Collaborative Optimization of PV Greenhouses and Clean Energy Systems in Rural Areas
As an important infrastructure supporting rural development, an integrated energy system plays an irreplaceable role in China's rural revitalization strategy. The deployment of rural energy projects is an effective way for rural areas to achieve double carbon goals and accelerate agricultural m...
Saved in:
Published in | IEEE transactions on sustainable energy Vol. 14; no. 1; pp. 1 - 15 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1949-3029 1949-3037 |
DOI | 10.1109/TSTE.2022.3223684 |
Cover
Loading…
Abstract | As an important infrastructure supporting rural development, an integrated energy system plays an irreplaceable role in China's rural revitalization strategy. The deployment of rural energy projects is an effective way for rural areas to achieve double carbon goals and accelerate agricultural modernization. Based on the actual rural energy systems in northern China, this paper takes the rural energy system with photovoltaic greenhouses as the research object. Both the agrometeorological and energy meteorological models are established considering the meteorological sensitivity of agricultural production and photovoltaic generation. We propose a novel method for optimizing the collaboration between photovoltaic greenhouse load control and rural energy systems. The combined coordination model of agriculture and energy networks is established, and the combined model involves carbon, electrical energy, and thermal energy. Supplemental greenhouse lighting and greenhouse heating consume most of the energy and are finely modeled with focused attention on photosynthesis. Finally, a real-world 47-bus distribution network and three photovoltaic greenhouses in northern China are simulated as an analytical example. The simulation results showed that by using the proposed optimization method, a 3996 m 2 greenhouse with a 25% photovoltaic coverage ratio can save 15% on energy costs. |
---|---|
AbstractList | As an important infrastructure supporting rural development, an integrated energy system plays an irreplaceable role in China's rural revitalization strategy. The deployment of rural energy projects is an effective way for rural areas to achieve double carbon goals and accelerate agricultural modernization. Based on the actual rural energy systems in northern China, this paper takes the rural energy system with photovoltaic greenhouses as the research object. Both the agrometeorological and energy meteorological models are established considering the meteorological sensitivity of agricultural production and photovoltaic generation. We propose a novel method for optimizing the collaboration between photovoltaic greenhouse load control and rural energy systems. The combined coordination model of agriculture and energy networks is established, and the combined model involves carbon, electrical energy, and thermal energy. Supplemental greenhouse lighting and greenhouse heating consume most of the energy and are finely modeled with focused attention on photosynthesis. Finally, a real-world 47-bus distribution network and three photovoltaic greenhouses in northern China are simulated as an analytical example. The simulation results showed that by using the proposed optimization method, a 3996 m2 greenhouse with a 25% photovoltaic coverage ratio can save 15% on energy costs. As an important infrastructure supporting rural development, an integrated energy system plays an irreplaceable role in China's rural revitalization strategy. The deployment of rural energy projects is an effective way for rural areas to achieve double carbon goals and accelerate agricultural modernization. Based on the actual rural energy systems in northern China, this paper takes the rural energy system with photovoltaic greenhouses as the research object. Both the agrometeorological and energy meteorological models are established considering the meteorological sensitivity of agricultural production and photovoltaic generation. We propose a novel method for optimizing the collaboration between photovoltaic greenhouse load control and rural energy systems. The combined coordination model of agriculture and energy networks is established, and the combined model involves carbon, electrical energy, and thermal energy. Supplemental greenhouse lighting and greenhouse heating consume most of the energy and are finely modeled with focused attention on photosynthesis. Finally, a real-world 47-bus distribution network and three photovoltaic greenhouses in northern China are simulated as an analytical example. The simulation results showed that by using the proposed optimization method, a 3996 m 2 greenhouse with a 25% photovoltaic coverage ratio can save 15% on energy costs. |
Author | Zhou, Yazhong Fu, Xueqian |
Author_xml | – sequence: 1 givenname: Xueqian orcidid: 0000-0001-7983-8700 surname: Fu fullname: Fu, Xueqian organization: College of Information and Electrical Engineering, China Agricultural University, Beijing, China – sequence: 2 givenname: Yazhong surname: Zhou fullname: Zhou, Yazhong organization: College of Information and Electrical Engineering, China Agricultural University, Beijing, China |
BookMark | eNp9kE1Lw0AQhhepYK39AeJlwXPqfmQ33WMJtQqFio1ew2Yz0ZR0t-4mQv31plZ68OBcZgbmmReeSzSwzgJC15RMKCXqLltn8wkjjE04Y1xO4zM0pCpWESc8GZxmpi7QOIQN6YtzLjkZoix1TaML53VbfwJe7dp6W3_1i7PYVfjpFS88gH13XYCAtS1x2oC2eG7Bv-3xeh9a2AZcW_zced3gmQcdrtB5pZsA498-Qi_38yx9iJarxWM6W0aGKd5GhdCMFpwpSOTUMFBcC1CmMKSMS1EwU0mggsWmKk1_A2VhCpKowsRiKomgfIRuj3933n10ENp84zpv-8icJUIKIVUfNEL0eGW8C8FDle98vdV-n1OSH_zlB3_5wV_-669nkj-MqdsfK63XdfMveXMkawA4JSkluVScfwMb9X_B |
CODEN | ITSEAJ |
CitedBy_id | crossref_primary_10_1049_rpg2_13019 crossref_primary_10_1109_TSTE_2024_3473011 crossref_primary_10_1016_j_inpa_2023_05_001 crossref_primary_10_3390_math12071034 crossref_primary_10_3390_app13169205 crossref_primary_10_3390_en16114510 crossref_primary_10_1016_j_jclepro_2024_143837 crossref_primary_10_1049_rpg2_13016 crossref_primary_10_1016_j_jclepro_2024_140888 crossref_primary_10_1016_j_epsr_2024_111132 crossref_primary_10_1049_rpg2_12808 crossref_primary_10_1186_s42162_025_00494_9 crossref_primary_10_1016_j_apenergy_2023_122380 crossref_primary_10_1016_j_energy_2024_131106 crossref_primary_10_1049_rpg2_12969 crossref_primary_10_1016_j_energy_2024_133528 crossref_primary_10_1109_ACCESS_2024_3485190 crossref_primary_10_3390_agriengineering6010017 crossref_primary_10_1109_TSG_2024_3483444 crossref_primary_10_1109_TASC_2024_3420310 crossref_primary_10_1049_pel2_12750 crossref_primary_10_1016_j_asoc_2023_110834 crossref_primary_10_3390_en16083408 crossref_primary_10_3390_su151511852 crossref_primary_10_1049_rpg2_12932 crossref_primary_10_3390_su151612636 crossref_primary_10_1155_2023_1358099 crossref_primary_10_1063_5_0211668 crossref_primary_10_1109_JESTIE_2024_3425670 crossref_primary_10_1016_j_inpa_2024_04_005 crossref_primary_10_1080_00036846_2024_2322584 crossref_primary_10_1109_TSG_2024_3397990 crossref_primary_10_3390_su16177846 crossref_primary_10_1016_j_engappai_2024_109555 crossref_primary_10_1016_j_renene_2024_120643 crossref_primary_10_1016_j_apenergy_2023_121786 crossref_primary_10_1016_j_suscom_2023_100915 crossref_primary_10_1016_j_apenergy_2024_124359 crossref_primary_10_3389_fenrg_2023_1202701 crossref_primary_10_3390_su15108348 crossref_primary_10_3389_fenrg_2023_1280724 crossref_primary_10_3390_en17215429 crossref_primary_10_1016_j_gloei_2023_11_002 crossref_primary_10_3390_app13169305 crossref_primary_10_3389_fenrg_2023_1277412 crossref_primary_10_1016_j_nbsj_2024_100201 crossref_primary_10_3934_energy_2024012 crossref_primary_10_1016_j_esd_2023_101351 crossref_primary_10_1049_rpg2_12786 crossref_primary_10_1109_TSG_2024_3364182 crossref_primary_10_3390_en18051050 crossref_primary_10_3389_fenrg_2023_1301175 crossref_primary_10_59400_issc_v3i1_552 crossref_primary_10_1016_j_egyr_2023_09_108 crossref_primary_10_1155_2023_5514460 crossref_primary_10_3389_fenrg_2024_1402840 crossref_primary_10_3389_fenrg_2023_1181310 crossref_primary_10_1016_j_aquaculture_2024_740873 crossref_primary_10_1007_s10489_023_04980_z crossref_primary_10_1016_j_applthermaleng_2024_123001 crossref_primary_10_1016_j_inpa_2023_10_001 crossref_primary_10_1016_j_apenergy_2025_125558 crossref_primary_10_1016_j_inpa_2023_02_008 crossref_primary_10_3390_en16145321 crossref_primary_10_1016_j_eswa_2023_122226 crossref_primary_10_1016_j_inpa_2024_02_002 crossref_primary_10_1371_journal_pone_0299226 crossref_primary_10_1109_TSTE_2024_3422236 crossref_primary_10_1016_j_energy_2023_129717 crossref_primary_10_1109_JSEN_2024_3382811 crossref_primary_10_1016_j_enconman_2025_119595 crossref_primary_10_3390_en16196779 crossref_primary_10_1049_rpg2_12994 crossref_primary_10_3992_jgb_19_4_137 crossref_primary_10_1016_j_egyr_2024_09_073 crossref_primary_10_3390_en16020611 crossref_primary_10_1371_journal_pone_0316537 crossref_primary_10_1109_TSG_2024_3454050 crossref_primary_10_3390_math11102367 crossref_primary_10_3390_su151712864 crossref_primary_10_1109_TNNLS_2024_3382763 crossref_primary_10_1049_gtd2_12895 crossref_primary_10_1109_TSTE_2023_3274735 |
Cites_doi | 10.3389/fenrg.2022.871772 10.1186/s41601-022-00228-z 10.1016/j.apenergy.2020.115853 10.1016/j.energy.2013.10.065 10.1016/j.apenergy.2017.02.002 10.1016/j.seta.2021.101100 10.1016/j.compag.2021.106186 10.1109/TPWRS.2017.2701881 10.1109/TSG.2020.2974021 10.11975/j. issn.1002-6819.2020.12.026 10.1016/j.ijhydene.2021.04.034 10.1049/iet-pel.2018.5941 10.1016/j.biosystemseng.2014.04.003 10.1109/TPWRS.2020.3018869 10.1016/j.biosystemseng.2006.12.012 10.1016/j.tsep.2021.101046 10.1016/j.apenergy.2021.116458 10.1016/j.apenergy.2022.118557 10.17775/CSEEJPES.2019.03230 10.1109/ACCESS.2020.3007224 10.1109/TIE.2014.2379584 10.1016/j.rser.2018.06.001 10.1016/j.inpa.2022.10.004 10.1016/j.apenergy.2014.10.012 10.1109/TSTE.2021.3139109 10.2150/jieij.90.808 10.1016/j.apenergy.2021.117822 10.11975/j. issn.1002-6819.2019.07.020 10.17660/ActaHortic.2008.797.53 10.1109/TPWRS.2020.2966663 10.1109/TLA.2016.7817007 10.1590/S0103-90162012000400001 10.1016/j.energy.2020.118764 10.1109/TSTE.2015.2509031 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
DOI | 10.1109/TSTE.2022.3223684 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1949-3037 |
EndPage | 15 |
ExternalDocumentID | 10_1109_TSTE_2022_3223684 9963693 |
Genre | orig-research |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52007193 – fundername: 2115 Talent Development Program of China Agricultural University |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SP 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
ID | FETCH-LOGICAL-c293t-b5a21b329e768c2e93a5e9cbc0d4d5b2cf6e1524cfdc9e7edbcb079bc45860513 |
IEDL.DBID | RIE |
ISSN | 1949-3029 |
IngestDate | Mon Jun 30 08:09:32 EDT 2025 Tue Jul 01 01:57:06 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Wed Aug 27 02:29:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-b5a21b329e768c2e93a5e9cbc0d4d5b2cf6e1524cfdc9e7edbcb079bc45860513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7983-8700 0000-0001-7378-2451 |
PQID | 2756556929 |
PQPubID | 2040348 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TSTE_2022_3223684 proquest_journals_2756556929 crossref_primary_10_1109_TSTE_2022_3223684 ieee_primary_9963693 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on sustainable energy |
PublicationTitleAbbrev | TSTE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 liu (ref28) 2007; 18 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 li (ref29) 2003; 19 ref6 ref5 |
References_xml | – ident: ref22 doi: 10.3389/fenrg.2022.871772 – ident: ref20 doi: 10.1186/s41601-022-00228-z – ident: ref32 doi: 10.1016/j.apenergy.2020.115853 – ident: ref24 doi: 10.1016/j.energy.2013.10.065 – ident: ref18 doi: 10.1016/j.apenergy.2017.02.002 – volume: 19 start-page: 241 year: 2003 ident: ref29 article-title: Simulation model for photosynthesis and dry matter accumulation in greenhouse cucumber publication-title: Trans Chinese Soc Agricultural Eng – ident: ref15 doi: 10.1016/j.seta.2021.101100 – ident: ref26 doi: 10.1016/j.compag.2021.106186 – ident: ref6 doi: 10.1109/TPWRS.2017.2701881 – ident: ref19 doi: 10.1109/TSG.2020.2974021 – ident: ref27 doi: 10.11975/j. issn.1002-6819.2020.12.026 – ident: ref16 doi: 10.1016/j.ijhydene.2021.04.034 – ident: ref17 doi: 10.1049/iet-pel.2018.5941 – ident: ref33 doi: 10.1016/j.biosystemseng.2014.04.003 – ident: ref3 doi: 10.1109/TPWRS.2020.3018869 – ident: ref36 doi: 10.1016/j.biosystemseng.2006.12.012 – ident: ref14 doi: 10.1016/j.tsep.2021.101046 – ident: ref4 doi: 10.1016/j.apenergy.2021.116458 – ident: ref7 doi: 10.1016/j.apenergy.2022.118557 – ident: ref21 doi: 10.17775/CSEEJPES.2019.03230 – ident: ref2 doi: 10.1109/ACCESS.2020.3007224 – ident: ref10 doi: 10.1109/TIE.2014.2379584 – ident: ref31 doi: 10.1016/j.rser.2018.06.001 – ident: ref1 doi: 10.1016/j.inpa.2022.10.004 – ident: ref30 doi: 10.1016/j.apenergy.2014.10.012 – ident: ref9 doi: 10.1109/TSTE.2021.3139109 – ident: ref25 doi: 10.2150/jieij.90.808 – volume: 18 start-page: 883 year: 2007 ident: ref28 article-title: Mathematic models of cucumber net photosynthesis rate responding to CO2 concentration, temperature, and illumination intensity publication-title: Chin J Appl Ecol – ident: ref5 doi: 10.1016/j.apenergy.2021.117822 – ident: ref23 doi: 10.11975/j. issn.1002-6819.2019.07.020 – ident: ref35 doi: 10.17660/ActaHortic.2008.797.53 – ident: ref8 doi: 10.1109/TPWRS.2020.2966663 – ident: ref12 doi: 10.1109/TLA.2016.7817007 – ident: ref34 doi: 10.1590/S0103-90162012000400001 – ident: ref13 doi: 10.1016/j.energy.2020.118764 – ident: ref11 doi: 10.1109/TSTE.2015.2509031 |
SSID | ssj0000333630 |
Score | 2.635505 |
Snippet | As an important infrastructure supporting rural development, an integrated energy system plays an irreplaceable role in China's rural revitalization strategy.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Agricultural production agrivoltaic system Atmospheric models Carbon carbon neutralization Clean energy Collaboration Coordination models Energy Energy costs Farm buildings Greenhouses Integrated energy systems Modernization Optimization Photosynthesis photovoltaic Photovoltaic cells Photovoltaics Regeneration Rural areas Rural development rural energy system Thermal energy |
Title | Collaborative Optimization of PV Greenhouses and Clean Energy Systems in Rural Areas |
URI | https://ieeexplore.ieee.org/document/9963693 https://www.proquest.com/docview/2756556929 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD0yIFDd2knpEVRFC4iEoiC2ynYtAQIpoy8Cv5-y45SnElsFJLN_Z33227zuA3YwwRCfcRBnhTSQ10R1FsBtpK8uMa3JpL8dwepYeX8uT2-R2CvYnuTCI6C-fYdM9-rP8om9HbqvsgGJzkSoxDdNE3Opcrcl-ChdCpL60CNFyd5wfq3CI2eLqoHfV6xIZjOMmObBI2_ILDPm6Kj8WY48wRwtwOu5bfbHkoTkamqZ9-ybb-N_OL8J8CDXZYe0bSzCF1TLMfRIgXIFe58MNXpGd0_rxFBIzWb9kFzfM38u5648GOGC6KljnEXXFuj5jkAW5c3ZfsUsn30H_Qj1Yheujbq9zHIU6C5ElsB9GJtFxy4hYIVnGxqiETlBZY3khi8TEtkyRYF7asrDUBgtjDc-UsTJpExtqiTWYqfoVrgPjJc1wIzSRTC3pm22BcWZ0Vra1LZRsNYCPhz23QYTc1cJ4zD0Z4Sp3lsqdpfJgqQbsTV55rhU4_mq84kZ-0jAMegO2xrbNwxwd5E74PklSig83fn9rE2Zdcfl6w2ULZoYvI9ymEGRodrzvvQMGHtau |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9gA90EKputCCD5wQ2TqxnayP1WqrBboFQYp6i2xnolZts1V3lwO_nrHjXcqHELccbMfyjP1mPJ43AK8LwhCjuE0KwptEGnJ3NMFuYpxsCm5IpQMdw-Q0H5_J9-fqfA3ernJhEDE8PsO-_wyx_HrqFv6q7JBsc5Fr8QA2CPdV2mVrrW5UuBAiD8VFyDH3Af1MxzBmyvVh-aUckTuYZX1SYZEP5C9AFCqr_HEcB4w53oLJcnbd05Kr_mJu--77b8SN_zv9bXgcjU121GnHE1jD9ils3qMg3IFy-FMRviH7SCfITUzNZNOGffrKwsuci-lihjNm2poNr9G0bBRyBlkkPGeXLfvsCTzoX2hmz-DseFQOx0mstJA4gvt5YpXJUisyjSQbl6EWRqF21vFa1spmrsmRgF66pnbUBmvrLC-0dVINyB9KxS6st9MW94Dxhva4FYbcTCNpzIHArLCmaAbG1VqmPeDLZa9cpCH31TCuq-COcF15SVVeUlWUVA_erLrcdhwc_2q841d-1TAueg_2l7Kt4i6dVZ76XqmcLMTnf-_1Ch6Oy8lJdfLu9MMLeORLzXfXL_uwPr9b4AEZJHP7MujhD2K52fc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Optimization+of+PV+Greenhouses+and+Clean+Energy+Systems+in+Rural+Areas&rft.jtitle=IEEE+transactions+on+sustainable+energy&rft.au=Fu%2C+Xueqian&rft.au=Zhou%2C+Yazhong&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1949-3029&rft.eissn=1949-3037&rft.volume=14&rft.issue=1&rft.spage=642&rft_id=info:doi/10.1109%2FTSTE.2022.3223684&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3029&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3029&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3029&client=summon |