Emotion Recognition From EEG Signals of Hearing-Impaired People Using Stacking Ensemble Learning Framework Based on a Novel Brain Network

Emotion recognition based on electroencephalography (EEG) signals has become an interesting research topic in the field of neuroscience, psychology, neural engineering, and computer science. However, the existing studies are mainly focused on normal or depression subjects, and few reports on hearing...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 21; no. 20; pp. 23245 - 23255
Main Authors Kang, Qiaoju, Gao, Qiang, Song, Yu, Tian, Zekun, Yang, Yi, Mao, Zemin, Dong, Enzeng
Format Journal Article
LanguageEnglish
Published New York IEEE 15.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotion recognition based on electroencephalography (EEG) signals has become an interesting research topic in the field of neuroscience, psychology, neural engineering, and computer science. However, the existing studies are mainly focused on normal or depression subjects, and few reports on hearing-impaired subjects. In this work, we have collected the EEG signals of 15 hearing-impaired subjects for categorizing three types of emotions (positive, neutral, and negative). To study the differences in functional connectivity between normal and hearing-impaired subjects under different emotional states, a novel brain network stacking ensemble learning framework was proposed. The phase-locking value (PLV) was utilized to calculate the correlation between EEG channels, and then we constructed a brain network using double thresholds. The spatial features of the brain network were extracted from the perspectives of local differentiation and global integration. In addition, the stacking ensemble learning framework was used to classify the fused features. To evaluate the proposed model, extensive experiments were carried out on the SEED dataset, and the result shows that the proposed method achieved superior performance than state-of-the-art models, in which the average classification accuracy is 0.955 (std: 0.052). In addition, the experimental results of hearing-impaired emotion recognition show that the average classification accuracy is 0.984 (std: 0.005). Finally, we investigated the activation patterns to reveal important brain regions and inter-channel relations about emotion recognition.
AbstractList Emotion recognition based on electroencephalography (EEG) signals has become an interesting research topic in the field of neuroscience, psychology, neural engineering, and computer science. However, the existing studies are mainly focused on normal or depression subjects, and few reports on hearing-impaired subjects. In this work, we have collected the EEG signals of 15 hearing-impaired subjects for categorizing three types of emotions (positive, neutral, and negative). To study the differences in functional connectivity between normal and hearing-impaired subjects under different emotional states, a novel brain network stacking ensemble learning framework was proposed. The phase-locking value (PLV) was utilized to calculate the correlation between EEG channels, and then we constructed a brain network using double thresholds. The spatial features of the brain network were extracted from the perspectives of local differentiation and global integration. In addition, the stacking ensemble learning framework was used to classify the fused features. To evaluate the proposed model, extensive experiments were carried out on the SEED dataset, and the result shows that the proposed method achieved superior performance than state-of-the-art models, in which the average classification accuracy is 0.955 (std: 0.052). In addition, the experimental results of hearing-impaired emotion recognition show that the average classification accuracy is 0.984 (std: 0.005). Finally, we investigated the activation patterns to reveal important brain regions and inter-channel relations about emotion recognition.
Author Mao, Zemin
Dong, Enzeng
Kang, Qiaoju
Tian, Zekun
Gao, Qiang
Song, Yu
Yang, Yi
Author_xml – sequence: 1
  givenname: Qiaoju
  surname: Kang
  fullname: Kang, Qiaoju
  email: qaojukang@hotmail.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
– sequence: 2
  givenname: Qiang
  surname: Gao
  fullname: Gao, Qiang
  email: gaoqiang@tjut.edu.cn
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, Tianjin University of Technology, Tianjin, China
– sequence: 3
  givenname: Yu
  orcidid: 0000-0002-9295-7795
  surname: Song
  fullname: Song, Yu
  email: jasonsongrain@hotmail.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
– sequence: 4
  givenname: Zekun
  surname: Tian
  fullname: Tian, Zekun
  email: t.zk@foxmail.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
– sequence: 5
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  email: yyflying@yeah.net
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
– sequence: 6
  givenname: Zemin
  surname: Mao
  fullname: Mao, Zemin
  email: maozemin@email.tjut.edu.cn
  organization: Technical College for the Deaf, Tianjin University of Technology, Tianjin, China
– sequence: 7
  givenname: Enzeng
  orcidid: 0000-0001-5142-5584
  surname: Dong
  fullname: Dong, Enzeng
  email: dongenzeng@163.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China
BookMark eNp9kEtP3DAUha0KpPL6AVU3llhn6kcSJ8uCMjw0GhBDpe6iG-dmZJjYgx1A_Qn917UZxKILVj46Pude-zske9ZZJOQbZzPOWf3jetUsZ4IJPpOcVbniX8gBL4oq4yqv9pKWLMul-v2VHIbwwBivVaEOyN9mdJNxlt6hdmtr3vTcu5E2zQVdmbWFTaBuoJcI3th1djVuwXjs6S267QbprxBduppAPybR2IBjF_1FzNvkzD2M-Or8Iz2DEHtxPtCle8ENPfNgLF3ilK6Pyf4Qd-HJ-3lE7ufN_flltri5uDr_uci0qOWUdaLUhc41EwK47DoxlDrvQCngZS4kKzhUlQA19D1I7BEBZA2ih5iWQssjcrobu_Xu6RnD1D64Z59-2YqikmXOIqmYUruU9i4Ej0OrzQQJzhTfvGk5axP2NmFvE_b2HXts8v-aW29G8H8-7XzfdQwifuTrQuSlrOQ_MCGRLw
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JBHI_2022_3212475
crossref_primary_10_2139_ssrn_4066353
crossref_primary_10_1109_JSEN_2024_3440340
crossref_primary_10_1145_3712259
crossref_primary_10_1109_JSEN_2024_3380749
crossref_primary_10_1109_TNSRE_2022_3225948
crossref_primary_10_1109_JSEN_2023_3239507
crossref_primary_10_1016_j_measurement_2022_111724
crossref_primary_10_1109_TIM_2023_3240230
crossref_primary_10_1109_JSEN_2024_3393299
crossref_primary_10_1109_TAFFC_2024_3394436
crossref_primary_10_1016_j_bspc_2023_105013
Cites_doi 10.1155/2017/7125057
10.1023/A:1018628609742
10.1037/h0077714
10.1109/TAFFC.2018.2879343
10.1037/0022-3514.53.4.712
10.1093/cercor/bhj127
10.1109/TAMD.2015.2431497
10.1007/BF00367348
10.1109/TAFFC.2018.2885474
10.1016/j.compbiomed.2020.103927
10.1109/JSEN.2021.3059304
10.1016/j.neucom.2013.06.046
10.1109/JSEN.2021.3078087
10.1109/TSP.2014.2365761
10.1155/2011/286073
10.1109/JSEN.2019.2962874
10.1109/TCYB.2017.2788081
10.1109/JBHI.2021.3092412
10.1109/TAFFC.2018.2817622
10.1109/ACCESS.2019.2927768
10.1109/TNSRE.2019.2900725
10.1109/JSEN.2021.3073040
10.1109/TNSRE.2020.3043426
10.1371/journal.pone.0095415
10.1109/JSEN.2019.2928781
10.1016/j.compbiomed.2011.06.020
10.1002/hbm.22131
10.1016/j.compbiomed.2021.104428
10.1177/0963721420924770
10.1109/TAFFC.2021.3068496
10.1109/T-AFFC.2011.15
10.1109/TBME.2019.2897651
10.1109/JSEN.2020.3020828
10.1109/TNSRE.2021.3059429
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2021.3108471
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Psychology
EISSN 1558-1748
EndPage 23255
ExternalDocumentID 10_1109_JSEN_2021_3108471
9524638
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research on Advanced Technology and Engineering Application Team, Tianjin, China
  grantid: 20160524
– fundername: Natural Science Foundation of Tianjin
  grantid: 18JCYBJC87700
  funderid: 10.13039/501100006606
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-b26c5c4c022a13bb2f6c4ba77a16423051a882a7fdda3edeeaa39a2daa1332c3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:22:07 EDT 2025
Thu Apr 24 22:52:28 EDT 2025
Tue Jul 01 04:26:40 EDT 2025
Wed Aug 27 02:26:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-b26c5c4c022a13bb2f6c4ba77a16423051a882a7fdda3edeeaa39a2daa1332c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5142-5584
0000-0002-9295-7795
PQID 2583640530
PQPubID 75733
PageCount 11
ParticipantIDs proquest_journals_2583640530
crossref_primary_10_1109_JSEN_2021_3108471
crossref_citationtrail_10_1109_JSEN_2021_3108471
ieee_primary_9524638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-15
PublicationDateYYYYMMDD 2021-10-15
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref33
ref11
ref32
ref10
morris (ref26) 1995; 35
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
cranford (ref30) 1996; 7
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref31
  doi: 10.1155/2017/7125057
– ident: ref33
  doi: 10.1023/A:1018628609742
– ident: ref4
  doi: 10.1037/h0077714
– ident: ref13
  doi: 10.1109/TAFFC.2018.2879343
– ident: ref3
  doi: 10.1037/0022-3514.53.4.712
– ident: ref21
  doi: 10.1093/cercor/bhj127
– ident: ref15
  doi: 10.1109/TAMD.2015.2431497
– ident: ref28
  doi: 10.1007/BF00367348
– volume: 35
  start-page: 63
  year: 1995
  ident: ref26
  article-title: Observations: SAM: The self-assessment manikin; an efficient cross-cultural measurement of emotional response
  publication-title: J Advertising Res
– ident: ref34
  doi: 10.1109/TAFFC.2018.2885474
– ident: ref16
  doi: 10.1016/j.compbiomed.2020.103927
– ident: ref7
  doi: 10.1109/JSEN.2021.3059304
– ident: ref11
  doi: 10.1016/j.neucom.2013.06.046
– ident: ref8
  doi: 10.1109/JSEN.2021.3078087
– ident: ref19
  doi: 10.1109/TSP.2014.2365761
– ident: ref32
  doi: 10.1155/2011/286073
– ident: ref1
  doi: 10.1109/JSEN.2019.2962874
– ident: ref36
  doi: 10.1109/TCYB.2017.2788081
– ident: ref6
  doi: 10.1109/JBHI.2021.3092412
– ident: ref35
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref24
  doi: 10.1109/ACCESS.2019.2927768
– ident: ref23
  doi: 10.1109/TNSRE.2019.2900725
– ident: ref25
  doi: 10.1109/JSEN.2021.3073040
– ident: ref20
  doi: 10.1109/TNSRE.2020.3043426
– volume: 7
  start-page: 289
  year: 1996
  ident: ref30
  article-title: Changes in central auditory processing following temporal lobectomies in children
  publication-title: J Amer Acad Audiol
– ident: ref22
  doi: 10.1371/journal.pone.0095415
– ident: ref10
  doi: 10.1109/JSEN.2019.2928781
– ident: ref27
  doi: 10.1016/j.compbiomed.2011.06.020
– ident: ref29
  doi: 10.1002/hbm.22131
– ident: ref17
  doi: 10.1016/j.compbiomed.2021.104428
– ident: ref5
  doi: 10.1177/0963721420924770
– ident: ref9
  doi: 10.1109/TAFFC.2021.3068496
– ident: ref2
  doi: 10.1109/T-AFFC.2011.15
– ident: ref12
  doi: 10.1109/TBME.2019.2897651
– ident: ref14
  doi: 10.1109/JSEN.2020.3020828
– ident: ref18
  doi: 10.1109/TNSRE.2021.3059429
SSID ssj0019757
Score 2.3978248
Snippet Emotion recognition based on electroencephalography (EEG) signals has become an interesting research topic in the field of neuroscience, psychology, neural...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23245
SubjectTerms Accuracy
Brain
Brain modeling
brain network
Classification
EEG
Electroencephalography
Emotion recognition
Emotional factors
Emotions
Ensemble learning
Feature extraction
Hearing
Hearing loss
hearing-impaired subjects
Locking
Motion pictures
Psychology
Sensors
Stacking
stacking ensemble learning framework
Title Emotion Recognition From EEG Signals of Hearing-Impaired People Using Stacking Ensemble Learning Framework Based on a Novel Brain Network
URI https://ieeexplore.ieee.org/document/9524638
https://www.proquest.com/docview/2583640530
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH6oF_XgLo4bOXgSO7ZJF3tU6TgKDuICcyvZOopjKzoj6D_wX_uSZgY3xFsoSQi87XvNy_cAdqivIkQB0gsSRb1QcrQ5zCLQ3JlSMlWFtF1Lzjtx-yY860bdCdgbv4XRWtviM900Q3uXryo5NL_K9tOIhqgvkzCJiVv9Vmt8Y5AmltUTDdj3QpZ03Q1m4Kf7Z1dZBzNBGmCC6htv_CUG2aYqPzyxDS-teTgfHayuKrlvDgeiKd--cTb-9-QLMOdwJjmsFWMRJnS5BLOf2AeXYNo1QL99XYb3rG7nQy5HBUU4bj1VDyTLTsjVXc_QLJOqIG20DFztnaIbQW-pyIUtQSe29IAgdJXm3zvJymf9IPC742_t4WauCowcYeBUBPfnpFO96D45Mm0qSKcuSF-B61Z2fdz2XJcGTyJUGHiCxjKSoUQwwAMmBC1iGQqeJBwzMUxwooAjiudJoRRnWmnNOUs5VRxnMyrZKkyVVanXgCC4KagUDCEHAk0lRHwQo7qkiZCGVTBsgD8SWy4dg7lppNHPbSbjp7mRdG4knTtJN2B3vOSxpu_4a_Kykdx4ohNaAzZHupE7A3_OaXTAYgS7zF__fdUGzJi9TZgLok2YGjwN9Rbil4HYtor7Af2-7Ck
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB7xOAAHyqMVaXn40BNiw669D_bYVJuGQFYIgpTbyq-lCJKtQoIE_6D_umOvE9GCKm7WyvZamhnPN_b4G4Cv1FcRogDpBYmiXig52hxGEWjuTCmZqlLaqiW9PO5ch91BNFiAo_lbGK21TT7TTdO0d_mqklNzVHacRjREfVmEZfT7UVC_1prfGaSJ5fVEE_a9kCUDd4cZ-Olx9yrLMRakAYaovtmP__JCtqzKq73YOpj2B-jNllbnldw1pxPRlM__sDa-d-0bsO6QJvlWq8YmLOjRFqy94B_cghVXAv3n0zb8zuqCPuRyllKE7fa4GpIs-0Gubm8M0TKpStJB28DR3iluJLhfKnJhk9CJTT4gCF6lOX0n2ehBDwV-dwyuNziZywMjLXSdiuD8nOTVo74nLVOoguR1SvpH6Lez_veO5-o0eBLBwsQTNJaRDCXCAR4wIWgZy1DwJOEYi2GIEwUccTxPSqU400przlnKqeLYm1HJPsHSqBrpHSAIb0oqBUPQgVBTCRGfxKgwaSKk4RUMG-DPxFZIx2FuSmncFzaW8dPCSLowki6cpBtwOB_yqybw-F_nbSO5eUcntAbsznSjcCb-UNDohMUId5n_-e1RB7DS6ffOi_PT_OwLrJr_GKcXRLuwNBlP9R6imYnYt0r8B3Qm73I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+Recognition+From+EEG+Signals+of+Hearing-Impaired+People+Using+Stacking+Ensemble+Learning+Framework+Based+on+a+Novel+Brain+Network&rft.jtitle=IEEE+sensors+journal&rft.au=Kang%2C+Qiaoju&rft.au=Gao%2C+Qiang&rft.au=Song%2C+Yu&rft.au=Tian%2C+Zekun&rft.date=2021-10-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=20&rft.spage=23245&rft.epage=23255&rft_id=info:doi/10.1109%2FJSEN.2021.3108471&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2021_3108471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon