Emotion Recognition From EEG Signals of Hearing-Impaired People Using Stacking Ensemble Learning Framework Based on a Novel Brain Network
Emotion recognition based on electroencephalography (EEG) signals has become an interesting research topic in the field of neuroscience, psychology, neural engineering, and computer science. However, the existing studies are mainly focused on normal or depression subjects, and few reports on hearing...
Saved in:
Published in | IEEE sensors journal Vol. 21; no. 20; pp. 23245 - 23255 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emotion recognition based on electroencephalography (EEG) signals has become an interesting research topic in the field of neuroscience, psychology, neural engineering, and computer science. However, the existing studies are mainly focused on normal or depression subjects, and few reports on hearing-impaired subjects. In this work, we have collected the EEG signals of 15 hearing-impaired subjects for categorizing three types of emotions (positive, neutral, and negative). To study the differences in functional connectivity between normal and hearing-impaired subjects under different emotional states, a novel brain network stacking ensemble learning framework was proposed. The phase-locking value (PLV) was utilized to calculate the correlation between EEG channels, and then we constructed a brain network using double thresholds. The spatial features of the brain network were extracted from the perspectives of local differentiation and global integration. In addition, the stacking ensemble learning framework was used to classify the fused features. To evaluate the proposed model, extensive experiments were carried out on the SEED dataset, and the result shows that the proposed method achieved superior performance than state-of-the-art models, in which the average classification accuracy is 0.955 (std: 0.052). In addition, the experimental results of hearing-impaired emotion recognition show that the average classification accuracy is 0.984 (std: 0.005). Finally, we investigated the activation patterns to reveal important brain regions and inter-channel relations about emotion recognition. |
---|---|
AbstractList | Emotion recognition based on electroencephalography (EEG) signals has become an interesting research topic in the field of neuroscience, psychology, neural engineering, and computer science. However, the existing studies are mainly focused on normal or depression subjects, and few reports on hearing-impaired subjects. In this work, we have collected the EEG signals of 15 hearing-impaired subjects for categorizing three types of emotions (positive, neutral, and negative). To study the differences in functional connectivity between normal and hearing-impaired subjects under different emotional states, a novel brain network stacking ensemble learning framework was proposed. The phase-locking value (PLV) was utilized to calculate the correlation between EEG channels, and then we constructed a brain network using double thresholds. The spatial features of the brain network were extracted from the perspectives of local differentiation and global integration. In addition, the stacking ensemble learning framework was used to classify the fused features. To evaluate the proposed model, extensive experiments were carried out on the SEED dataset, and the result shows that the proposed method achieved superior performance than state-of-the-art models, in which the average classification accuracy is 0.955 (std: 0.052). In addition, the experimental results of hearing-impaired emotion recognition show that the average classification accuracy is 0.984 (std: 0.005). Finally, we investigated the activation patterns to reveal important brain regions and inter-channel relations about emotion recognition. |
Author | Mao, Zemin Dong, Enzeng Kang, Qiaoju Tian, Zekun Gao, Qiang Song, Yu Yang, Yi |
Author_xml | – sequence: 1 givenname: Qiaoju surname: Kang fullname: Kang, Qiaoju email: qaojukang@hotmail.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China – sequence: 2 givenname: Qiang surname: Gao fullname: Gao, Qiang email: gaoqiang@tjut.edu.cn organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, Tianjin University of Technology, Tianjin, China – sequence: 3 givenname: Yu orcidid: 0000-0002-9295-7795 surname: Song fullname: Song, Yu email: jasonsongrain@hotmail.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China – sequence: 4 givenname: Zekun surname: Tian fullname: Tian, Zekun email: t.zk@foxmail.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China – sequence: 5 givenname: Yi surname: Yang fullname: Yang, Yi email: yyflying@yeah.net organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China – sequence: 6 givenname: Zemin surname: Mao fullname: Mao, Zemin email: maozemin@email.tjut.edu.cn organization: Technical College for the Deaf, Tianjin University of Technology, Tianjin, China – sequence: 7 givenname: Enzeng orcidid: 0000-0001-5142-5584 surname: Dong fullname: Dong, Enzeng email: dongenzeng@163.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China |
BookMark | eNp9kEtP3DAUha0KpPL6AVU3llhn6kcSJ8uCMjw0GhBDpe6iG-dmZJjYgx1A_Qn917UZxKILVj46Pude-zske9ZZJOQbZzPOWf3jetUsZ4IJPpOcVbniX8gBL4oq4yqv9pKWLMul-v2VHIbwwBivVaEOyN9mdJNxlt6hdmtr3vTcu5E2zQVdmbWFTaBuoJcI3th1djVuwXjs6S267QbprxBduppAPybR2IBjF_1FzNvkzD2M-Or8Iz2DEHtxPtCle8ENPfNgLF3ilK6Pyf4Qd-HJ-3lE7ufN_flltri5uDr_uci0qOWUdaLUhc41EwK47DoxlDrvQCngZS4kKzhUlQA19D1I7BEBZA2ih5iWQssjcrobu_Xu6RnD1D64Z59-2YqikmXOIqmYUruU9i4Ej0OrzQQJzhTfvGk5axP2NmFvE_b2HXts8v-aW29G8H8-7XzfdQwifuTrQuSlrOQ_MCGRLw |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_JBHI_2022_3212475 crossref_primary_10_2139_ssrn_4066353 crossref_primary_10_1109_JSEN_2024_3440340 crossref_primary_10_1145_3712259 crossref_primary_10_1109_JSEN_2024_3380749 crossref_primary_10_1109_TNSRE_2022_3225948 crossref_primary_10_1109_JSEN_2023_3239507 crossref_primary_10_1016_j_measurement_2022_111724 crossref_primary_10_1109_TIM_2023_3240230 crossref_primary_10_1109_JSEN_2024_3393299 crossref_primary_10_1109_TAFFC_2024_3394436 crossref_primary_10_1016_j_bspc_2023_105013 |
Cites_doi | 10.1155/2017/7125057 10.1023/A:1018628609742 10.1037/h0077714 10.1109/TAFFC.2018.2879343 10.1037/0022-3514.53.4.712 10.1093/cercor/bhj127 10.1109/TAMD.2015.2431497 10.1007/BF00367348 10.1109/TAFFC.2018.2885474 10.1016/j.compbiomed.2020.103927 10.1109/JSEN.2021.3059304 10.1016/j.neucom.2013.06.046 10.1109/JSEN.2021.3078087 10.1109/TSP.2014.2365761 10.1155/2011/286073 10.1109/JSEN.2019.2962874 10.1109/TCYB.2017.2788081 10.1109/JBHI.2021.3092412 10.1109/TAFFC.2018.2817622 10.1109/ACCESS.2019.2927768 10.1109/TNSRE.2019.2900725 10.1109/JSEN.2021.3073040 10.1109/TNSRE.2020.3043426 10.1371/journal.pone.0095415 10.1109/JSEN.2019.2928781 10.1016/j.compbiomed.2011.06.020 10.1002/hbm.22131 10.1016/j.compbiomed.2021.104428 10.1177/0963721420924770 10.1109/TAFFC.2021.3068496 10.1109/T-AFFC.2011.15 10.1109/TBME.2019.2897651 10.1109/JSEN.2020.3020828 10.1109/TNSRE.2021.3059429 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2021.3108471 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering Psychology |
EISSN | 1558-1748 |
EndPage | 23255 |
ExternalDocumentID | 10_1109_JSEN_2021_3108471 9524638 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research on Advanced Technology and Engineering Application Team, Tianjin, China grantid: 20160524 – fundername: Natural Science Foundation of Tianjin grantid: 18JCYBJC87700 funderid: 10.13039/501100006606 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-b26c5c4c022a13bb2f6c4ba77a16423051a882a7fdda3edeeaa39a2daa1332c3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:22:07 EDT 2025 Thu Apr 24 22:52:28 EDT 2025 Tue Jul 01 04:26:40 EDT 2025 Wed Aug 27 02:26:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-b26c5c4c022a13bb2f6c4ba77a16423051a882a7fdda3edeeaa39a2daa1332c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5142-5584 0000-0002-9295-7795 |
PQID | 2583640530 |
PQPubID | 75733 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2583640530 crossref_primary_10_1109_JSEN_2021_3108471 crossref_citationtrail_10_1109_JSEN_2021_3108471 ieee_primary_9524638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-15 |
PublicationDateYYYYMMDD | 2021-10-15 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref33 ref11 ref32 ref10 morris (ref26) 1995; 35 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 cranford (ref30) 1996; 7 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref31 doi: 10.1155/2017/7125057 – ident: ref33 doi: 10.1023/A:1018628609742 – ident: ref4 doi: 10.1037/h0077714 – ident: ref13 doi: 10.1109/TAFFC.2018.2879343 – ident: ref3 doi: 10.1037/0022-3514.53.4.712 – ident: ref21 doi: 10.1093/cercor/bhj127 – ident: ref15 doi: 10.1109/TAMD.2015.2431497 – ident: ref28 doi: 10.1007/BF00367348 – volume: 35 start-page: 63 year: 1995 ident: ref26 article-title: Observations: SAM: The self-assessment manikin; an efficient cross-cultural measurement of emotional response publication-title: J Advertising Res – ident: ref34 doi: 10.1109/TAFFC.2018.2885474 – ident: ref16 doi: 10.1016/j.compbiomed.2020.103927 – ident: ref7 doi: 10.1109/JSEN.2021.3059304 – ident: ref11 doi: 10.1016/j.neucom.2013.06.046 – ident: ref8 doi: 10.1109/JSEN.2021.3078087 – ident: ref19 doi: 10.1109/TSP.2014.2365761 – ident: ref32 doi: 10.1155/2011/286073 – ident: ref1 doi: 10.1109/JSEN.2019.2962874 – ident: ref36 doi: 10.1109/TCYB.2017.2788081 – ident: ref6 doi: 10.1109/JBHI.2021.3092412 – ident: ref35 doi: 10.1109/TAFFC.2018.2817622 – ident: ref24 doi: 10.1109/ACCESS.2019.2927768 – ident: ref23 doi: 10.1109/TNSRE.2019.2900725 – ident: ref25 doi: 10.1109/JSEN.2021.3073040 – ident: ref20 doi: 10.1109/TNSRE.2020.3043426 – volume: 7 start-page: 289 year: 1996 ident: ref30 article-title: Changes in central auditory processing following temporal lobectomies in children publication-title: J Amer Acad Audiol – ident: ref22 doi: 10.1371/journal.pone.0095415 – ident: ref10 doi: 10.1109/JSEN.2019.2928781 – ident: ref27 doi: 10.1016/j.compbiomed.2011.06.020 – ident: ref29 doi: 10.1002/hbm.22131 – ident: ref17 doi: 10.1016/j.compbiomed.2021.104428 – ident: ref5 doi: 10.1177/0963721420924770 – ident: ref9 doi: 10.1109/TAFFC.2021.3068496 – ident: ref2 doi: 10.1109/T-AFFC.2011.15 – ident: ref12 doi: 10.1109/TBME.2019.2897651 – ident: ref14 doi: 10.1109/JSEN.2020.3020828 – ident: ref18 doi: 10.1109/TNSRE.2021.3059429 |
SSID | ssj0019757 |
Score | 2.3978248 |
Snippet | Emotion recognition based on electroencephalography (EEG) signals has become an interesting research topic in the field of neuroscience, psychology, neural... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23245 |
SubjectTerms | Accuracy Brain Brain modeling brain network Classification EEG Electroencephalography Emotion recognition Emotional factors Emotions Ensemble learning Feature extraction Hearing Hearing loss hearing-impaired subjects Locking Motion pictures Psychology Sensors Stacking stacking ensemble learning framework |
Title | Emotion Recognition From EEG Signals of Hearing-Impaired People Using Stacking Ensemble Learning Framework Based on a Novel Brain Network |
URI | https://ieeexplore.ieee.org/document/9524638 https://www.proquest.com/docview/2583640530 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH6oF_XgLo4bOXgSO7ZJF3tU6TgKDuICcyvZOopjKzoj6D_wX_uSZgY3xFsoSQi87XvNy_cAdqivIkQB0gsSRb1QcrQ5zCLQ3JlSMlWFtF1Lzjtx-yY860bdCdgbv4XRWtviM900Q3uXryo5NL_K9tOIhqgvkzCJiVv9Vmt8Y5AmltUTDdj3QpZ03Q1m4Kf7Z1dZBzNBGmCC6htv_CUG2aYqPzyxDS-teTgfHayuKrlvDgeiKd--cTb-9-QLMOdwJjmsFWMRJnS5BLOf2AeXYNo1QL99XYb3rG7nQy5HBUU4bj1VDyTLTsjVXc_QLJOqIG20DFztnaIbQW-pyIUtQSe29IAgdJXm3zvJymf9IPC742_t4WauCowcYeBUBPfnpFO96D45Mm0qSKcuSF-B61Z2fdz2XJcGTyJUGHiCxjKSoUQwwAMmBC1iGQqeJBwzMUxwooAjiudJoRRnWmnNOUs5VRxnMyrZKkyVVanXgCC4KagUDCEHAk0lRHwQo7qkiZCGVTBsgD8SWy4dg7lppNHPbSbjp7mRdG4knTtJN2B3vOSxpu_4a_Kykdx4ohNaAzZHupE7A3_OaXTAYgS7zF__fdUGzJi9TZgLok2YGjwN9Rbil4HYtor7Af2-7Ck |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7xOAAHyqMVaXn40BNiw669D_bYVJuGQFYIgpTbyq-lCJKtQoIE_6D_umOvE9GCKm7WyvZamhnPN_b4G4Cv1FcRogDpBYmiXig52hxGEWjuTCmZqlLaqiW9PO5ch91BNFiAo_lbGK21TT7TTdO0d_mqklNzVHacRjREfVmEZfT7UVC_1prfGaSJ5fVEE_a9kCUDd4cZ-Olx9yrLMRakAYaovtmP__JCtqzKq73YOpj2B-jNllbnldw1pxPRlM__sDa-d-0bsO6QJvlWq8YmLOjRFqy94B_cghVXAv3n0zb8zuqCPuRyllKE7fa4GpIs-0Gubm8M0TKpStJB28DR3iluJLhfKnJhk9CJTT4gCF6lOX0n2ehBDwV-dwyuNziZywMjLXSdiuD8nOTVo74nLVOoguR1SvpH6Lez_veO5-o0eBLBwsQTNJaRDCXCAR4wIWgZy1DwJOEYi2GIEwUccTxPSqU400przlnKqeLYm1HJPsHSqBrpHSAIb0oqBUPQgVBTCRGfxKgwaSKk4RUMG-DPxFZIx2FuSmncFzaW8dPCSLowki6cpBtwOB_yqybw-F_nbSO5eUcntAbsznSjcCb-UNDohMUId5n_-e1RB7DS6ffOi_PT_OwLrJr_GKcXRLuwNBlP9R6imYnYt0r8B3Qm73I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+Recognition+From+EEG+Signals+of+Hearing-Impaired+People+Using+Stacking+Ensemble+Learning+Framework+Based+on+a+Novel+Brain+Network&rft.jtitle=IEEE+sensors+journal&rft.au=Kang%2C+Qiaoju&rft.au=Gao%2C+Qiang&rft.au=Song%2C+Yu&rft.au=Tian%2C+Zekun&rft.date=2021-10-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=20&rft.spage=23245&rft.epage=23255&rft_id=info:doi/10.1109%2FJSEN.2021.3108471&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2021_3108471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |