Sparsity-Exploiting Anytime Algorithms for Model Predictive Control: A Relaxed Barrier Approach
We present and analyze a novel class of stabilizing and numerically efficient model predictive control (MPC) algorithms for discrete-time linear systems subject to polytopic input and state constraints. The proposed approach combines the previously presented concept of relaxed barrier function-based...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 28; no. 2; pp. 425 - 435 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present and analyze a novel class of stabilizing and numerically efficient model predictive control (MPC) algorithms for discrete-time linear systems subject to polytopic input and state constraints. The proposed approach combines the previously presented concept of relaxed barrier function-based MPC with suitable warm-starting and sparsity-exploiting factorization techniques and allows to rigorously prove important stability and constraint satisfaction properties of the resulting closed-loop system independently of the number of performed Newton iterations. The effectiveness of the proposed approach is demonstrated by means of a numerical benchmark example. |
---|---|
AbstractList | We present and analyze a novel class of stabilizing and numerically efficient model predictive control (MPC) algorithms for discrete-time linear systems subject to polytopic input and state constraints. The proposed approach combines the previously presented concept of relaxed barrier function-based MPC with suitable warm-starting and sparsity-exploiting factorization techniques and allows to rigorously prove important stability and constraint satisfaction properties of the resulting closed-loop system independently of the number of performed Newton iterations. The effectiveness of the proposed approach is demonstrated by means of a numerical benchmark example. |
Author | Feller, Christian Ebenbauer, Christian |
Author_xml | – sequence: 1 givenname: Christian orcidid: 0000-0003-1253-4344 surname: Feller fullname: Feller, Christian email: christian.feller@ist.uni-stuttgart.de organization: Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany – sequence: 2 givenname: Christian surname: Ebenbauer fullname: Ebenbauer, Christian email: ce@ist.uni-stuttgart.de organization: Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany |
BookMark | eNp9kE1PwzAMhiM0JDbgByAukTh3xGnTpNzKxJc0BIJxjtLWhUxdU9IMsX9Pp00cOHCxfXheW34mZNS6Fgk5AzYFYNnlYva6mHIGasqVYpDwAzIGIVTEVCpGw8zSOEpFnB6RSd8v2YAILsdEv3bG9zZsopvvrnE22Pad5u0m2BXSvHl33oaPVU9r5-mjq7Chzx4rWwb7hXTm2uBdc0Vz-oKN-caKXhvvLXqad513pvw4IYe1aXo83fdj8nZ7s5jdR_Onu4dZPo9KnsUhKuKkqJFLDpUUopRpyQssmTQVmELxJM5MWpkkE7JWWQVMyKEi1EkBskiFiI_JxW7vcPZzjX3QS7f27XBS81ioDIQCNVByR5Xe9b3HWpc2mGC3fxjbaGB6a1NvbeqtTb23OSThT7LzdmX85t_M-S5jEfGXV0ICSB7_AGRQgoA |
CODEN | IETTE2 |
CitedBy_id | crossref_primary_10_1016_j_sysconle_2024_106018 crossref_primary_10_3390_app11178145 crossref_primary_10_1016_j_conengprac_2024_106006 crossref_primary_10_1109_TAC_2024_3403031 crossref_primary_10_3390_app14072793 crossref_primary_10_3390_jmse12010094 crossref_primary_10_1109_TAC_2022_3190044 crossref_primary_10_1109_LCSYS_2024_3370266 crossref_primary_10_1109_TAC_2023_3308817 |
Cites_doi | 10.1109/CDC.2010.5717488 10.1109/CDC.2012.6426855 10.1007/s12532-014-0071-1 10.1109/ECC.2014.6862490 10.1109/9.751369 10.1109/CDC.2011.6160688 10.1016/j.sysconle.2014.12.002 10.1016/j.automatica.2006.10.019 10.1109/SUPERC.1990.129995 10.1109/ACC.2015.7170969 10.1109/CDC.2006.377331 10.1109/CDC.2014.7040438 10.1023/A:1021711402723 10.1109/TAC.2016.2582040 10.1016/j.automatica.2003.11.005 10.1016/j.automatica.2013.11.019 10.1016/j.automatica.2004.03.002 10.1016/j.automatica.2017.02.001 10.1007/978-1-4613-3632-7_16 10.3182/20140824-6-ZA-1003.00295 10.1109/TAC.2013.2275667 10.1002/rnc.1251 10.1109/CDC.2016.7798476 10.1002/rnc.1363 10.1137/1.9780898718935.ch2 10.1109/37.736012 10.1016/j.ifacol.2015.11.263 10.1016/j.ifacol.2015.11.299 10.1016/j.sysconle.2011.05.013 10.1109/TAC.2011.2176389 10.1109/CDC.2017.8264306 10.1007/BF00940784 10.1049/ip-cta:20040008 10.1109/CDC.2016.7798475 10.1109/TCST.2009.2017934 10.23919/ECC.2013.6669710 10.1109/CDC.1999.827927 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 L7M |
DOI | 10.1109/TCST.2018.2880142 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0865 |
EndPage | 435 |
ExternalDocumentID | 10_1109_TCST_2018_2880142 8571172 |
Genre | orig-research |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: EB425/2-1 funderid: 10.13039/501100001659 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 L7M |
ID | FETCH-LOGICAL-c293t-b34bfe2721d755c76c2bec07ad1ab82439a6da4957f89d10579d1e1f4b17b6553 |
IEDL.DBID | RIE |
ISSN | 1063-6536 |
IngestDate | Mon Jun 30 10:21:48 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Tue Jul 01 02:36:01 EDT 2025 Wed Aug 27 02:36:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-b34bfe2721d755c76c2bec07ad1ab82439a6da4957f89d10579d1e1f4b17b6553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1253-4344 |
PQID | 2358915818 |
PQPubID | 85425 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2358915818 ieee_primary_8571172 crossref_citationtrail_10_1109_TCST_2018_2880142 crossref_primary_10_1109_TCST_2018_2880142 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-March 2020-3-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-March |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on control systems technology |
PublicationTitleAbbrev | TCST |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref11 ref10 ref2 tal (ref23) 1992 ref39 ref17 domahidi (ref45) 2014 ref19 ref18 steinbach (ref32) 1997 ref24 feller (ref29) 2017 ref26 ref25 ref20 ref42 ref41 bemporad (ref16) 2015 ref22 ref44 ref21 ref43 kerrigan (ref38) 2000 ref28 ref27 ref8 ref7 ref9 ref4 rawlings (ref1) 2009 ref3 ref6 ref5 wills (ref33) 2003 ref40 |
References_xml | – ident: ref39 doi: 10.1109/CDC.2010.5717488 – year: 2015 ident: ref16 publication-title: A convex feasibility approach to anytime model predictive control – ident: ref8 doi: 10.1109/CDC.2012.6426855 – year: 2009 ident: ref1 publication-title: Model Predictive Control Theory and Design – ident: ref44 doi: 10.1007/s12532-014-0071-1 – ident: ref34 doi: 10.1109/ECC.2014.6862490 – ident: ref13 doi: 10.1109/9.751369 – start-page: 1 year: 2000 ident: ref38 article-title: Soft constraints and exact penalty functions in model predictive control publication-title: Proc UKACC Int Conf CONTROL – ident: ref6 doi: 10.1109/CDC.2011.6160688 – ident: ref17 doi: 10.1016/j.sysconle.2014.12.002 – ident: ref4 doi: 10.1016/j.automatica.2006.10.019 – ident: ref43 doi: 10.1109/SUPERC.1990.129995 – ident: ref26 doi: 10.1109/ACC.2015.7170969 – ident: ref25 doi: 10.1109/CDC.2006.377331 – ident: ref37 doi: 10.1109/CDC.2014.7040438 – ident: ref2 doi: 10.1023/A:1021711402723 – ident: ref22 doi: 10.1109/TAC.2016.2582040 – year: 2014 ident: ref45 publication-title: FORCES Professional – ident: ref40 doi: 10.1016/j.automatica.2003.11.005 – ident: ref15 doi: 10.1016/j.automatica.2013.11.019 – year: 1997 ident: ref32 article-title: Fast recursive SQP methods for large-scale optimal control problems – ident: ref35 doi: 10.1016/j.automatica.2004.03.002 – year: 2017 ident: ref29 article-title: Relaxed barrier function based model predictive control – year: 2003 ident: ref33 article-title: Barrier function based model predictive control – ident: ref20 doi: 10.1016/j.automatica.2017.02.001 – ident: ref24 doi: 10.1007/978-1-4613-3632-7_16 – ident: ref11 doi: 10.3182/20140824-6-ZA-1003.00295 – ident: ref10 doi: 10.1109/TAC.2013.2275667 – ident: ref5 doi: 10.1002/rnc.1251 – ident: ref30 doi: 10.1109/CDC.2016.7798476 – ident: ref41 doi: 10.1002/rnc.1363 – ident: ref19 doi: 10.1137/1.9780898718935.ch2 – year: 1992 ident: ref23 article-title: Modified barrier methods for constrained and minimax problems – ident: ref3 doi: 10.1109/37.736012 – ident: ref21 doi: 10.1016/j.ifacol.2015.11.263 – ident: ref27 doi: 10.1016/j.ifacol.2015.11.299 – ident: ref14 doi: 10.1016/j.sysconle.2011.05.013 – ident: ref9 doi: 10.1109/TAC.2011.2176389 – ident: ref42 doi: 10.1109/CDC.2017.8264306 – ident: ref31 doi: 10.1007/BF00940784 – ident: ref18 doi: 10.1049/ip-cta:20040008 – ident: ref28 doi: 10.1109/CDC.2016.7798475 – ident: ref7 doi: 10.1109/TCST.2009.2017934 – ident: ref36 doi: 10.23919/ECC.2013.6669710 – ident: ref12 doi: 10.1109/CDC.1999.827927 |
SSID | ssj0014527 |
Score | 2.3671522 |
Snippet | We present and analyze a novel class of stabilizing and numerically efficient model predictive control (MPC) algorithms for discrete-time linear systems... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 425 |
SubjectTerms | Algorithms Anytime algorithms barrier functions Closed loop systems Cost function Discrete time systems Feedback control Linear systems Mathematical models model predictive control Numerical prediction Numerical stability Optimal control Prediction algorithms Predictive control real-time optimization Sparsity Stability analysis |
Title | Sparsity-Exploiting Anytime Algorithms for Model Predictive Control: A Relaxed Barrier Approach |
URI | https://ieeexplore.ieee.org/document/8571172 https://www.proquest.com/docview/2358915818 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH5oT3pwF-vGHDyJ0yaTZRJvsSgiKIIVvIXZosXaljYF9dc7b5IWN8RLyGEGhnyTt8z75n0AR14h4tAUkhrGUxoWaUqlDDQ12jPMCC8W7jDn-ia-vA-vHqKHBTiZ34UxxjjymWnhq6vl66Ga4lFZO4m4bx3uIizaxK26qzWvGISVPKvNcAIau5Jks-6n2e527rpI4kpaLMFmKeyLD3KiKj8ssXMvF6twPVtYxSp5bk1L2VLv33o2_nfla7BSx5kkqzbGOiyYwQYsf-o-uAn53Ug4SgZ1RLweEqBJNnhDuXmS9R-H41759DIhNqwlKJnWJ7djLOuggSSdiuJ-SjKCfLpXo8mZGKP8HcnqNuVbcH9x3u1c0lpvgSrr9Esqg1AWFjPmax5FiseKWYQ9LrQvZMJs6CJiLWxGxYsk1SgQbJ_GL0LpcxlHUbANjcFwYHaA8IDrSNv8N4yD0KRcBLoQymNS-VxZM9EEb4ZArupm5KiJ0c9dUuKlOYKWI2h5DVoTjudTRlUnjr8GbyII84H192_C_gzmvP5XJzleFk79yEYuu7_P2oMlhlm2Y57tQ6McT82BDUVKeej24Ae6mdrN |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH7axmHjwICCKGzgAyc0d4kTxwm3rGIqsE6T2km7Wf6VUVHaqk0l4K_Hz0mrMRDiEuVgS1Y-5_3w-_w-gLdRpbLUVZo6JgqaVkVBtU4sdTZyzKkoU-EwZ3iZDa7TTzf8ZgdOtndhnHOBfOZ6-Bpq-XZu1nhUdppzEXuHuwsPvN_ncXNba1szSBuBVp_jJDQLRclu21HzdNwfjZHGlfdYju1S2G9eKMiq_GGLg4M5P4ThZmkNr-Rrb13rnvl5r2vj_679MTxqI01SNlvjCey42VN4eKf_YAfkaKECKYMGKt4EKdCknP1AwXlSTm_ny0n95duK-MCWoGjalFwtsbCDJpL0G5L7e1ISZNR9d5acqSUK4JGybVT-DK7PP4z7A9oqLlDj3X5NdZLqyqPGYis4NyIzzGMcCWVjpXPmgxeVWeVzKlHlhUWJYP90cZXqWOiM8-Q57M3mM_cCiEiE5dZnwGmWpK4QKrGVMhHTJhbGG4ouRBsEpGnbkaMqxlSGtCQqJIImETTZgtaFd9spi6YXx78GdxCE7cD2-3fhaAOzbP_WlcTrwkXMfezy8u-z3sD-YDy8kBcfLz-_ggOGOXfgoR3BXr1cu2MfmNT6ddiPvwBPDd4W |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparsity-Exploiting+Anytime+Algorithms+for+Model+Predictive+Control%3A+A+Relaxed+Barrier+Approach&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Feller%2C+Christian&rft.au=Ebenbauer%2C+Christian&rft.date=2020-03-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=28&rft.issue=2&rft.spage=425&rft.epage=435&rft_id=info:doi/10.1109%2FTCST.2018.2880142&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2018_2880142 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |