Improving RPCA-Based Clutter Suppression in GPR Detection of Antipersonnel Mines
Detecting shallow buried antipersonnel mines (APMs) with a ground-penetrating radar (GPR) is a challenging task because of clutter contamination, which often obscures the APM response. In this letter, a novel method combining migration imaging with the low-rank and sparse representation method to su...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 14; no. 8; pp. 1338 - 1342 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detecting shallow buried antipersonnel mines (APMs) with a ground-penetrating radar (GPR) is a challenging task because of clutter contamination, which often obscures the APM response. In this letter, a novel method combining migration imaging with the low-rank and sparse representation method to suppress clutter and extract target image is presented. The proposed method first focuses and strengthens the target response with migration imaging. Then, since the focused target response and clutter, respectively, constitute the sparse component and the low-rank component of the recorded data, the recently proposed robust principal component analysis (RPCA) can be applied to the recorded data to separate the target response (sparse component) from the clutter (low-rank component). Numerical simulation and experiments with real GPR systems are conducted. Results demonstrate the effectiveness of the proposed method in improving signal-to-clutter ratio and retrieving geometrical information of the target, which permits a better APM identification in heavy clutter environment. |
---|---|
AbstractList | Detecting shallow buried antipersonnel mines (APMs) with a ground-penetrating radar (GPR) is a challenging task because of clutter contamination, which often obscures the APM response. In this letter, a novel method combining migration imaging with the low-rank and sparse representation method to suppress clutter and extract target image is presented. The proposed method first focuses and strengthens the target response with migration imaging. Then, since the focused target response and clutter, respectively, constitute the sparse component and the low-rank component of the recorded data, the recently proposed robust principal component analysis (RPCA) can be applied to the recorded data to separate the target response (sparse component) from the clutter (low-rank component). Numerical simulation and experiments with real GPR systems are conducted. Results demonstrate the effectiveness of the proposed method in improving signal-to-clutter ratio and retrieving geometrical information of the target, which permits a better APM identification in heavy clutter environment. |
Author | Deliang Xiang Yi Su Xiaoji Song Kai Zhou |
Author_xml | – sequence: 1 givenname: Xiaoji orcidid: 0000-0001-9039-4784 surname: Song fullname: Song, Xiaoji – sequence: 2 givenname: Deliang orcidid: 0000-0003-0152-6621 surname: Xiang fullname: Xiang, Deliang – sequence: 3 givenname: Kai surname: Zhou fullname: Zhou, Kai – sequence: 4 givenname: Yi surname: Su fullname: Su, Yi |
BookMark | eNp9kMFLwzAUxoNMcJv-AeKl4LkzaZqmOc6pU5g4NgVvIU1fJaNLa5IK_ve2bHjw4Ok9Hu_3vu99EzSyjQWELgmeEYLFzWq52c4STPgs4YQkjJygMWEsjzHjZDT0KYuZyN_P0MT7HcZJmud8jNZP-9Y1X8Z-RJv1Yh7fKg9ltKi7EMBF265tHXhvGhsZGy3Xm-gOAugwDJoqmttgWnC-sRbq6NlY8OfotFK1h4tjnaK3h_vXxWO8elk-LearWCeChlhVOANIMcWYUVBClDllkKmCsrK3mmYlLpQutKZZknKap4UuIMNUqAyyvFB0iq4Pd3v7nx34IHdN52wvKYlIKCYC99wUkcOWdo33DirZOrNX7lsSLIfg5BCcHIKTx-B6hv9htAlqeDk4Zep_yasDaQDgV4kLjkmS0h_XWnyt |
CODEN | IGRSBY |
CitedBy_id | crossref_primary_10_1109_TSP_2021_3056598 crossref_primary_10_1080_01431161_2021_1956700 crossref_primary_10_1109_LGRS_2021_3122262 crossref_primary_10_1109_TGRS_2023_3300276 crossref_primary_10_1109_LGRS_2018_2866331 crossref_primary_10_1109_ACCESS_2021_3081349 crossref_primary_10_1109_TGRS_2024_3515041 crossref_primary_10_1080_2150704X_2020_1864053 crossref_primary_10_1109_TGRS_2023_3296722 crossref_primary_10_3390_rs14194879 crossref_primary_10_1109_LGRS_2021_3077257 crossref_primary_10_3390_s19173807 crossref_primary_10_3390_electronics13214166 crossref_primary_10_1109_TGRS_2018_2882912 crossref_primary_10_1109_LGRS_2021_3099161 crossref_primary_10_1109_JSTARS_2024_3486535 crossref_primary_10_1109_TGRS_2024_3410277 crossref_primary_10_3390_electronics13234722 crossref_primary_10_3390_rs11080984 crossref_primary_10_1109_LGRS_2021_3086557 crossref_primary_10_1109_LGRS_2020_3026007 crossref_primary_10_1109_LGRS_2023_3274681 crossref_primary_10_1109_TGRS_2022_3194560 crossref_primary_10_1109_LGRS_2022_3159788 crossref_primary_10_1109_MGRS_2021_3082170 crossref_primary_10_1109_ACCESS_2022_3180154 crossref_primary_10_3390_electronics9010025 crossref_primary_10_1080_01431161_2021_1897188 crossref_primary_10_3390_app112110234 crossref_primary_10_3390_rs14030682 crossref_primary_10_1016_j_ndteint_2024_103043 crossref_primary_10_1109_JSEN_2023_3305681 crossref_primary_10_1109_JSEN_2021_3088122 crossref_primary_10_1109_TGRS_2024_3394750 crossref_primary_10_1109_TIM_2024_3378267 crossref_primary_10_1109_JSTARS_2024_3355213 crossref_primary_10_1109_TGRS_2023_3303683 crossref_primary_10_3390_s23115078 crossref_primary_10_1109_TGRS_2022_3160525 crossref_primary_10_1016_j_dsp_2020_102724 crossref_primary_10_1088_1402_4896_ad7cd4 crossref_primary_10_1109_TGRS_2022_3176029 crossref_primary_10_1109_LGRS_2022_3228052 crossref_primary_10_1109_LGRS_2023_3250717 crossref_primary_10_1080_2150704X_2022_2161842 crossref_primary_10_1109_LGRS_2019_2937749 crossref_primary_10_1109_LGRS_2021_3089246 crossref_primary_10_1109_ACCESS_2024_3397465 crossref_primary_10_1109_TGRS_2023_3308205 crossref_primary_10_3390_rs16061043 crossref_primary_10_1109_TGRS_2021_3098122 crossref_primary_10_1109_ACCESS_2020_2988333 crossref_primary_10_1080_01431161_2020_1763508 crossref_primary_10_1109_LGRS_2022_3177011 crossref_primary_10_1109_TGRS_2024_3360101 crossref_primary_10_1016_j_ndteint_2025_103366 crossref_primary_10_1109_LGRS_2024_3385694 crossref_primary_10_3390_rs13102005 |
Cites_doi | 10.1117/12.2177944 10.1109/LGRS.2016.2535161 10.1109/SSP.2001.955243 10.3997/1873-0604.2006018 10.1109/ISIT.2010.5513535 10.1109/TGRS.2006.888136 10.1109/JSTARS.2015.2468597 10.1109/LGRS.2011.2138116 10.1137/080716542 10.1109/TGRS.2004.834800 10.1109/TGRS.2013.2259243 10.1145/1970392.1970395 10.1109/TGRS.2010.2051675 10.1109/JSTARS.2013.2287016 10.1049/PBRA015E_ch7 10.1109/TGRS.2007.900677 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2017.2711251 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 1342 |
ExternalDocumentID | 10_1109_LGRS_2017_2711251 7970124 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION RIG 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-af06ee4030053ea99d835e6ab35d54546d0bacbcc36247384bcbe6039a6e68ba3 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Mon Jun 30 08:40:52 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Tue Jul 01 03:45:34 EDT 2025 Tue Aug 26 17:04:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-af06ee4030053ea99d835e6ab35d54546d0bacbcc36247384bcbe6039a6e68ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0152-6621 0000-0001-9039-4784 |
PQID | 1923019047 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1109_LGRS_2017_2711251 ieee_primary_7970124 proquest_journals_1923019047 crossref_citationtrail_10_1109_LGRS_2017_2711251 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref2 (ref1) 2016 kalika (ref11) 2015; 9454 ref17 ref16 ref19 ref8 ref7 (ref18) 2016 ref9 ref4 ref3 ref6 ref5 candès (ref10) 2009; 58 yilmaz (ref14) 1987 |
References_xml | – volume: 9454 start-page: 94541d year: 2015 ident: ref11 article-title: Leveraging robust principal component analysis to detect buried explosive threats in handheld ground-penetrating radar data publication-title: Proc SPIE doi: 10.1117/12.2177944 – year: 2016 ident: ref18 publication-title: Multistatic Beamforming Data – ident: ref12 doi: 10.1109/LGRS.2016.2535161 – ident: ref5 doi: 10.1109/SSP.2001.955243 – ident: ref2 doi: 10.3997/1873-0604.2006018 – ident: ref13 doi: 10.1109/ISIT.2010.5513535 – ident: ref6 doi: 10.1109/TGRS.2006.888136 – ident: ref17 doi: 10.1109/JSTARS.2015.2468597 – ident: ref15 doi: 10.1109/LGRS.2011.2138116 – ident: ref16 doi: 10.1137/080716542 – ident: ref8 doi: 10.1109/TGRS.2004.834800 – ident: ref9 doi: 10.1109/TGRS.2013.2259243 – volume: 58 start-page: 1 year: 2009 ident: ref10 article-title: Robust principal component analysis? publication-title: J ACM doi: 10.1145/1970392.1970395 – start-page: 241 year: 1987 ident: ref14 article-title: Migration publication-title: Seismic Data Processing – year: 2016 ident: ref1 publication-title: International Campaign to Ban Landmines – ident: ref7 doi: 10.1109/TGRS.2010.2051675 – ident: ref4 doi: 10.1109/JSTARS.2013.2287016 – ident: ref3 doi: 10.1049/PBRA015E_ch7 – ident: ref19 doi: 10.1109/TGRS.2007.900677 |
SSID | ssj0024887 |
Score | 2.4547415 |
Snippet | Detecting shallow buried antipersonnel mines (APMs) with a ground-penetrating radar (GPR) is a challenging task because of clutter contamination, which often... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1338 |
SubjectTerms | Antennas Antipersonnel mines Clutter Clutter suppression Computer simulation Contamination Detection Ground penetrating radar ground-penetrating radar (GPR) Imaging techniques Information retrieval Land mines landmine detection Mathematical models Matrix decomposition Methods Mines Numerical simulations Permits Principal component analysis Principal components analysis Radar robust principal component analysis (RPCA) Simulation Soil contamination Sparse matrices System effectiveness Target recognition |
Title | Improving RPCA-Based Clutter Suppression in GPR Detection of Antipersonnel Mines |
URI | https://ieeexplore.ieee.org/document/7970124 https://www.proquest.com/docview/1923019047 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEoKFN6K85IEJkeI0jpOMpUARoqgqIHWLbOcqKqoUQTrAr8fnpEU8hNgy2JF1Z_v7bN_dB3BkQUwNNIlmBL7xLP8PvVgL6RHWWzaS-cZleHdu5dWDuO6H_Tk4meXCIKILPsM6fbq3_GxsJnRVdholkd1PxTzM24Nbmav1WVcvdmJ4xAi8MIn71Qumz5PTm3bvjoK4onoj8gnQv2CQE1X5sRM7eLlchc50YGVUyVN9Uui6ef9Ws_G_I1-DlYpnsmY5MdZhDvMNWKokzx_fNmCx7TR93zahO7tYYL1uq-mdWWDLWGvkJKwZyX6WsbI5G-as3e2xcyxcAFfOxgPWzIvhs6PtOY5Yh6Lot-Dh8uK-deVVQguesWhfeGrAJaLgVLo-QJUkmeVlKJUOwszaU8iMa2W0MRbtRBTEQhuNkgeJkihjrYJtWMjHOe4AQ6VCrnxfq4wLo7WSMiOKInUD1aAR1IBPTZ-aqgo5iWGMUnca4UlK3krJW2nlrRocz7o8lyU4_mq8SdafNawMX4P9qX_TapG-pkRuKZVeRLu_99qDZfp3Ge-3DwvFywQPLAcp9KGbfB8JwNZI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH6CIsQu_EYrv-bDTmgpTuM4ybEUaLe1qOpA6i2ynVdRUaUVpAf218_PSTuxTRO3HGzF8nP8fbG_9z6AzxbE1FiTaUbgG8_y_9CLtZAeYb1lI5lvXIZ3_052H8S3UThagy-rXBhEdOIzbNCju8vPZmZBR2WXURLZ_VSsw4bF_dAvs7V-V9aLnR0ecQIvTOJRdYfp8-Sy1xn-IBlX1GhGPkH6GxRytip_7cUOYG53oL8cWqkreWosCt0wP_-o2vjese_CdsU0WatcGnuwhvk-bFWm54-v-7DZca6-rwcwWB0tsOGg3fKuLLRlrD11JtaMjD9LtWzOJjnrDIbsGgsn4crZbMxaeTGZO-Ke45T1SUd_CA-3N_ftrldZLXjG4n3hqTGXiIJT8foAVZJklpmhVDoIMzufQmZcK6ONsXgnoiAW2miUPEiURBlrFRxBLZ_l-BEYKhVy5ftaZVwYrZWUGZEUqZuoxs2gDnw59amp6pCTHcY0df8jPEkpWilFK62iVYeLVZd5WYTjf40PaPZXDauJr8PpMr5p9Zm-pERvKZleRMf_7vUJtrr3_V7a-3r3_QQ-0HtK9d8p1IrnBZ5ZRlLoc7cQfwFhUtmR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+RPCA-Based+Clutter+Suppression+in+GPR+Detection+of+Antipersonnel+Mines&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Song%2C+Xiaoji&rft.au=Xiang%2C+Deliang&rft.au=Zhou%2C+Kai&rft.au=Su%2C+Yi&rft.date=2017-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=14&rft.issue=8&rft.spage=1338&rft_id=info:doi/10.1109%2FLGRS.2017.2711251&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |