Sparsity-Exploiting Anytime Algorithms for Model Predictive Control: A Relaxed Barrier Approach
We present and analyze a novel class of stabilizing and numerically efficient model predictive control (MPC) algorithms for discrete-time linear systems subject to polytopic input and state constraints. The proposed approach combines the previously presented concept of relaxed barrier function-based...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 28; no. 2; pp. 425 - 435 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present and analyze a novel class of stabilizing and numerically efficient model predictive control (MPC) algorithms for discrete-time linear systems subject to polytopic input and state constraints. The proposed approach combines the previously presented concept of relaxed barrier function-based MPC with suitable warm-starting and sparsity-exploiting factorization techniques and allows to rigorously prove important stability and constraint satisfaction properties of the resulting closed-loop system independently of the number of performed Newton iterations. The effectiveness of the proposed approach is demonstrated by means of a numerical benchmark example. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2018.2880142 |