Unsupervised Change Detection From Heterogeneous Data Based on Image Translation
It is quite an important and challenging problem for change detection (CD) from heterogeneous remote sensing images. The images obtained from different sensors (i.e., synthetic aperture radar (SAR) & optical camera) characterize the distinct properties of objects. Thus, it is impossible to detec...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 13 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is quite an important and challenging problem for change detection (CD) from heterogeneous remote sensing images. The images obtained from different sensors (i.e., synthetic aperture radar (SAR) & optical camera) characterize the distinct properties of objects. Thus, it is impossible to detect changes by direct comparison of heterogeneous images. In this article, a new unsupervised change detection (USCD) method is proposed based on image translation. The cycle-consistent adversarial networks (CycleGANs) are employed to learn the subimage to subimage mapping relation using the given pair (i.e., before and after the event) of heterogeneous images from which the changes will be detected. Then, we can translate one image (e.g., SAR) from its original feature space (e.g., SAR) to another space (e.g., optical). By doing this, the pair of images can be represented in a common feature space (e.g., optical). The pixels with close pattern values in the before-event image may have quite different values in the after-event image if the change happens on some ones. Thus, we can generate the difference map between the translated before-event image and the original after-event image. Then, the difference map is divided into changed and unchanged parts. However, these detection results are not very reliable. We will select some significantly changed and unchanged pixel pairs from the two parts with the clustering technique (i.e., <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-means). These selected pixel pairs are used to learn a binary classifier, and the other pixel pairs will be classified by this classifier to obtain the final CD results. Experimental results on different real datasets demonstrate the effectiveness of the proposed USCD method compared with several other related methods. |
---|---|
AbstractList | It is quite an important and challenging problem for change detection (CD) from heterogeneous remote sensing images. The images obtained from different sensors (i.e., synthetic aperture radar (SAR) & optical camera) characterize the distinct properties of objects. Thus, it is impossible to detect changes by direct comparison of heterogeneous images. In this article, a new unsupervised change detection (USCD) method is proposed based on image translation. The cycle-consistent adversarial networks (CycleGANs) are employed to learn the subimage to subimage mapping relation using the given pair (i.e., before and after the event) of heterogeneous images from which the changes will be detected. Then, we can translate one image (e.g., SAR) from its original feature space (e.g., SAR) to another space (e.g., optical). By doing this, the pair of images can be represented in a common feature space (e.g., optical). The pixels with close pattern values in the before-event image may have quite different values in the after-event image if the change happens on some ones. Thus, we can generate the difference map between the translated before-event image and the original after-event image. Then, the difference map is divided into changed and unchanged parts. However, these detection results are not very reliable. We will select some significantly changed and unchanged pixel pairs from the two parts with the clustering technique (i.e., <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-means). These selected pixel pairs are used to learn a binary classifier, and the other pixel pairs will be classified by this classifier to obtain the final CD results. Experimental results on different real datasets demonstrate the effectiveness of the proposed USCD method compared with several other related methods. It is quite an important and challenging problem for change detection (CD) from heterogeneous remote sensing images. The images obtained from different sensors (i.e., synthetic aperture radar (SAR) & optical camera) characterize the distinct properties of objects. Thus, it is impossible to detect changes by direct comparison of heterogeneous images. In this article, a new unsupervised change detection (USCD) method is proposed based on image translation. The cycle-consistent adversarial networks (CycleGANs) are employed to learn the subimage to subimage mapping relation using the given pair (i.e., before and after the event) of heterogeneous images from which the changes will be detected. Then, we can translate one image (e.g., SAR) from its original feature space (e.g., SAR) to another space (e.g., optical). By doing this, the pair of images can be represented in a common feature space (e.g., optical). The pixels with close pattern values in the before-event image may have quite different values in the after-event image if the change happens on some ones. Thus, we can generate the difference map between the translated before-event image and the original after-event image. Then, the difference map is divided into changed and unchanged parts. However, these detection results are not very reliable. We will select some significantly changed and unchanged pixel pairs from the two parts with the clustering technique (i.e., [Formula Omitted]-means). These selected pixel pairs are used to learn a binary classifier, and the other pixel pairs will be classified by this classifier to obtain the final CD results. Experimental results on different real datasets demonstrate the effectiveness of the proposed USCD method compared with several other related methods. |
Author | Pan, Quan Liu, Zhun-Ga Zhang, Zuo-Wei Ning, Liang-Bo |
Author_xml | – sequence: 1 givenname: Zhun-Ga orcidid: 0000-0001-7144-7449 surname: Liu fullname: Liu, Zhun-Ga email: liuzhunga@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Zuo-Wei orcidid: 0000-0002-4855-5924 surname: Zhang fullname: Zhang, Zuo-Wei email: zuowei_zhang@mail.nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Quan surname: Pan fullname: Pan, Quan email: quanpan@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Liang-Bo surname: Ning fullname: Ning, Liang-Bo email: ninglb@mail.nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China |
BookMark | eNp9kEFLwzAUx4NMcJt-APFS8Nz5krRLc9TNbcJA0e0c0vR1dmzJTFrBb2_rhgcPnh4P_r_35_0GpGedRUKuKYwoBXm3mr--jRgwOuIghaDijPRpmmYxjJOkR_pA5ThmmWQXZBDCFoAmKRV98rK2oTmg_6wCFtHkXdsNRlOs0dSVs9HMu320aFfvNmjRNSGa6lpHD7qLt4GnvW6Bldc27HSHXJLzUu8CXp3mkKxnj6vJIl4-z58m98vYMMnrOAeZlRxYnlIQppRSy7zAROSGoykSLNFwYzjNoTRJwZgphKRMUK2z1ABP-ZDcHu8evPtoMNRq6xpv20rFxlSmEiCTbYoeU8a7EDyW6uCrvfZfioLqxKlOnOrEqZO4lhF_GFPVP7_VXle7f8mbI1kh4m-TTKRIIePf8oB91Q |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_TGRS_2023_3294884 crossref_primary_10_1109_TGRS_2023_3294300 crossref_primary_10_1109_TGRS_2024_3524639 crossref_primary_10_1109_TGRS_2024_3491826 crossref_primary_10_1109_TNNLS_2022_3184414 crossref_primary_10_1109_JSTARS_2024_3479703 crossref_primary_10_1109_TGRS_2023_3314217 crossref_primary_10_1109_TGRS_2024_3421581 crossref_primary_10_1007_s13042_024_02176_6 crossref_primary_10_1109_LGRS_2023_3333354 crossref_primary_10_1109_LGRS_2022_3217348 crossref_primary_10_1109_LGRS_2023_3318593 crossref_primary_10_1109_TGRS_2024_3403727 crossref_primary_10_1117_1_JRS_18_024516 crossref_primary_10_1109_TGRS_2023_3312344 crossref_primary_10_1109_JSTARS_2024_3413715 crossref_primary_10_1109_TAI_2024_3357667 crossref_primary_10_1080_10106049_2024_2329673 crossref_primary_10_1080_10095020_2024_2446307 crossref_primary_10_1109_TGRS_2023_3330494 crossref_primary_10_1109_JSTARS_2023_3288294 crossref_primary_10_1109_TGRS_2022_3200996 crossref_primary_10_1109_TIP_2025_3539461 crossref_primary_10_1109_JPROC_2022_3219376 crossref_primary_10_1109_JSTARS_2024_3411691 crossref_primary_10_1109_JSTARS_2024_3416183 crossref_primary_10_1109_TGRS_2024_3515258 crossref_primary_10_1109_TGRS_2023_3305334 crossref_primary_10_1109_TGRS_2023_3235981 crossref_primary_10_1109_TGRS_2022_3209972 crossref_primary_10_1109_TGRS_2025_3526211 crossref_primary_10_1080_17538947_2024_2398051 crossref_primary_10_1109_TGRS_2022_3203897 crossref_primary_10_1109_TGRS_2022_3221489 crossref_primary_10_1109_TGRS_2023_3320805 crossref_primary_10_1109_JSTARS_2024_3461988 crossref_primary_10_1109_TGRS_2022_3165371 |
Cites_doi | 10.1109/TGRS.2019.2930348 10.1109/JSTARS.2019.2934602 10.1109/TIP.2017.2781375 10.1007/978-3-030-01240-3_12 10.1016/j.rse.2007.10.002 10.1109/TGRS.2013.2288271 10.1109/TGRS.2016.2594952 10.1109/TGRS.2014.2360097 10.1109/TIP.2006.888195 10.14358/PERS.81.8.637 10.1177/001316448104100307 10.1007/978-3-030-01261-8_12 10.1109/TGRS.2017.2739800 10.1016/j.sigpro.2014.09.009 10.1016/j.rse.2015.01.006 10.1109/TFUZZ.2013.2249072 10.1109/TIP.2017.2784560 10.1109/ICCV.2019.01065 10.1109/34.506411 10.1016/j.asoc.2015.10.044 10.1109/TGRS.2010.2066979 10.1109/ICCV.2017.244 10.1109/JPROC.2012.2197169 10.3389/fnbot.2013.00021 10.1016/j.neuroimage.2017.09.001 10.1109/JSTARS.2010.2060316 10.1109/TGRS.2013.2266673 10.1109/TGRS.2009.2038274 10.1109/LGRS.2010.2068537 10.1109/TGRS.2016.2516402 10.1007/978-3-030-01219-9_11 10.1109/TGRS.2014.2321145 10.1016/j.isprsjprs.2013.03.006 10.1109/CVPR.2018.00016 10.1016/j.rse.2010.02.018 10.1016/S0034-4257(97)00049-7 10.1016/j.rse.2014.01.011 10.1109/ICCV.2017.310 10.1023/A:I0I0933404324 10.1109/CVPR.2018.00541 10.1109/TGRS.2008.916476 10.1109/TPAMI.2020.2982166 10.1109/LGRS.2018.2843385 10.1109/TIP.2008.916047 10.1080/714110283 10.1109/CVPR.2019.00737 10.1109/TNNLS.2016.2636227 10.1016/j.patrec.2009.09.011 10.1109/JSTARS.2020.2964409 10.1109/TIP.2014.2378053 10.1109/JSTARS.2014.2347171 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2021.3097717 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 13 |
ExternalDocumentID | 10_1109_TGRS_2021_3097717 9497508 |
Genre | orig-research |
GrantInformation_xml | – fundername: Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University grantid: CX201953 funderid: 10.13039/501100002663 – fundername: National Natural Science Foundation of China grantid: 61790554; U20B2067; 61790552 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c293t-b098f302b5107cf99a9bde47bc3ecd4efec3cc31b0fc4d22cd791271aa85c0353 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Tue Aug 26 14:40:26 EDT 2025 Thu Apr 24 23:02:55 EDT 2025 Tue Jul 01 01:34:29 EDT 2025 Wed Aug 27 03:03:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-b098f302b5107cf99a9bde47bc3ecd4efec3cc31b0fc4d22cd791271aa85c0353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7144-7449 0000-0002-4855-5924 |
PQID | 2619590089 |
PQPubID | 85465 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2619590089 ieee_primary_9497508 crossref_primary_10_1109_TGRS_2021_3097717 crossref_citationtrail_10_1109_TGRS_2021_3097717 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 Liu (ref36) ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Denton (ref33) ref51 ref50 ref46 ref45 ref48 ref42 Radford (ref34) 2015 ref41 ref44 ref49 ref8 ref7 He (ref43) ref9 ref4 ref3 ref6 ref5 ref35 ref37 ref31 ref30 ref32 ref2 ref1 ref39 ref38 Deng (ref47) Choi (ref40) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref29 doi: 10.1109/TGRS.2019.2930348 – ident: ref28 doi: 10.1109/JSTARS.2019.2934602 – start-page: 820 volume-title: Proc. NIPS ident: ref43 article-title: Dual learning for machine translation – ident: ref51 doi: 10.1109/TIP.2017.2781375 – ident: ref38 doi: 10.1007/978-3-030-01240-3_12 – ident: ref21 doi: 10.1016/j.rse.2007.10.002 – start-page: 1486 volume-title: Proc. NIPS ident: ref33 article-title: Deep generative image models using a Laplacian pyramid of adversarial networks – start-page: 8789 volume-title: Proc. CVPR ident: ref40 article-title: Stargan: Unified generative adversarial networks for multi-domain image-toimage translation – ident: ref14 doi: 10.1109/TGRS.2013.2288271 – ident: ref9 doi: 10.1109/TGRS.2016.2594952 – ident: ref12 doi: 10.1109/TGRS.2014.2360097 – ident: ref13 doi: 10.1109/TIP.2006.888195 – start-page: 700 volume-title: Proc. NIPS ident: ref36 article-title: Unsupervised image-to-image translation networks – ident: ref3 doi: 10.14358/PERS.81.8.637 – ident: ref53 doi: 10.1177/001316448104100307 – ident: ref46 doi: 10.1007/978-3-030-01261-8_12 – ident: ref30 doi: 10.1109/TGRS.2017.2739800 – ident: ref23 doi: 10.1016/j.sigpro.2014.09.009 – ident: ref7 doi: 10.1016/j.rse.2015.01.006 – volume-title: arXiv:1511.06434 year: 2015 ident: ref34 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks – ident: ref52 doi: 10.1109/TFUZZ.2013.2249072 – ident: ref18 doi: 10.1109/TIP.2017.2784560 – ident: ref41 doi: 10.1109/ICCV.2019.01065 – ident: ref56 doi: 10.1109/34.506411 – ident: ref16 doi: 10.1016/j.asoc.2015.10.044 – ident: ref20 doi: 10.1109/TGRS.2010.2066979 – ident: ref35 doi: 10.1109/ICCV.2017.244 – ident: ref8 doi: 10.1109/JPROC.2012.2197169 – ident: ref57 doi: 10.3389/fnbot.2013.00021 – ident: ref55 doi: 10.1016/j.neuroimage.2017.09.001 – ident: ref1 doi: 10.1109/JSTARS.2010.2060316 – ident: ref19 doi: 10.1109/TGRS.2013.2266673 – ident: ref26 doi: 10.1109/TGRS.2009.2038274 – ident: ref25 doi: 10.1109/LGRS.2010.2068537 – start-page: 6 volume-title: Proc. CVPR ident: ref47 article-title: Image-image domain adaptation with preserved selfsimilarity and domain-dissimilarity for person reidentification – ident: ref6 doi: 10.1109/TGRS.2016.2516402 – ident: ref39 doi: 10.1007/978-3-030-01219-9_11 – ident: ref10 doi: 10.1109/TGRS.2014.2321145 – ident: ref17 doi: 10.1016/j.isprsjprs.2013.03.006 – ident: ref44 doi: 10.1109/CVPR.2018.00016 – ident: ref4 doi: 10.1016/j.rse.2010.02.018 – ident: ref54 doi: 10.1016/S0034-4257(97)00049-7 – ident: ref5 doi: 10.1016/j.rse.2014.01.011 – ident: ref37 doi: 10.1109/ICCV.2017.310 – ident: ref50 doi: 10.1023/A:I0I0933404324 – ident: ref45 doi: 10.1109/CVPR.2018.00541 – ident: ref27 doi: 10.1109/TGRS.2008.916476 – ident: ref42 doi: 10.1109/TPAMI.2020.2982166 – ident: ref32 doi: 10.1109/LGRS.2018.2843385 – ident: ref15 doi: 10.1109/TIP.2008.916047 – ident: ref24 doi: 10.1080/714110283 – ident: ref48 doi: 10.1109/CVPR.2019.00737 – ident: ref22 doi: 10.1109/TNNLS.2016.2636227 – ident: ref49 doi: 10.1016/j.patrec.2009.09.011 – ident: ref31 doi: 10.1109/JSTARS.2020.2964409 – ident: ref11 doi: 10.1109/TIP.2014.2378053 – ident: ref2 doi: 10.1109/JSTARS.2014.2347171 |
SSID | ssj0014517 |
Score | 2.5594547 |
Snippet | It is quite an important and challenging problem for change detection (CD) from heterogeneous remote sensing images. The images obtained from different sensors... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Change detection Classification Classifiers Clustering Detection Feature extraction heterogeneous images image translation Laser radar Object recognition Optical imaging Optical properties Optical sensors Pixels Radar polarimetry Remote sensing Remote sensors SAR (radar) Synthetic aperture radar Translation unsupervised change detection (USCD) |
Title | Unsupervised Change Detection From Heterogeneous Data Based on Image Translation |
URI | https://ieeexplore.ieee.org/document/9497508 https://www.proquest.com/docview/2619590089 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LSsQwcFBB0INvcX2Rgyexa5s-c_S1roIi6oK3kkynF91WbHvx603S7ioq4q2HSQkzk3k_AA40i4QYC3JUFvtOQAE6QipyuKJIq4Q8j2wc8uY2Go6C66fwaQaOpr0wRGSLz6hvPm0uPyuxMaGyYxEIreCSWZjVjlvbqzXNGASh17VGR452IniXwfRccfx4ef-gPUHu9X1Xmzt2N9mnDrJLVX5IYqteBstwM7lYW1Xy3G9q1cf3bzMb_3vzFVjq7Ex20jLGKsxQsQaLX6YPrsG8rf7Eah3uRkXVvBqpUVHG2oYDdk61LdMq2OCtHLOhqZspNbtR2VTsXNaSnUoDrgGuxloqMav22tK6DRgNLh7Phk63asFBre9rR7kiyX2XK_1EY8yFkEJlFMQKfcIsoJzQR_Q95eYYZJxjFguPx56USYiuH_qbMFeUBW0Bk9rmi1SeqIS0beNxGXOpOJkpN_r_mPfAnSA_xW4OuVmH8ZJaf8QVqaFXauiVdvTqweH0yGs7hOMv4HWD_ylgh_oe7E4onHbPtEqN-2jWpiZi-_dTO7DATb-Djbnswlz91tCetkJqtW_Z7wNP5Njr |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5VRQg4QB8glpbiQ7kgZZs4Tx96KCzLbl9CsCv1FmxncoEmVZMIwW_pX-l_69jxLqggbpW45TCOFM-XedjfzADsEkRinQr0VJGGXoSR9oRU6HGFCbmEskzsOeTJaTKZR4dn8dkKXC1rYRDRks9waB7tXX5R684cle2JSJCDyxyF8gh_fKcErdmfjkibrzkfv5-9m3huhoCnyZG1nvJFVoY-V4S9VJdCSKEKjFKlQ9RFhCXqUOswUH6po4JzXaQi4GkgZRZr386EIAN_j-KMmPfVYcs7iigOXDF24lHawt2daeCLvdmHT58p9-TBMPQpwLLT0H55PTvG5Q_bbx3a-AlcL7ai57F8HXatGuqft7pE_q97tQaPXSTNDnror8MKVhvw6Lf-ihtw3_JbdbMJH-dV010Yu9hgwfqSCjbC1hLRKja-rM_ZxDCDavqhsO4aNpKtZG-lESeB6TnZXWYde08efArzO_m4Z7Ba1RU-ByYpqk1UmakMKXoLuEy5VBxNHx96vy4H4C-UnWvXad0M_PiW24zLF7nBR27wkTt8DODNcslF32bkX8KbRt9LQafqAWwvEJU7Q9TkJkE2g2Ez8eLvq17Bg8ns5Dg_np4ebcFDbqo77AnTNqy2lx2-pJirVTsW-gy-3DV-bgDQBjjF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Change+Detection+From+Heterogeneous+Data+Based+on+Image+Translation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Liu%2C+Zhun-Ga&rft.au=Zhang%2C+Zuo-Wei&rft.au=Pan%2C+Quan&rft.au=Ning%2C+Liang-Bo&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=60&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2021.3097717&rft.externalDocID=9497508 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |