Semantic-Preserved Communication System for Highly Efficient Speech Transmission

Deep learning (DL) based semantic communication methods have been explored for the efficient transmission of images, text, and speech in recent years. In contrast to traditional wireless communication methods that focus on the transmission of abstract symbols, semantic communication approaches attem...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 41; no. 1; pp. 245 - 259
Main Authors Han, Tianxiao, Yang, Qianqian, Shi, Zhiguo, He, Shibo, Zhang, Zhaoyang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8716
1558-0008
DOI10.1109/JSAC.2022.3221952

Cover

Loading…
Abstract Deep learning (DL) based semantic communication methods have been explored for the efficient transmission of images, text, and speech in recent years. In contrast to traditional wireless communication methods that focus on the transmission of abstract symbols, semantic communication approaches attempt to achieve better transmission efficiency by only sending the semantic-related information of the source data. In this paper, we consider semantic-oriented speech transmission which transmits only the semantic-relevant information over the channel for the speech recognition task, and a compact additional set of semantic-irrelevant information for the speech reconstruction task. We propose a novel end-to-end DL-based transceiver which extracts and encodes the semantic information from the input speech spectrums at the transmitter and outputs the corresponding transcriptions from the decoded semantic information at the receiver. In particular, we employ a soft alignment module and a redundancy removal module to extract only the text-related semantic features while dropping semantically redundant content, greatly reducing the amount of semantic redundancy compared to existing methods. We also propose a semantic correction module to further correct the predicted transcription with semantic knowledge by leveraging a pretrained language model. For the speech to speech transmission, we further include a CTC alignment module that extracts a small number of additional semantic-irrelevant but speech-related information, such as duration, pitch, power and speaker identification of the speech for the better reconstruction of the original speech signals at the receiver. We also introduce a two-stage training scheme which speeds up the training of the proposed DL model. The simulation results confirm that our proposed method outperforms current methods in terms of the accuracy of the predicted text for the speech to text transmission and the quality of the recovered speech signals for the speech to speech transmission, and significantly improves transmission efficiency. More specifically, the proposed method only sends 16% of the amount of the transmitted symbols required by the existing methods while achieving about a 10% reduction in WER for the speech to text transmission. For the speech to speech transmission, it results in an even more remarkable improvement in terms of transmission efficiency with only 0.2% of the amount of the transmitted symbols required by the existing method while preserving the comparable quality of the reconstructed speech signals.
AbstractList Deep learning (DL) based semantic communication methods have been explored for the efficient transmission of images, text, and speech in recent years. In contrast to traditional wireless communication methods that focus on the transmission of abstract symbols, semantic communication approaches attempt to achieve better transmission efficiency by only sending the semantic-related information of the source data. In this paper, we consider semantic-oriented speech transmission which transmits only the semantic-relevant information over the channel for the speech recognition task, and a compact additional set of semantic-irrelevant information for the speech reconstruction task. We propose a novel end-to-end DL-based transceiver which extracts and encodes the semantic information from the input speech spectrums at the transmitter and outputs the corresponding transcriptions from the decoded semantic information at the receiver. In particular, we employ a soft alignment module and a redundancy removal module to extract only the text-related semantic features while dropping semantically redundant content, greatly reducing the amount of semantic redundancy compared to existing methods. We also propose a semantic correction module to further correct the predicted transcription with semantic knowledge by leveraging a pretrained language model. For the speech to speech transmission, we further include a CTC alignment module that extracts a small number of additional semantic-irrelevant but speech-related information, such as duration, pitch, power and speaker identification of the speech for the better reconstruction of the original speech signals at the receiver. We also introduce a two-stage training scheme which speeds up the training of the proposed DL model. The simulation results confirm that our proposed method outperforms current methods in terms of the accuracy of the predicted text for the speech to text transmission and the quality of the recovered speech signals for the speech to speech transmission, and significantly improves transmission efficiency. More specifically, the proposed method only sends 16% of the amount of the transmitted symbols required by the existing methods while achieving about a 10% reduction in WER for the speech to text transmission. For the speech to speech transmission, it results in an even more remarkable improvement in terms of transmission efficiency with only 0.2% of the amount of the transmitted symbols required by the existing method while preserving the comparable quality of the reconstructed speech signals.
Author Zhang, Zhaoyang
Shi, Zhiguo
Han, Tianxiao
Yang, Qianqian
He, Shibo
Author_xml – sequence: 1
  givenname: Tianxiao
  orcidid: 0000-0003-1307-2575
  surname: Han
  fullname: Han, Tianxiao
  email: txhan@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Qianqian
  orcidid: 0000-0003-4747-9410
  surname: Yang
  fullname: Yang, Qianqian
  email: qianqianyang20@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Zhiguo
  orcidid: 0000-0001-9160-048X
  surname: Shi
  fullname: Shi, Zhiguo
  email: shizg@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Shibo
  orcidid: 0000-0002-1505-6766
  surname: He
  fullname: He, Shibo
  email: s18he@zju.edu.cn
  organization: Department of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Zhaoyang
  orcidid: 0000-0003-2346-6228
  surname: Zhang
  fullname: Zhang, Zhaoyang
  email: ning_ming@zju.edu.cn
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
BookMark eNp9kLFOwzAQhi0EEm3hARBLJOYUnx0n8VhFhYIqUSlltlznQl01TrFTpL49Ka0YGJhuuP-7X_cNyaVrHRJyB3QMQOXjazkpxowyNuaMgRTsggxAiDymlOaXZEAzzuM8g_SaDEPYUApJkrMBWZTYaNdZEy88BvRfWEVF2zR7Z43ubOui8hA6bKK69dHMfqy3h2ha19ZYdF1U7hDNOlp67UJjQ-jzN-Sq1tuAt-c5Iu9P02Uxi-dvzy_FZB4bJnkXr5Jc8hXngsraUC0qYClILlFTI3SSiUpQyJnoVyliDRlLwPCMg5S8Aqz5iDyc7u58-7nH0KlNu_eur1QsE4kU_bPQp-CUMr4NwWOtdt422h8UUHUUp47i1FGcOovrmewPY2z346Lz2m7_Je9PpEXE3yYpBeeQ8m_juHw0
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_LCOMM_2024_3443603
crossref_primary_10_1109_JIOT_2023_3302159
crossref_primary_10_1109_MWC_013_2200553
crossref_primary_10_1109_JSAC_2023_3288236
crossref_primary_10_1109_JIOT_2024_3448538
crossref_primary_10_1109_TCOMM_2024_3386577
crossref_primary_10_1109_TSG_2023_3339707
crossref_primary_10_3390_e26050394
crossref_primary_10_1109_JSTSP_2023_3310654
crossref_primary_10_1109_TCOMM_2024_3400912
crossref_primary_10_1016_j_phycom_2023_102270
crossref_primary_10_1109_JIOT_2024_3378779
crossref_primary_10_3390_s24103169
crossref_primary_10_1109_JSAC_2025_3531406
crossref_primary_10_1109_TWC_2024_3427675
crossref_primary_10_1109_JSAC_2023_3288249
crossref_primary_10_1109_TMLCN_2025_3530875
crossref_primary_10_1109_JPROC_2024_3437730
crossref_primary_10_1109_OJCOMS_2024_3425314
crossref_primary_10_1109_JIOT_2024_3486088
crossref_primary_10_1109_TWC_2024_3433479
crossref_primary_10_1016_j_automatica_2025_112120
crossref_primary_10_3390_electronics14050956
crossref_primary_10_1049_ell2_13183
crossref_primary_10_1016_j_jfranklin_2024_106739
crossref_primary_10_1109_TWC_2024_3452481
crossref_primary_10_1109_TVT_2024_3362328
crossref_primary_10_1109_COMST_2023_3333342
crossref_primary_10_1109_JSAC_2025_3536557
crossref_primary_10_1109_TWC_2023_3330744
crossref_primary_10_1109_MCOM_004_2200819
crossref_primary_10_1109_JSAC_2024_3365872
crossref_primary_10_1109_TMC_2024_3351428
crossref_primary_10_1109_JSAC_2025_3531579
crossref_primary_10_1109_ACCESS_2025_3532797
crossref_primary_10_1109_TWC_2024_3472612
crossref_primary_10_1109_TMC_2024_3438285
crossref_primary_10_1109_TVT_2023_3288611
crossref_primary_10_1109_JPROC_2024_3520707
crossref_primary_10_1109_TSG_2024_3368277
crossref_primary_10_1109_TNET_2024_3464540
crossref_primary_10_1109_COMST_2024_3416309
crossref_primary_10_1109_LWC_2024_3417028
crossref_primary_10_32604_cmes_2023_046837
crossref_primary_10_1109_TWC_2024_3415363
crossref_primary_10_1109_TIFS_2025_3534562
crossref_primary_10_1016_j_jfranklin_2024_107055
crossref_primary_10_1109_MCOM_003_2200777
crossref_primary_10_1109_TCCN_2023_3345858
crossref_primary_10_1109_TVT_2023_3349026
Cites_doi 10.1609/aaai.v33i01.33016706
10.1016/j.pmcj.2013.07.013
10.21437/Interspeech.2015-711
10.1109/ICASSP.2017.7953152
10.1109/PACRIM.1993.407206
10.1109/JSAC.2021.3087240
10.1121/1.399423
10.1109/TCCN.2019.2919300
10.1109/TSP.2021.3071210
10.1016/S0167-6393(01)00041-3
10.1109/TWC.2021.3090048
10.1109/LWC.2021.3136045
10.1109/JSAC.2021.3126087
10.1109/JSAC.2020.3036968
10.3389/frcmn.2021.734402
10.1109/ICASSP.2018.8461983
10.1109/NSW.2011.6004632
10.1109/PROC.1973.9030
10.1109/ICASSP.2015.7178964
10.1109/ICASSP.2011.5946971
10.1109/ISWCS56560.2022.9940401
10.1162/neco.1989.1.2.270
10.1145/1143844.1143891
10.18653/v1/D18-2012
10.1023/B:MIND.0000021684.50925.c9
10.1109/SPAWC.2018.8445924
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2022.3221952
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 259
ExternalDocumentID 10_1109_JSAC_2022_3221952
9953316
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2021FZZX001-20
  funderid: 10.13039/501100012226
– fundername: NSFC
  grantid: 62201505; U1909207
  funderid: 10.13039/501100001809
– fundername: 5G Open Laboratory of Hangzhou Future Sci-Tech City
– fundername: Singapore University of Technology and Design (SUTD)-Zhejiang University (ZJU) Design and Entrepreneurship Alliance (IDEA)
  grantid: SUTD-ZJU (VP) 202102
  funderid: 10.13039/501100007040
– fundername: Key Project of National Natural Science Foundation of China-Regional Innovation Development Joint Foundation
  grantid: U21A20456
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-b4893b33509fc0a5d1261939ea0c5a475d5018250a56eef17241c3731993d1ef3
IEDL.DBID RIE
ISSN 0733-8716
IngestDate Mon Jun 30 06:03:11 EDT 2025
Tue Jul 01 02:06:32 EDT 2025
Thu Apr 24 23:06:00 EDT 2025
Wed Aug 27 02:15:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-b4893b33509fc0a5d1261939ea0c5a475d5018250a56eef17241c3731993d1ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1505-6766
0000-0001-9160-048X
0000-0003-2346-6228
0000-0003-1307-2575
0000-0003-4747-9410
PQID 2754958711
PQPubID 85481
PageCount 15
ParticipantIDs ieee_primary_9953316
crossref_primary_10_1109_JSAC_2022_3221952
proquest_journals_2754958711
crossref_citationtrail_10_1109_JSAC_2022_3221952
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
weng (ref20) 2021
ref31
ref30
ref11
ref10
ref2
ref17
ref38
ref19
han (ref25) 2022
ref18
tung (ref16) 2021
bazzi (ref24) 2002
ren (ref37) 2019; 32
kong (ref39) 2020; 33
kenton (ref29) 2019
ref23
ref26
ref42
ren (ref27) 2020
ref41
ref21
xie (ref14) 2021
chorowski (ref33) 2015; 28
simonyan (ref32) 2015
ref28
qin (ref1) 2021
ref8
forney (ref35) 1993; 61
ref7
bahdanau (ref22) 2015
ref9
park (ref36) 2019
shannon (ref3) 1949
ref6
ref5
ref40
carnap (ref4) 1952
References_xml – ident: ref38
  doi: 10.1609/aaai.v33i01.33016706
– year: 2022
  ident: ref25
  article-title: Semantic-aware speech to text transmission with redundancy removal
  publication-title: arxiv 2202 03211
– ident: ref7
  doi: 10.1016/j.pmcj.2013.07.013
– ident: ref40
  doi: 10.21437/Interspeech.2015-711
– ident: ref41
  doi: 10.1109/ICASSP.2017.7953152
– ident: ref30
  doi: 10.1109/PACRIM.1993.407206
– year: 2021
  ident: ref20
  article-title: Semantic communications for speech recognition
  publication-title: arXiv 2107 11190
– year: 2021
  ident: ref1
  article-title: Semantic communications: Principles and challenges
  publication-title: arXiv 2201 01389
– ident: ref18
  doi: 10.1109/JSAC.2021.3087240
– ident: ref23
  doi: 10.1121/1.399423
– year: 2002
  ident: ref24
  publication-title: Modelling out-of-vocabulary words for robust speech recognition
– ident: ref8
  doi: 10.1109/TCCN.2019.2919300
– ident: ref2
  doi: 10.1109/TSP.2021.3071210
– ident: ref28
  doi: 10.1016/S0167-6393(01)00041-3
– ident: ref9
  doi: 10.1109/TWC.2021.3090048
– year: 2019
  ident: ref36
  publication-title: G2pe
– year: 2021
  ident: ref14
  article-title: Task-oriented multi-user semantic communications
  publication-title: arXiv 2112 10255
– volume: 32
  year: 2019
  ident: ref37
  article-title: FastSpeech: Fast, robust and controllable text to speech
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1
  year: 2015
  ident: ref22
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: Proc 3rd Int Conf Learn Represent
– ident: ref15
  doi: 10.1109/LWC.2021.3136045
– ident: ref17
  doi: 10.1109/JSAC.2021.3126087
– ident: ref13
  doi: 10.1109/JSAC.2020.3036968
– ident: ref19
  doi: 10.3389/frcmn.2021.734402
– ident: ref11
  doi: 10.1109/ICASSP.2018.8461983
– year: 1952
  ident: ref4
  publication-title: An Outline of A Theory of Semantic Information
– year: 1949
  ident: ref3
  publication-title: The Mathematical Theory of Communication
– ident: ref6
  doi: 10.1109/NSW.2011.6004632
– year: 2021
  ident: ref16
  article-title: DeepWiVe: Deep-learning-aided wireless video transmission
  publication-title: arXiv 2111 13034
– volume: 33
  start-page: 17022
  year: 2020
  ident: ref39
  article-title: HiFi-GAN: Generative adversarial networks for efficient and high fidelity speech synthesis
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 61
  start-page: 268
  year: 1993
  ident: ref35
  article-title: The Viterbi algorithm
  publication-title: Proc IEEE
  doi: 10.1109/PROC.1973.9030
– ident: ref34
  doi: 10.1109/ICASSP.2015.7178964
– ident: ref31
  doi: 10.1109/ICASSP.2011.5946971
– ident: ref10
  doi: 10.1109/ISWCS56560.2022.9940401
– ident: ref42
  doi: 10.1162/neco.1989.1.2.270
– start-page: 1
  year: 2020
  ident: ref27
  article-title: FastSpeech 2: Fast and high-quality end-to-end text to speech
  publication-title: Proc Int Conf Learn Represent
– ident: ref21
  doi: 10.1145/1143844.1143891
– start-page: 4171
  year: 2019
  ident: ref29
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: Proc NAACL-HLT
– ident: ref26
  doi: 10.18653/v1/D18-2012
– ident: ref5
  doi: 10.1023/B:MIND.0000021684.50925.c9
– volume: 28
  year: 2015
  ident: ref33
  article-title: Attention-based models for speech recognition
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref12
  doi: 10.1109/SPAWC.2018.8445924
– start-page: 1
  year: 2015
  ident: ref32
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
SSID ssj0014482
Score 2.6966693
Snippet Deep learning (DL) based semantic communication methods have been explored for the efficient transmission of images, text, and speech in recent years. In...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 245
SubjectTerms Alignment
Communication
Communication systems
Communications systems
Data mining
Deep learning
Efficiency
end-to-end communication
Feature extraction
Image contrast
Image transmission
Machine learning
Modules
Receivers
Reconstruction
Redundancy
semantic communication
Semantics
Speech
Speech recognition
speech transmission
Symbols
Task analysis
Training
Transmission efficiency
Wireless communications
Title Semantic-Preserved Communication System for Highly Efficient Speech Transmission
URI https://ieeexplore.ieee.org/document/9953316
https://www.proquest.com/docview/2754958711
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5WT3rwLa6ukoMnMbVpmm5zFFFkYUVYBW-leRRFXUV3D_rrnUm7xRfirYeUhplJ55vMzDcA-7mU1rhSclmZkqeJy7mJveO6TLUx1JgWequGF9n5dTq4UTcdOGx7Ybz3ofjMR_QYcvnuyU7pquxIUy2kyOZgDs2s7tVqMwYYZoSMQV9KTkFAk8EUsT4ajI5PMBJMkgitV2iVfPFBYajKjz9xcC9nyzCcbayuKrmPphMT2fdvnI3_3fkKLDU4kx3XhrEKHT9eg8VP7IPrcDnyjyjXO8upDoMqHx370i_CajpzhriWUT3Iwxs7DYwT-C02evbe3rLg69BW6NJtA67PTq9OznkzYIFb9PITboh5xkiJoKGycamcoHhKal_GVpVpXzmi-0OQVKrM-wqxTiqs7Esq-nPCV3IT5sdPY78FLJPC-cRqZ22ViirPVSZtjodf5M4hROhCPBN5YRv2cRqC8VCEKCTWBWmpIC0VjZa6cNC-8lxTb_y1eJ2k3i5sBN6F3kyvRXM4X4ukj0GxQiMR27-_tQMLNFW-vmnpwfzkZep3EXtMzF4wug-GL9Q_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADb8R45sAJkdE0TdceEWIagyGkDYlb1TwqEDAQbAf49dhpN_ES4tZDqka2U9vx588A-4mURttcclnonEehTbgOnOVpHqVaU2Oa763qXsbt66hzo25qcDjphXHOefCZa9Cjr-XbJzOiq7KjlLCQIp6CGfT7kSq7tSY1A0w0fM2gKSWnNKCqYYogPer0jk8wFwzDBtqvSFX4xQv5sSo__sXewbQWoTveWokruW-Mhrph3r-xNv5370uwUEWa7Lg0jWWoucEKzH_iH1yFq557RMneGU5IDMI-WvalY4SVhOYMI1tGiJCHN3bqOSfwW6z37Jy5Zd7bobXQtdsaXLdO-ydtXo1Y4Ab9_JBr4p7RUmLYUJggV1ZQRiVTlwdG5VFTWSL8wzApV7FzBUY7kTCyKQn2Z4Ur5DpMD54GbgNYLIV1oUmtMUUkiiRRsTQJHn-RWItBQh2CscgzU_GP0xiMh8znIUGakZYy0lJWaakOB5NXnkvyjb8Wr5LUJwsrgddhe6zXrDqer1nYxLRYoZGIzd_f2oPZdr97kV2cXZ5vwRzNmC_vXbZhevgycjsYiQz1rjfAD8-S14w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic-Preserved+Communication+System+for+Highly+Efficient+Speech+Transmission&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Han%2C+Tianxiao&rft.au=Yang%2C+Qianqian&rft.au=Shi%2C+Zhiguo&rft.au=He%2C+Shibo&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0733-8716&rft.volume=41&rft.issue=1&rft.spage=245&rft.epage=259&rft_id=info:doi/10.1109%2FJSAC.2022.3221952&rft.externalDocID=9953316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon