Semantic-Preserved Communication System for Highly Efficient Speech Transmission
Deep learning (DL) based semantic communication methods have been explored for the efficient transmission of images, text, and speech in recent years. In contrast to traditional wireless communication methods that focus on the transmission of abstract symbols, semantic communication approaches attem...
Saved in:
Published in | IEEE journal on selected areas in communications Vol. 41; no. 1; pp. 245 - 259 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0733-8716 1558-0008 |
DOI | 10.1109/JSAC.2022.3221952 |
Cover
Loading…
Abstract | Deep learning (DL) based semantic communication methods have been explored for the efficient transmission of images, text, and speech in recent years. In contrast to traditional wireless communication methods that focus on the transmission of abstract symbols, semantic communication approaches attempt to achieve better transmission efficiency by only sending the semantic-related information of the source data. In this paper, we consider semantic-oriented speech transmission which transmits only the semantic-relevant information over the channel for the speech recognition task, and a compact additional set of semantic-irrelevant information for the speech reconstruction task. We propose a novel end-to-end DL-based transceiver which extracts and encodes the semantic information from the input speech spectrums at the transmitter and outputs the corresponding transcriptions from the decoded semantic information at the receiver. In particular, we employ a soft alignment module and a redundancy removal module to extract only the text-related semantic features while dropping semantically redundant content, greatly reducing the amount of semantic redundancy compared to existing methods. We also propose a semantic correction module to further correct the predicted transcription with semantic knowledge by leveraging a pretrained language model. For the speech to speech transmission, we further include a CTC alignment module that extracts a small number of additional semantic-irrelevant but speech-related information, such as duration, pitch, power and speaker identification of the speech for the better reconstruction of the original speech signals at the receiver. We also introduce a two-stage training scheme which speeds up the training of the proposed DL model. The simulation results confirm that our proposed method outperforms current methods in terms of the accuracy of the predicted text for the speech to text transmission and the quality of the recovered speech signals for the speech to speech transmission, and significantly improves transmission efficiency. More specifically, the proposed method only sends 16% of the amount of the transmitted symbols required by the existing methods while achieving about a 10% reduction in WER for the speech to text transmission. For the speech to speech transmission, it results in an even more remarkable improvement in terms of transmission efficiency with only 0.2% of the amount of the transmitted symbols required by the existing method while preserving the comparable quality of the reconstructed speech signals. |
---|---|
AbstractList | Deep learning (DL) based semantic communication methods have been explored for the efficient transmission of images, text, and speech in recent years. In contrast to traditional wireless communication methods that focus on the transmission of abstract symbols, semantic communication approaches attempt to achieve better transmission efficiency by only sending the semantic-related information of the source data. In this paper, we consider semantic-oriented speech transmission which transmits only the semantic-relevant information over the channel for the speech recognition task, and a compact additional set of semantic-irrelevant information for the speech reconstruction task. We propose a novel end-to-end DL-based transceiver which extracts and encodes the semantic information from the input speech spectrums at the transmitter and outputs the corresponding transcriptions from the decoded semantic information at the receiver. In particular, we employ a soft alignment module and a redundancy removal module to extract only the text-related semantic features while dropping semantically redundant content, greatly reducing the amount of semantic redundancy compared to existing methods. We also propose a semantic correction module to further correct the predicted transcription with semantic knowledge by leveraging a pretrained language model. For the speech to speech transmission, we further include a CTC alignment module that extracts a small number of additional semantic-irrelevant but speech-related information, such as duration, pitch, power and speaker identification of the speech for the better reconstruction of the original speech signals at the receiver. We also introduce a two-stage training scheme which speeds up the training of the proposed DL model. The simulation results confirm that our proposed method outperforms current methods in terms of the accuracy of the predicted text for the speech to text transmission and the quality of the recovered speech signals for the speech to speech transmission, and significantly improves transmission efficiency. More specifically, the proposed method only sends 16% of the amount of the transmitted symbols required by the existing methods while achieving about a 10% reduction in WER for the speech to text transmission. For the speech to speech transmission, it results in an even more remarkable improvement in terms of transmission efficiency with only 0.2% of the amount of the transmitted symbols required by the existing method while preserving the comparable quality of the reconstructed speech signals. |
Author | Zhang, Zhaoyang Shi, Zhiguo Han, Tianxiao Yang, Qianqian He, Shibo |
Author_xml | – sequence: 1 givenname: Tianxiao orcidid: 0000-0003-1307-2575 surname: Han fullname: Han, Tianxiao email: txhan@zju.edu.cn organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Qianqian orcidid: 0000-0003-4747-9410 surname: Yang fullname: Yang, Qianqian email: qianqianyang20@zju.edu.cn organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Zhiguo orcidid: 0000-0001-9160-048X surname: Shi fullname: Shi, Zhiguo email: shizg@zju.edu.cn organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China – sequence: 4 givenname: Shibo orcidid: 0000-0002-1505-6766 surname: He fullname: He, Shibo email: s18he@zju.edu.cn organization: Department of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 5 givenname: Zhaoyang orcidid: 0000-0003-2346-6228 surname: Zhang fullname: Zhang, Zhaoyang email: ning_ming@zju.edu.cn organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China |
BookMark | eNp9kLFOwzAQhi0EEm3hARBLJOYUnx0n8VhFhYIqUSlltlznQl01TrFTpL49Ka0YGJhuuP-7X_cNyaVrHRJyB3QMQOXjazkpxowyNuaMgRTsggxAiDymlOaXZEAzzuM8g_SaDEPYUApJkrMBWZTYaNdZEy88BvRfWEVF2zR7Z43ubOui8hA6bKK69dHMfqy3h2ha19ZYdF1U7hDNOlp67UJjQ-jzN-Sq1tuAt-c5Iu9P02Uxi-dvzy_FZB4bJnkXr5Jc8hXngsraUC0qYClILlFTI3SSiUpQyJnoVyliDRlLwPCMg5S8Aqz5iDyc7u58-7nH0KlNu_eur1QsE4kU_bPQp-CUMr4NwWOtdt422h8UUHUUp47i1FGcOovrmewPY2z346Lz2m7_Je9PpEXE3yYpBeeQ8m_juHw0 |
CODEN | ISACEM |
CitedBy_id | crossref_primary_10_1109_LCOMM_2024_3443603 crossref_primary_10_1109_JIOT_2023_3302159 crossref_primary_10_1109_MWC_013_2200553 crossref_primary_10_1109_JSAC_2023_3288236 crossref_primary_10_1109_JIOT_2024_3448538 crossref_primary_10_1109_TCOMM_2024_3386577 crossref_primary_10_1109_TSG_2023_3339707 crossref_primary_10_3390_e26050394 crossref_primary_10_1109_JSTSP_2023_3310654 crossref_primary_10_1109_TCOMM_2024_3400912 crossref_primary_10_1016_j_phycom_2023_102270 crossref_primary_10_1109_JIOT_2024_3378779 crossref_primary_10_3390_s24103169 crossref_primary_10_1109_JSAC_2025_3531406 crossref_primary_10_1109_TWC_2024_3427675 crossref_primary_10_1109_JSAC_2023_3288249 crossref_primary_10_1109_TMLCN_2025_3530875 crossref_primary_10_1109_JPROC_2024_3437730 crossref_primary_10_1109_OJCOMS_2024_3425314 crossref_primary_10_1109_JIOT_2024_3486088 crossref_primary_10_1109_TWC_2024_3433479 crossref_primary_10_1016_j_automatica_2025_112120 crossref_primary_10_3390_electronics14050956 crossref_primary_10_1049_ell2_13183 crossref_primary_10_1016_j_jfranklin_2024_106739 crossref_primary_10_1109_TWC_2024_3452481 crossref_primary_10_1109_TVT_2024_3362328 crossref_primary_10_1109_COMST_2023_3333342 crossref_primary_10_1109_JSAC_2025_3536557 crossref_primary_10_1109_TWC_2023_3330744 crossref_primary_10_1109_MCOM_004_2200819 crossref_primary_10_1109_JSAC_2024_3365872 crossref_primary_10_1109_TMC_2024_3351428 crossref_primary_10_1109_JSAC_2025_3531579 crossref_primary_10_1109_ACCESS_2025_3532797 crossref_primary_10_1109_TWC_2024_3472612 crossref_primary_10_1109_TMC_2024_3438285 crossref_primary_10_1109_TVT_2023_3288611 crossref_primary_10_1109_JPROC_2024_3520707 crossref_primary_10_1109_TSG_2024_3368277 crossref_primary_10_1109_TNET_2024_3464540 crossref_primary_10_1109_COMST_2024_3416309 crossref_primary_10_1109_LWC_2024_3417028 crossref_primary_10_32604_cmes_2023_046837 crossref_primary_10_1109_TWC_2024_3415363 crossref_primary_10_1109_TIFS_2025_3534562 crossref_primary_10_1016_j_jfranklin_2024_107055 crossref_primary_10_1109_MCOM_003_2200777 crossref_primary_10_1109_TCCN_2023_3345858 crossref_primary_10_1109_TVT_2023_3349026 |
Cites_doi | 10.1609/aaai.v33i01.33016706 10.1016/j.pmcj.2013.07.013 10.21437/Interspeech.2015-711 10.1109/ICASSP.2017.7953152 10.1109/PACRIM.1993.407206 10.1109/JSAC.2021.3087240 10.1121/1.399423 10.1109/TCCN.2019.2919300 10.1109/TSP.2021.3071210 10.1016/S0167-6393(01)00041-3 10.1109/TWC.2021.3090048 10.1109/LWC.2021.3136045 10.1109/JSAC.2021.3126087 10.1109/JSAC.2020.3036968 10.3389/frcmn.2021.734402 10.1109/ICASSP.2018.8461983 10.1109/NSW.2011.6004632 10.1109/PROC.1973.9030 10.1109/ICASSP.2015.7178964 10.1109/ICASSP.2011.5946971 10.1109/ISWCS56560.2022.9940401 10.1162/neco.1989.1.2.270 10.1145/1143844.1143891 10.18653/v1/D18-2012 10.1023/B:MIND.0000021684.50925.c9 10.1109/SPAWC.2018.8445924 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/JSAC.2022.3221952 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0008 |
EndPage | 259 |
ExternalDocumentID | 10_1109_JSAC_2022_3221952 9953316 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2021FZZX001-20 funderid: 10.13039/501100012226 – fundername: NSFC grantid: 62201505; U1909207 funderid: 10.13039/501100001809 – fundername: 5G Open Laboratory of Hangzhou Future Sci-Tech City – fundername: Singapore University of Technology and Design (SUTD)-Zhejiang University (ZJU) Design and Entrepreneurship Alliance (IDEA) grantid: SUTD-ZJU (VP) 202102 funderid: 10.13039/501100007040 – fundername: Key Project of National Natural Science Foundation of China-Regional Innovation Development Joint Foundation grantid: U21A20456 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c293t-b4893b33509fc0a5d1261939ea0c5a475d5018250a56eef17241c3731993d1ef3 |
IEDL.DBID | RIE |
ISSN | 0733-8716 |
IngestDate | Mon Jun 30 06:03:11 EDT 2025 Tue Jul 01 02:06:32 EDT 2025 Thu Apr 24 23:06:00 EDT 2025 Wed Aug 27 02:15:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-b4893b33509fc0a5d1261939ea0c5a475d5018250a56eef17241c3731993d1ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1505-6766 0000-0001-9160-048X 0000-0003-2346-6228 0000-0003-1307-2575 0000-0003-4747-9410 |
PQID | 2754958711 |
PQPubID | 85481 |
PageCount | 15 |
ParticipantIDs | ieee_primary_9953316 crossref_primary_10_1109_JSAC_2022_3221952 proquest_journals_2754958711 crossref_citationtrail_10_1109_JSAC_2022_3221952 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Jan. 2023-1-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal on selected areas in communications |
PublicationTitleAbbrev | J-SAC |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 weng (ref20) 2021 ref31 ref30 ref11 ref10 ref2 ref17 ref38 ref19 han (ref25) 2022 ref18 tung (ref16) 2021 bazzi (ref24) 2002 ren (ref37) 2019; 32 kong (ref39) 2020; 33 kenton (ref29) 2019 ref23 ref26 ref42 ren (ref27) 2020 ref41 ref21 xie (ref14) 2021 chorowski (ref33) 2015; 28 simonyan (ref32) 2015 ref28 qin (ref1) 2021 ref8 forney (ref35) 1993; 61 ref7 bahdanau (ref22) 2015 ref9 park (ref36) 2019 shannon (ref3) 1949 ref6 ref5 ref40 carnap (ref4) 1952 |
References_xml | – ident: ref38 doi: 10.1609/aaai.v33i01.33016706 – year: 2022 ident: ref25 article-title: Semantic-aware speech to text transmission with redundancy removal publication-title: arxiv 2202 03211 – ident: ref7 doi: 10.1016/j.pmcj.2013.07.013 – ident: ref40 doi: 10.21437/Interspeech.2015-711 – ident: ref41 doi: 10.1109/ICASSP.2017.7953152 – ident: ref30 doi: 10.1109/PACRIM.1993.407206 – year: 2021 ident: ref20 article-title: Semantic communications for speech recognition publication-title: arXiv 2107 11190 – year: 2021 ident: ref1 article-title: Semantic communications: Principles and challenges publication-title: arXiv 2201 01389 – ident: ref18 doi: 10.1109/JSAC.2021.3087240 – ident: ref23 doi: 10.1121/1.399423 – year: 2002 ident: ref24 publication-title: Modelling out-of-vocabulary words for robust speech recognition – ident: ref8 doi: 10.1109/TCCN.2019.2919300 – ident: ref2 doi: 10.1109/TSP.2021.3071210 – ident: ref28 doi: 10.1016/S0167-6393(01)00041-3 – ident: ref9 doi: 10.1109/TWC.2021.3090048 – year: 2019 ident: ref36 publication-title: G2pe – year: 2021 ident: ref14 article-title: Task-oriented multi-user semantic communications publication-title: arXiv 2112 10255 – volume: 32 year: 2019 ident: ref37 article-title: FastSpeech: Fast, robust and controllable text to speech publication-title: Proc Adv Neural Inf Process Syst – start-page: 1 year: 2015 ident: ref22 article-title: Neural machine translation by jointly learning to align and translate publication-title: Proc 3rd Int Conf Learn Represent – ident: ref15 doi: 10.1109/LWC.2021.3136045 – ident: ref17 doi: 10.1109/JSAC.2021.3126087 – ident: ref13 doi: 10.1109/JSAC.2020.3036968 – ident: ref19 doi: 10.3389/frcmn.2021.734402 – ident: ref11 doi: 10.1109/ICASSP.2018.8461983 – year: 1952 ident: ref4 publication-title: An Outline of A Theory of Semantic Information – year: 1949 ident: ref3 publication-title: The Mathematical Theory of Communication – ident: ref6 doi: 10.1109/NSW.2011.6004632 – year: 2021 ident: ref16 article-title: DeepWiVe: Deep-learning-aided wireless video transmission publication-title: arXiv 2111 13034 – volume: 33 start-page: 17022 year: 2020 ident: ref39 article-title: HiFi-GAN: Generative adversarial networks for efficient and high fidelity speech synthesis publication-title: Proc Adv Neural Inf Process Syst – volume: 61 start-page: 268 year: 1993 ident: ref35 article-title: The Viterbi algorithm publication-title: Proc IEEE doi: 10.1109/PROC.1973.9030 – ident: ref34 doi: 10.1109/ICASSP.2015.7178964 – ident: ref31 doi: 10.1109/ICASSP.2011.5946971 – ident: ref10 doi: 10.1109/ISWCS56560.2022.9940401 – ident: ref42 doi: 10.1162/neco.1989.1.2.270 – start-page: 1 year: 2020 ident: ref27 article-title: FastSpeech 2: Fast and high-quality end-to-end text to speech publication-title: Proc Int Conf Learn Represent – ident: ref21 doi: 10.1145/1143844.1143891 – start-page: 4171 year: 2019 ident: ref29 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: Proc NAACL-HLT – ident: ref26 doi: 10.18653/v1/D18-2012 – ident: ref5 doi: 10.1023/B:MIND.0000021684.50925.c9 – volume: 28 year: 2015 ident: ref33 article-title: Attention-based models for speech recognition publication-title: Proc Adv Neural Inf Process Syst – ident: ref12 doi: 10.1109/SPAWC.2018.8445924 – start-page: 1 year: 2015 ident: ref32 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc Int Conf Learn Represent |
SSID | ssj0014482 |
Score | 2.6966693 |
Snippet | Deep learning (DL) based semantic communication methods have been explored for the efficient transmission of images, text, and speech in recent years. In... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 245 |
SubjectTerms | Alignment Communication Communication systems Communications systems Data mining Deep learning Efficiency end-to-end communication Feature extraction Image contrast Image transmission Machine learning Modules Receivers Reconstruction Redundancy semantic communication Semantics Speech Speech recognition speech transmission Symbols Task analysis Training Transmission efficiency Wireless communications |
Title | Semantic-Preserved Communication System for Highly Efficient Speech Transmission |
URI | https://ieeexplore.ieee.org/document/9953316 https://www.proquest.com/docview/2754958711 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5WT3rwLa6ukoMnMbVpmm5zFFFkYUVYBW-leRRFXUV3D_rrnUm7xRfirYeUhplJ55vMzDcA-7mU1rhSclmZkqeJy7mJveO6TLUx1JgWequGF9n5dTq4UTcdOGx7Ybz3ofjMR_QYcvnuyU7pquxIUy2kyOZgDs2s7tVqMwYYZoSMQV9KTkFAk8EUsT4ajI5PMBJMkgitV2iVfPFBYajKjz9xcC9nyzCcbayuKrmPphMT2fdvnI3_3fkKLDU4kx3XhrEKHT9eg8VP7IPrcDnyjyjXO8upDoMqHx370i_CajpzhriWUT3Iwxs7DYwT-C02evbe3rLg69BW6NJtA67PTq9OznkzYIFb9PITboh5xkiJoKGycamcoHhKal_GVpVpXzmi-0OQVKrM-wqxTiqs7Esq-nPCV3IT5sdPY78FLJPC-cRqZ22ViirPVSZtjodf5M4hROhCPBN5YRv2cRqC8VCEKCTWBWmpIC0VjZa6cNC-8lxTb_y1eJ2k3i5sBN6F3kyvRXM4X4ukj0GxQiMR27-_tQMLNFW-vmnpwfzkZep3EXtMzF4wug-GL9Q_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADb8R45sAJkdE0TdceEWIagyGkDYlb1TwqEDAQbAf49dhpN_ES4tZDqka2U9vx588A-4mURttcclnonEehTbgOnOVpHqVaU2Oa763qXsbt66hzo25qcDjphXHOefCZa9Cjr-XbJzOiq7KjlLCQIp6CGfT7kSq7tSY1A0w0fM2gKSWnNKCqYYogPer0jk8wFwzDBtqvSFX4xQv5sSo__sXewbQWoTveWokruW-Mhrph3r-xNv5370uwUEWa7Lg0jWWoucEKzH_iH1yFq557RMneGU5IDMI-WvalY4SVhOYMI1tGiJCHN3bqOSfwW6z37Jy5Zd7bobXQtdsaXLdO-ydtXo1Y4Ab9_JBr4p7RUmLYUJggV1ZQRiVTlwdG5VFTWSL8wzApV7FzBUY7kTCyKQn2Z4Ur5DpMD54GbgNYLIV1oUmtMUUkiiRRsTQJHn-RWItBQh2CscgzU_GP0xiMh8znIUGakZYy0lJWaakOB5NXnkvyjb8Wr5LUJwsrgddhe6zXrDqer1nYxLRYoZGIzd_f2oPZdr97kV2cXZ5vwRzNmC_vXbZhevgycjsYiQz1rjfAD8-S14w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic-Preserved+Communication+System+for+Highly+Efficient+Speech+Transmission&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Han%2C+Tianxiao&rft.au=Yang%2C+Qianqian&rft.au=Shi%2C+Zhiguo&rft.au=He%2C+Shibo&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0733-8716&rft.volume=41&rft.issue=1&rft.spage=245&rft.epage=259&rft_id=info:doi/10.1109%2FJSAC.2022.3221952&rft.externalDocID=9953316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon |