Collaborative Optimization of PV Greenhouses and Clean Energy Systems in Rural Areas

As an important infrastructure supporting rural development, an integrated energy system plays an irreplaceable role in China's rural revitalization strategy. The deployment of rural energy projects is an effective way for rural areas to achieve double carbon goals and accelerate agricultural m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on sustainable energy Vol. 14; no. 1; pp. 1 - 15
Main Authors Fu, Xueqian, Zhou, Yazhong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1949-3029
1949-3037
DOI10.1109/TSTE.2022.3223684

Cover

Loading…
Abstract As an important infrastructure supporting rural development, an integrated energy system plays an irreplaceable role in China's rural revitalization strategy. The deployment of rural energy projects is an effective way for rural areas to achieve double carbon goals and accelerate agricultural modernization. Based on the actual rural energy systems in northern China, this paper takes the rural energy system with photovoltaic greenhouses as the research object. Both the agrometeorological and energy meteorological models are established considering the meteorological sensitivity of agricultural production and photovoltaic generation. We propose a novel method for optimizing the collaboration between photovoltaic greenhouse load control and rural energy systems. The combined coordination model of agriculture and energy networks is established, and the combined model involves carbon, electrical energy, and thermal energy. Supplemental greenhouse lighting and greenhouse heating consume most of the energy and are finely modeled with focused attention on photosynthesis. Finally, a real-world 47-bus distribution network and three photovoltaic greenhouses in northern China are simulated as an analytical example. The simulation results showed that by using the proposed optimization method, a 3996 m 2 greenhouse with a 25% photovoltaic coverage ratio can save 15% on energy costs.
AbstractList As an important infrastructure supporting rural development, an integrated energy system plays an irreplaceable role in China's rural revitalization strategy. The deployment of rural energy projects is an effective way for rural areas to achieve double carbon goals and accelerate agricultural modernization. Based on the actual rural energy systems in northern China, this paper takes the rural energy system with photovoltaic greenhouses as the research object. Both the agrometeorological and energy meteorological models are established considering the meteorological sensitivity of agricultural production and photovoltaic generation. We propose a novel method for optimizing the collaboration between photovoltaic greenhouse load control and rural energy systems. The combined coordination model of agriculture and energy networks is established, and the combined model involves carbon, electrical energy, and thermal energy. Supplemental greenhouse lighting and greenhouse heating consume most of the energy and are finely modeled with focused attention on photosynthesis. Finally, a real-world 47-bus distribution network and three photovoltaic greenhouses in northern China are simulated as an analytical example. The simulation results showed that by using the proposed optimization method, a 3996 m2 greenhouse with a 25% photovoltaic coverage ratio can save 15% on energy costs.
As an important infrastructure supporting rural development, an integrated energy system plays an irreplaceable role in China's rural revitalization strategy. The deployment of rural energy projects is an effective way for rural areas to achieve double carbon goals and accelerate agricultural modernization. Based on the actual rural energy systems in northern China, this paper takes the rural energy system with photovoltaic greenhouses as the research object. Both the agrometeorological and energy meteorological models are established considering the meteorological sensitivity of agricultural production and photovoltaic generation. We propose a novel method for optimizing the collaboration between photovoltaic greenhouse load control and rural energy systems. The combined coordination model of agriculture and energy networks is established, and the combined model involves carbon, electrical energy, and thermal energy. Supplemental greenhouse lighting and greenhouse heating consume most of the energy and are finely modeled with focused attention on photosynthesis. Finally, a real-world 47-bus distribution network and three photovoltaic greenhouses in northern China are simulated as an analytical example. The simulation results showed that by using the proposed optimization method, a 3996 m 2 greenhouse with a 25% photovoltaic coverage ratio can save 15% on energy costs.
Author Zhou, Yazhong
Fu, Xueqian
Author_xml – sequence: 1
  givenname: Xueqian
  orcidid: 0000-0001-7983-8700
  surname: Fu
  fullname: Fu, Xueqian
  organization: College of Information and Electrical Engineering, China Agricultural University, Beijing, China
– sequence: 2
  givenname: Yazhong
  surname: Zhou
  fullname: Zhou, Yazhong
  organization: College of Information and Electrical Engineering, China Agricultural University, Beijing, China
BookMark eNp9kE1Lw0AQhhepYK39AeJlwXPqfmQ33WMJtQqFio1ew2Yz0ZR0t-4mQv31plZ68OBcZgbmmReeSzSwzgJC15RMKCXqLltn8wkjjE04Y1xO4zM0pCpWESc8GZxmpi7QOIQN6YtzLjkZoix1TaML53VbfwJe7dp6W3_1i7PYVfjpFS88gH13XYCAtS1x2oC2eG7Bv-3xeh9a2AZcW_zced3gmQcdrtB5pZsA498-Qi_38yx9iJarxWM6W0aGKd5GhdCMFpwpSOTUMFBcC1CmMKSMS1EwU0mggsWmKk1_A2VhCpKowsRiKomgfIRuj3933n10ENp84zpv-8icJUIKIVUfNEL0eGW8C8FDle98vdV-n1OSH_zlB3_5wV_-669nkj-MqdsfK63XdfMveXMkawA4JSkluVScfwMb9X_B
CODEN ITSEAJ
CitedBy_id crossref_primary_10_1049_rpg2_13019
crossref_primary_10_1109_TSTE_2024_3473011
crossref_primary_10_1016_j_inpa_2023_05_001
crossref_primary_10_3390_math12071034
crossref_primary_10_3390_app13169205
crossref_primary_10_3390_en16114510
crossref_primary_10_1016_j_jclepro_2024_143837
crossref_primary_10_1049_rpg2_13016
crossref_primary_10_1016_j_jclepro_2024_140888
crossref_primary_10_1016_j_epsr_2024_111132
crossref_primary_10_1049_rpg2_12808
crossref_primary_10_1186_s42162_025_00494_9
crossref_primary_10_1016_j_apenergy_2023_122380
crossref_primary_10_1016_j_energy_2024_131106
crossref_primary_10_1049_rpg2_12969
crossref_primary_10_1016_j_energy_2024_133528
crossref_primary_10_1109_ACCESS_2024_3485190
crossref_primary_10_3390_agriengineering6010017
crossref_primary_10_1109_TSG_2024_3483444
crossref_primary_10_1109_TASC_2024_3420310
crossref_primary_10_1049_pel2_12750
crossref_primary_10_1016_j_asoc_2023_110834
crossref_primary_10_3390_en16083408
crossref_primary_10_3390_su151511852
crossref_primary_10_1049_rpg2_12932
crossref_primary_10_3390_su151612636
crossref_primary_10_1155_2023_1358099
crossref_primary_10_1063_5_0211668
crossref_primary_10_1109_JESTIE_2024_3425670
crossref_primary_10_1016_j_inpa_2024_04_005
crossref_primary_10_1080_00036846_2024_2322584
crossref_primary_10_1109_TSG_2024_3397990
crossref_primary_10_3390_su16177846
crossref_primary_10_1016_j_engappai_2024_109555
crossref_primary_10_1016_j_renene_2024_120643
crossref_primary_10_1016_j_apenergy_2023_121786
crossref_primary_10_1016_j_suscom_2023_100915
crossref_primary_10_1016_j_apenergy_2024_124359
crossref_primary_10_3389_fenrg_2023_1202701
crossref_primary_10_3390_su15108348
crossref_primary_10_3389_fenrg_2023_1280724
crossref_primary_10_3390_en17215429
crossref_primary_10_1016_j_gloei_2023_11_002
crossref_primary_10_3390_app13169305
crossref_primary_10_3389_fenrg_2023_1277412
crossref_primary_10_1016_j_nbsj_2024_100201
crossref_primary_10_3934_energy_2024012
crossref_primary_10_1016_j_esd_2023_101351
crossref_primary_10_1049_rpg2_12786
crossref_primary_10_1109_TSG_2024_3364182
crossref_primary_10_3390_en18051050
crossref_primary_10_3389_fenrg_2023_1301175
crossref_primary_10_59400_issc_v3i1_552
crossref_primary_10_1016_j_egyr_2023_09_108
crossref_primary_10_1155_2023_5514460
crossref_primary_10_3389_fenrg_2024_1402840
crossref_primary_10_3389_fenrg_2023_1181310
crossref_primary_10_1016_j_aquaculture_2024_740873
crossref_primary_10_1007_s10489_023_04980_z
crossref_primary_10_1016_j_applthermaleng_2024_123001
crossref_primary_10_1016_j_inpa_2023_10_001
crossref_primary_10_1016_j_apenergy_2025_125558
crossref_primary_10_1016_j_inpa_2023_02_008
crossref_primary_10_3390_en16145321
crossref_primary_10_1016_j_eswa_2023_122226
crossref_primary_10_1016_j_inpa_2024_02_002
crossref_primary_10_1371_journal_pone_0299226
crossref_primary_10_1109_TSTE_2024_3422236
crossref_primary_10_1016_j_energy_2023_129717
crossref_primary_10_1109_JSEN_2024_3382811
crossref_primary_10_1016_j_enconman_2025_119595
crossref_primary_10_3390_en16196779
crossref_primary_10_1049_rpg2_12994
crossref_primary_10_3992_jgb_19_4_137
crossref_primary_10_1016_j_egyr_2024_09_073
crossref_primary_10_3390_en16020611
crossref_primary_10_1371_journal_pone_0316537
crossref_primary_10_1109_TSG_2024_3454050
crossref_primary_10_3390_math11102367
crossref_primary_10_3390_su151712864
crossref_primary_10_1109_TNNLS_2024_3382763
crossref_primary_10_1049_gtd2_12895
crossref_primary_10_1109_TSTE_2023_3274735
Cites_doi 10.3389/fenrg.2022.871772
10.1186/s41601-022-00228-z
10.1016/j.apenergy.2020.115853
10.1016/j.energy.2013.10.065
10.1016/j.apenergy.2017.02.002
10.1016/j.seta.2021.101100
10.1016/j.compag.2021.106186
10.1109/TPWRS.2017.2701881
10.1109/TSG.2020.2974021
10.11975/j. issn.1002-6819.2020.12.026
10.1016/j.ijhydene.2021.04.034
10.1049/iet-pel.2018.5941
10.1016/j.biosystemseng.2014.04.003
10.1109/TPWRS.2020.3018869
10.1016/j.biosystemseng.2006.12.012
10.1016/j.tsep.2021.101046
10.1016/j.apenergy.2021.116458
10.1016/j.apenergy.2022.118557
10.17775/CSEEJPES.2019.03230
10.1109/ACCESS.2020.3007224
10.1109/TIE.2014.2379584
10.1016/j.rser.2018.06.001
10.1016/j.inpa.2022.10.004
10.1016/j.apenergy.2014.10.012
10.1109/TSTE.2021.3139109
10.2150/jieij.90.808
10.1016/j.apenergy.2021.117822
10.11975/j. issn.1002-6819.2019.07.020
10.17660/ActaHortic.2008.797.53
10.1109/TPWRS.2020.2966663
10.1109/TLA.2016.7817007
10.1590/S0103-90162012000400001
10.1016/j.energy.2020.118764
10.1109/TSTE.2015.2509031
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
DOI 10.1109/TSTE.2022.3223684
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3037
EndPage 15
ExternalDocumentID 10_1109_TSTE_2022_3223684
9963693
Genre orig-research
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52007193
– fundername: 2115 Talent Development Program of China Agricultural University
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SP
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
ID FETCH-LOGICAL-c293t-b5a21b329e768c2e93a5e9cbc0d4d5b2cf6e1524cfdc9e7edbcb079bc45860513
IEDL.DBID RIE
ISSN 1949-3029
IngestDate Mon Jun 30 08:09:32 EDT 2025
Tue Jul 01 01:57:06 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Wed Aug 27 02:29:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-b5a21b329e768c2e93a5e9cbc0d4d5b2cf6e1524cfdc9e7edbcb079bc45860513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7983-8700
0000-0001-7378-2451
PQID 2756556929
PQPubID 2040348
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TSTE_2022_3223684
proquest_journals_2756556929
crossref_primary_10_1109_TSTE_2022_3223684
ieee_primary_9963693
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on sustainable energy
PublicationTitleAbbrev TSTE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
liu (ref28) 2007; 18
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
li (ref29) 2003; 19
ref6
ref5
References_xml – ident: ref22
  doi: 10.3389/fenrg.2022.871772
– ident: ref20
  doi: 10.1186/s41601-022-00228-z
– ident: ref32
  doi: 10.1016/j.apenergy.2020.115853
– ident: ref24
  doi: 10.1016/j.energy.2013.10.065
– ident: ref18
  doi: 10.1016/j.apenergy.2017.02.002
– volume: 19
  start-page: 241
  year: 2003
  ident: ref29
  article-title: Simulation model for photosynthesis and dry matter accumulation in greenhouse cucumber
  publication-title: Trans Chinese Soc Agricultural Eng
– ident: ref15
  doi: 10.1016/j.seta.2021.101100
– ident: ref26
  doi: 10.1016/j.compag.2021.106186
– ident: ref6
  doi: 10.1109/TPWRS.2017.2701881
– ident: ref19
  doi: 10.1109/TSG.2020.2974021
– ident: ref27
  doi: 10.11975/j. issn.1002-6819.2020.12.026
– ident: ref16
  doi: 10.1016/j.ijhydene.2021.04.034
– ident: ref17
  doi: 10.1049/iet-pel.2018.5941
– ident: ref33
  doi: 10.1016/j.biosystemseng.2014.04.003
– ident: ref3
  doi: 10.1109/TPWRS.2020.3018869
– ident: ref36
  doi: 10.1016/j.biosystemseng.2006.12.012
– ident: ref14
  doi: 10.1016/j.tsep.2021.101046
– ident: ref4
  doi: 10.1016/j.apenergy.2021.116458
– ident: ref7
  doi: 10.1016/j.apenergy.2022.118557
– ident: ref21
  doi: 10.17775/CSEEJPES.2019.03230
– ident: ref2
  doi: 10.1109/ACCESS.2020.3007224
– ident: ref10
  doi: 10.1109/TIE.2014.2379584
– ident: ref31
  doi: 10.1016/j.rser.2018.06.001
– ident: ref1
  doi: 10.1016/j.inpa.2022.10.004
– ident: ref30
  doi: 10.1016/j.apenergy.2014.10.012
– ident: ref9
  doi: 10.1109/TSTE.2021.3139109
– ident: ref25
  doi: 10.2150/jieij.90.808
– volume: 18
  start-page: 883
  year: 2007
  ident: ref28
  article-title: Mathematic models of cucumber net photosynthesis rate responding to CO2 concentration, temperature, and illumination intensity
  publication-title: Chin J Appl Ecol
– ident: ref5
  doi: 10.1016/j.apenergy.2021.117822
– ident: ref23
  doi: 10.11975/j. issn.1002-6819.2019.07.020
– ident: ref35
  doi: 10.17660/ActaHortic.2008.797.53
– ident: ref8
  doi: 10.1109/TPWRS.2020.2966663
– ident: ref12
  doi: 10.1109/TLA.2016.7817007
– ident: ref34
  doi: 10.1590/S0103-90162012000400001
– ident: ref13
  doi: 10.1016/j.energy.2020.118764
– ident: ref11
  doi: 10.1109/TSTE.2015.2509031
SSID ssj0000333630
Score 2.635505
Snippet As an important infrastructure supporting rural development, an integrated energy system plays an irreplaceable role in China's rural revitalization strategy....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Agricultural production
agrivoltaic system
Atmospheric models
Carbon
carbon neutralization
Clean energy
Collaboration
Coordination models
Energy
Energy costs
Farm buildings
Greenhouses
Integrated energy systems
Modernization
Optimization
Photosynthesis
photovoltaic
Photovoltaic cells
Photovoltaics
Regeneration
Rural areas
Rural development
rural energy system
Thermal energy
Title Collaborative Optimization of PV Greenhouses and Clean Energy Systems in Rural Areas
URI https://ieeexplore.ieee.org/document/9963693
https://www.proquest.com/docview/2756556929
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD0yIFDd2knpEVRFC4iEoiC2ynYtAQIpoy8Cv5-y45SnElsFJLN_Z33227zuA3YwwRCfcRBnhTSQ10R1FsBtpK8uMa3JpL8dwepYeX8uT2-R2CvYnuTCI6C-fYdM9-rP8om9HbqvsgGJzkSoxDdNE3Opcrcl-ChdCpL60CNFyd5wfq3CI2eLqoHfV6xIZjOMmObBI2_ILDPm6Kj8WY48wRwtwOu5bfbHkoTkamqZ9-ybb-N_OL8J8CDXZYe0bSzCF1TLMfRIgXIFe58MNXpGd0_rxFBIzWb9kFzfM38u5648GOGC6KljnEXXFuj5jkAW5c3ZfsUsn30H_Qj1Yheujbq9zHIU6C5ElsB9GJtFxy4hYIVnGxqiETlBZY3khi8TEtkyRYF7asrDUBgtjDc-UsTJpExtqiTWYqfoVrgPjJc1wIzSRTC3pm22BcWZ0Vra1LZRsNYCPhz23QYTc1cJ4zD0Z4Sp3lsqdpfJgqQbsTV55rhU4_mq84kZ-0jAMegO2xrbNwxwd5E74PklSig83fn9rE2Zdcfl6w2ULZoYvI9ymEGRodrzvvQMGHtau
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9gA90EKputCCD5wQ2TqxnayP1WqrBboFQYp6i2xnolZts1V3lwO_nrHjXcqHELccbMfyjP1mPJ43AK8LwhCjuE0KwptEGnJ3NMFuYpxsCm5IpQMdw-Q0H5_J9-fqfA3ernJhEDE8PsO-_wyx_HrqFv6q7JBsc5Fr8QA2CPdV2mVrrW5UuBAiD8VFyDH3Af1MxzBmyvVh-aUckTuYZX1SYZEP5C9AFCqr_HEcB4w53oLJcnbd05Kr_mJu--77b8SN_zv9bXgcjU121GnHE1jD9ils3qMg3IFy-FMRviH7SCfITUzNZNOGffrKwsuci-lihjNm2poNr9G0bBRyBlkkPGeXLfvsCTzoX2hmz-DseFQOx0mstJA4gvt5YpXJUisyjSQbl6EWRqF21vFa1spmrsmRgF66pnbUBmvrLC-0dVINyB9KxS6st9MW94Dxhva4FYbcTCNpzIHArLCmaAbG1VqmPeDLZa9cpCH31TCuq-COcF15SVVeUlWUVA_erLrcdhwc_2q841d-1TAueg_2l7Kt4i6dVZ76XqmcLMTnf-_1Ch6Oy8lJdfLu9MMLeORLzXfXL_uwPr9b4AEZJHP7MujhD2K52fc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Optimization+of+PV+Greenhouses+and+Clean+Energy+Systems+in+Rural+Areas&rft.jtitle=IEEE+transactions+on+sustainable+energy&rft.au=Fu%2C+Xueqian&rft.au=Zhou%2C+Yazhong&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1949-3029&rft.eissn=1949-3037&rft.volume=14&rft.issue=1&rft.spage=642&rft_id=info:doi/10.1109%2FTSTE.2022.3223684&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3029&client=summon