkVZMc45iClKwQlMahshTVgSCK51QVTCZxHmcR_vQKatSHQARKmI6KmLuS0WDnGbUz41rNPAUtT6k6MJFa5r03RFtpDZA8ZMU7ZiiHdPGjl3Yxa5ePtj0cheOW2OmzVScp7izblAKjfzDv986g7XhdDxKR3eThyNYD7G-ATlv2TF06tlCnRjUUeendrB9Agdo1KI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Analysis+of+an+Efficient+Multiresource+Allocation+System+for+Cooperative+Computing+in+Internet+of+Things&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhang%2C+Xiaoqi&rft.au=Cheng%2C+Hongju&rft.au=Yu%2C+Zhiyong&rft.au=Xiong%2C+Neal+N.&rft.date=2022-08-15&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=9&rft.issue=16&rft.spage=14463&rft.epage=14477&rft_id=info:doi/10.1109%2FJIOT.2021.3094507&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2021_3094507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon