Sparsity-Exploiting Anytime Algorithms for Model Predictive Control: A Relaxed Barrier Approach

We present and analyze a novel class of stabilizing and numerically efficient model predictive control (MPC) algorithms for discrete-time linear systems subject to polytopic input and state constraints. The proposed approach combines the previously presented concept of relaxed barrier function-based...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 28; no. 2; pp. 425 - 435
Main Authors Feller, Christian, Ebenbauer, Christian
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present and analyze a novel class of stabilizing and numerically efficient model predictive control (MPC) algorithms for discrete-time linear systems subject to polytopic input and state constraints. The proposed approach combines the previously presented concept of relaxed barrier function-based MPC with suitable warm-starting and sparsity-exploiting factorization techniques and allows to rigorously prove important stability and constraint satisfaction properties of the resulting closed-loop system independently of the number of performed Newton iterations. The effectiveness of the proposed approach is demonstrated by means of a numerical benchmark example.
AbstractList We present and analyze a novel class of stabilizing and numerically efficient model predictive control (MPC) algorithms for discrete-time linear systems subject to polytopic input and state constraints. The proposed approach combines the previously presented concept of relaxed barrier function-based MPC with suitable warm-starting and sparsity-exploiting factorization techniques and allows to rigorously prove important stability and constraint satisfaction properties of the resulting closed-loop system independently of the number of performed Newton iterations. The effectiveness of the proposed approach is demonstrated by means of a numerical benchmark example.
Author Feller, Christian
Ebenbauer, Christian
Author_xml – sequence: 1
  givenname: Christian
  orcidid: 0000-0003-1253-4344
  surname: Feller
  fullname: Feller, Christian
  email: christian.feller@ist.uni-stuttgart.de
  organization: Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
– sequence: 2
  givenname: Christian
  surname: Ebenbauer
  fullname: Ebenbauer, Christian
  email: ce@ist.uni-stuttgart.de
  organization: Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
BookMark eNp9kE1PwzAMhiM0JDbgByAukTh3xGnTpNzKxJc0BIJxjtLWhUxdU9IMsX9Pp00cOHCxfXheW34mZNS6Fgk5AzYFYNnlYva6mHIGasqVYpDwAzIGIVTEVCpGw8zSOEpFnB6RSd8v2YAILsdEv3bG9zZsopvvrnE22Pad5u0m2BXSvHl33oaPVU9r5-mjq7Chzx4rWwb7hXTm2uBdc0Vz-oKN-caKXhvvLXqad513pvw4IYe1aXo83fdj8nZ7s5jdR_Onu4dZPo9KnsUhKuKkqJFLDpUUopRpyQssmTQVmELxJM5MWpkkE7JWWQVMyKEi1EkBskiFiI_JxW7vcPZzjX3QS7f27XBS81ioDIQCNVByR5Xe9b3HWpc2mGC3fxjbaGB6a1NvbeqtTb23OSThT7LzdmX85t_M-S5jEfGXV0ICSB7_AGRQgoA
CODEN IETTE2
CitedBy_id crossref_primary_10_1016_j_sysconle_2024_106018
crossref_primary_10_3390_app11178145
crossref_primary_10_1016_j_conengprac_2024_106006
crossref_primary_10_1109_TAC_2024_3403031
crossref_primary_10_3390_app14072793
crossref_primary_10_3390_jmse12010094
crossref_primary_10_1109_TAC_2022_3190044
crossref_primary_10_1109_LCSYS_2024_3370266
crossref_primary_10_1109_TAC_2023_3308817
Cites_doi 10.1109/CDC.2010.5717488
10.1109/CDC.2012.6426855
10.1007/s12532-014-0071-1
10.1109/ECC.2014.6862490
10.1109/9.751369
10.1109/CDC.2011.6160688
10.1016/j.sysconle.2014.12.002
10.1016/j.automatica.2006.10.019
10.1109/SUPERC.1990.129995
10.1109/ACC.2015.7170969
10.1109/CDC.2006.377331
10.1109/CDC.2014.7040438
10.1023/A:1021711402723
10.1109/TAC.2016.2582040
10.1016/j.automatica.2003.11.005
10.1016/j.automatica.2013.11.019
10.1016/j.automatica.2004.03.002
10.1016/j.automatica.2017.02.001
10.1007/978-1-4613-3632-7_16
10.3182/20140824-6-ZA-1003.00295
10.1109/TAC.2013.2275667
10.1002/rnc.1251
10.1109/CDC.2016.7798476
10.1002/rnc.1363
10.1137/1.9780898718935.ch2
10.1109/37.736012
10.1016/j.ifacol.2015.11.263
10.1016/j.ifacol.2015.11.299
10.1016/j.sysconle.2011.05.013
10.1109/TAC.2011.2176389
10.1109/CDC.2017.8264306
10.1007/BF00940784
10.1049/ip-cta:20040008
10.1109/CDC.2016.7798475
10.1109/TCST.2009.2017934
10.23919/ECC.2013.6669710
10.1109/CDC.1999.827927
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1109/TCST.2018.2880142
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 435
ExternalDocumentID 10_1109_TCST_2018_2880142
8571172
Genre orig-research
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: EB425/2-1
  funderid: 10.13039/501100001659
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c293t-b34bfe2721d755c76c2bec07ad1ab82439a6da4957f89d10579d1e1f4b17b6553
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Mon Jun 30 10:21:48 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Tue Jul 01 02:36:01 EDT 2025
Wed Aug 27 02:36:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-b34bfe2721d755c76c2bec07ad1ab82439a6da4957f89d10579d1e1f4b17b6553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1253-4344
PQID 2358915818
PQPubID 85425
PageCount 11
ParticipantIDs proquest_journals_2358915818
ieee_primary_8571172
crossref_citationtrail_10_1109_TCST_2018_2880142
crossref_primary_10_1109_TCST_2018_2880142
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-March
2020-3-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-March
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref11
ref10
ref2
tal (ref23) 1992
ref39
ref17
domahidi (ref45) 2014
ref19
ref18
steinbach (ref32) 1997
ref24
feller (ref29) 2017
ref26
ref25
ref20
ref42
ref41
bemporad (ref16) 2015
ref22
ref44
ref21
ref43
kerrigan (ref38) 2000
ref28
ref27
ref8
ref7
ref9
ref4
rawlings (ref1) 2009
ref3
ref6
ref5
wills (ref33) 2003
ref40
References_xml – ident: ref39
  doi: 10.1109/CDC.2010.5717488
– year: 2015
  ident: ref16
  publication-title: A convex feasibility approach to anytime model predictive control
– ident: ref8
  doi: 10.1109/CDC.2012.6426855
– year: 2009
  ident: ref1
  publication-title: Model Predictive Control Theory and Design
– ident: ref44
  doi: 10.1007/s12532-014-0071-1
– ident: ref34
  doi: 10.1109/ECC.2014.6862490
– ident: ref13
  doi: 10.1109/9.751369
– start-page: 1
  year: 2000
  ident: ref38
  article-title: Soft constraints and exact penalty functions in model predictive control
  publication-title: Proc UKACC Int Conf CONTROL
– ident: ref6
  doi: 10.1109/CDC.2011.6160688
– ident: ref17
  doi: 10.1016/j.sysconle.2014.12.002
– ident: ref4
  doi: 10.1016/j.automatica.2006.10.019
– ident: ref43
  doi: 10.1109/SUPERC.1990.129995
– ident: ref26
  doi: 10.1109/ACC.2015.7170969
– ident: ref25
  doi: 10.1109/CDC.2006.377331
– ident: ref37
  doi: 10.1109/CDC.2014.7040438
– ident: ref2
  doi: 10.1023/A:1021711402723
– ident: ref22
  doi: 10.1109/TAC.2016.2582040
– year: 2014
  ident: ref45
  publication-title: FORCES Professional
– ident: ref40
  doi: 10.1016/j.automatica.2003.11.005
– ident: ref15
  doi: 10.1016/j.automatica.2013.11.019
– year: 1997
  ident: ref32
  article-title: Fast recursive SQP methods for large-scale optimal control problems
– ident: ref35
  doi: 10.1016/j.automatica.2004.03.002
– year: 2017
  ident: ref29
  article-title: Relaxed barrier function based model predictive control
– year: 2003
  ident: ref33
  article-title: Barrier function based model predictive control
– ident: ref20
  doi: 10.1016/j.automatica.2017.02.001
– ident: ref24
  doi: 10.1007/978-1-4613-3632-7_16
– ident: ref11
  doi: 10.3182/20140824-6-ZA-1003.00295
– ident: ref10
  doi: 10.1109/TAC.2013.2275667
– ident: ref5
  doi: 10.1002/rnc.1251
– ident: ref30
  doi: 10.1109/CDC.2016.7798476
– ident: ref41
  doi: 10.1002/rnc.1363
– ident: ref19
  doi: 10.1137/1.9780898718935.ch2
– year: 1992
  ident: ref23
  article-title: Modified barrier methods for constrained and minimax problems
– ident: ref3
  doi: 10.1109/37.736012
– ident: ref21
  doi: 10.1016/j.ifacol.2015.11.263
– ident: ref27
  doi: 10.1016/j.ifacol.2015.11.299
– ident: ref14
  doi: 10.1016/j.sysconle.2011.05.013
– ident: ref9
  doi: 10.1109/TAC.2011.2176389
– ident: ref42
  doi: 10.1109/CDC.2017.8264306
– ident: ref31
  doi: 10.1007/BF00940784
– ident: ref18
  doi: 10.1049/ip-cta:20040008
– ident: ref28
  doi: 10.1109/CDC.2016.7798475
– ident: ref7
  doi: 10.1109/TCST.2009.2017934
– ident: ref36
  doi: 10.23919/ECC.2013.6669710
– ident: ref12
  doi: 10.1109/CDC.1999.827927
SSID ssj0014527
Score 2.3671522
Snippet We present and analyze a novel class of stabilizing and numerically efficient model predictive control (MPC) algorithms for discrete-time linear systems...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 425
SubjectTerms Algorithms
Anytime algorithms
barrier functions
Closed loop systems
Cost function
Discrete time systems
Feedback control
Linear systems
Mathematical models
model predictive control
Numerical prediction
Numerical stability
Optimal control
Prediction algorithms
Predictive control
real-time optimization
Sparsity
Stability analysis
Title Sparsity-Exploiting Anytime Algorithms for Model Predictive Control: A Relaxed Barrier Approach
URI https://ieeexplore.ieee.org/document/8571172
https://www.proquest.com/docview/2358915818
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH5oT3pwF-vGHDyJ0yaTZRJvsSgiKIIVvIXZosXaljYF9dc7b5IWN8RLyGEGhnyTt8z75n0AR14h4tAUkhrGUxoWaUqlDDQ12jPMCC8W7jDn-ia-vA-vHqKHBTiZ34UxxjjymWnhq6vl66Ga4lFZO4m4bx3uIizaxK26qzWvGISVPKvNcAIau5Jks-6n2e527rpI4kpaLMFmKeyLD3KiKj8ssXMvF6twPVtYxSp5bk1L2VLv33o2_nfla7BSx5kkqzbGOiyYwQYsf-o-uAn53Ug4SgZ1RLweEqBJNnhDuXmS9R-H41759DIhNqwlKJnWJ7djLOuggSSdiuJ-SjKCfLpXo8mZGKP8HcnqNuVbcH9x3u1c0lpvgSrr9Esqg1AWFjPmax5FiseKWYQ9LrQvZMJs6CJiLWxGxYsk1SgQbJ_GL0LpcxlHUbANjcFwYHaA8IDrSNv8N4yD0KRcBLoQymNS-VxZM9EEb4ZArupm5KiJ0c9dUuKlOYKWI2h5DVoTjudTRlUnjr8GbyII84H192_C_gzmvP5XJzleFk79yEYuu7_P2oMlhlm2Y57tQ6McT82BDUVKeej24Ae6mdrN
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH7axmHjwICCKGzgAyc0d4kTxwm3rGIqsE6T2km7Wf6VUVHaqk0l4K_Hz0mrMRDiEuVgS1Y-5_3w-_w-gLdRpbLUVZo6JgqaVkVBtU4sdTZyzKkoU-EwZ3iZDa7TTzf8ZgdOtndhnHOBfOZ6-Bpq-XZu1nhUdppzEXuHuwsPvN_ncXNba1szSBuBVp_jJDQLRclu21HzdNwfjZHGlfdYju1S2G9eKMiq_GGLg4M5P4ThZmkNr-Rrb13rnvl5r2vj_679MTxqI01SNlvjCey42VN4eKf_YAfkaKECKYMGKt4EKdCknP1AwXlSTm_ny0n95duK-MCWoGjalFwtsbCDJpL0G5L7e1ISZNR9d5acqSUK4JGybVT-DK7PP4z7A9oqLlDj3X5NdZLqyqPGYis4NyIzzGMcCWVjpXPmgxeVWeVzKlHlhUWJYP90cZXqWOiM8-Q57M3mM_cCiEiE5dZnwGmWpK4QKrGVMhHTJhbGG4ouRBsEpGnbkaMqxlSGtCQqJIImETTZgtaFd9spi6YXx78GdxCE7cD2-3fhaAOzbP_WlcTrwkXMfezy8u-z3sD-YDy8kBcfLz-_ggOGOXfgoR3BXr1cu2MfmNT6ddiPvwBPDd4W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparsity-Exploiting+Anytime+Algorithms+for+Model+Predictive+Control%3A+A+Relaxed+Barrier+Approach&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Feller%2C+Christian&rft.au=Ebenbauer%2C+Christian&rft.date=2020-03-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=28&rft.issue=2&rft.spage=425&rft.epage=435&rft_id=info:doi/10.1109%2FTCST.2018.2880142&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2018_2880142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon