Improving RPCA-Based Clutter Suppression in GPR Detection of Antipersonnel Mines

Detecting shallow buried antipersonnel mines (APMs) with a ground-penetrating radar (GPR) is a challenging task because of clutter contamination, which often obscures the APM response. In this letter, a novel method combining migration imaging with the low-rank and sparse representation method to su...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 14; no. 8; pp. 1338 - 1342
Main Authors Song, Xiaoji, Xiang, Deliang, Zhou, Kai, Su, Yi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detecting shallow buried antipersonnel mines (APMs) with a ground-penetrating radar (GPR) is a challenging task because of clutter contamination, which often obscures the APM response. In this letter, a novel method combining migration imaging with the low-rank and sparse representation method to suppress clutter and extract target image is presented. The proposed method first focuses and strengthens the target response with migration imaging. Then, since the focused target response and clutter, respectively, constitute the sparse component and the low-rank component of the recorded data, the recently proposed robust principal component analysis (RPCA) can be applied to the recorded data to separate the target response (sparse component) from the clutter (low-rank component). Numerical simulation and experiments with real GPR systems are conducted. Results demonstrate the effectiveness of the proposed method in improving signal-to-clutter ratio and retrieving geometrical information of the target, which permits a better APM identification in heavy clutter environment.
AbstractList Detecting shallow buried antipersonnel mines (APMs) with a ground-penetrating radar (GPR) is a challenging task because of clutter contamination, which often obscures the APM response. In this letter, a novel method combining migration imaging with the low-rank and sparse representation method to suppress clutter and extract target image is presented. The proposed method first focuses and strengthens the target response with migration imaging. Then, since the focused target response and clutter, respectively, constitute the sparse component and the low-rank component of the recorded data, the recently proposed robust principal component analysis (RPCA) can be applied to the recorded data to separate the target response (sparse component) from the clutter (low-rank component). Numerical simulation and experiments with real GPR systems are conducted. Results demonstrate the effectiveness of the proposed method in improving signal-to-clutter ratio and retrieving geometrical information of the target, which permits a better APM identification in heavy clutter environment.
Author Deliang Xiang
Yi Su
Xiaoji Song
Kai Zhou
Author_xml – sequence: 1
  givenname: Xiaoji
  orcidid: 0000-0001-9039-4784
  surname: Song
  fullname: Song, Xiaoji
– sequence: 2
  givenname: Deliang
  orcidid: 0000-0003-0152-6621
  surname: Xiang
  fullname: Xiang, Deliang
– sequence: 3
  givenname: Kai
  surname: Zhou
  fullname: Zhou, Kai
– sequence: 4
  givenname: Yi
  surname: Su
  fullname: Su, Yi
BookMark eNp9kMFLwzAUxoNMcJv-AeKl4LkzaZqmOc6pU5g4NgVvIU1fJaNLa5IK_ve2bHjw4Ok9Hu_3vu99EzSyjQWELgmeEYLFzWq52c4STPgs4YQkjJygMWEsjzHjZDT0KYuZyN_P0MT7HcZJmud8jNZP-9Y1X8Z-RJv1Yh7fKg9ltKi7EMBF265tHXhvGhsZGy3Xm-gOAugwDJoqmttgWnC-sRbq6NlY8OfotFK1h4tjnaK3h_vXxWO8elk-LearWCeChlhVOANIMcWYUVBClDllkKmCsrK3mmYlLpQutKZZknKap4UuIMNUqAyyvFB0iq4Pd3v7nx34IHdN52wvKYlIKCYC99wUkcOWdo33DirZOrNX7lsSLIfg5BCcHIKTx-B6hv9htAlqeDk4Zep_yasDaQDgV4kLjkmS0h_XWnyt
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_TSP_2021_3056598
crossref_primary_10_1080_01431161_2021_1956700
crossref_primary_10_1109_LGRS_2021_3122262
crossref_primary_10_1109_TGRS_2023_3300276
crossref_primary_10_1109_LGRS_2018_2866331
crossref_primary_10_1109_ACCESS_2021_3081349
crossref_primary_10_1109_TGRS_2024_3515041
crossref_primary_10_1080_2150704X_2020_1864053
crossref_primary_10_1109_TGRS_2023_3296722
crossref_primary_10_3390_rs14194879
crossref_primary_10_1109_LGRS_2021_3077257
crossref_primary_10_3390_s19173807
crossref_primary_10_3390_electronics13214166
crossref_primary_10_1109_TGRS_2018_2882912
crossref_primary_10_1109_LGRS_2021_3099161
crossref_primary_10_1109_JSTARS_2024_3486535
crossref_primary_10_1109_TGRS_2024_3410277
crossref_primary_10_3390_electronics13234722
crossref_primary_10_3390_rs11080984
crossref_primary_10_1109_LGRS_2021_3086557
crossref_primary_10_1109_LGRS_2020_3026007
crossref_primary_10_1109_LGRS_2023_3274681
crossref_primary_10_1109_TGRS_2022_3194560
crossref_primary_10_1109_LGRS_2022_3159788
crossref_primary_10_1109_MGRS_2021_3082170
crossref_primary_10_1109_ACCESS_2022_3180154
crossref_primary_10_3390_electronics9010025
crossref_primary_10_1080_01431161_2021_1897188
crossref_primary_10_3390_app112110234
crossref_primary_10_3390_rs14030682
crossref_primary_10_1016_j_ndteint_2024_103043
crossref_primary_10_1109_JSEN_2023_3305681
crossref_primary_10_1109_JSEN_2021_3088122
crossref_primary_10_1109_TGRS_2024_3394750
crossref_primary_10_1109_TIM_2024_3378267
crossref_primary_10_1109_JSTARS_2024_3355213
crossref_primary_10_1109_TGRS_2023_3303683
crossref_primary_10_3390_s23115078
crossref_primary_10_1109_TGRS_2022_3160525
crossref_primary_10_1016_j_dsp_2020_102724
crossref_primary_10_1088_1402_4896_ad7cd4
crossref_primary_10_1109_TGRS_2022_3176029
crossref_primary_10_1109_LGRS_2022_3228052
crossref_primary_10_1109_LGRS_2023_3250717
crossref_primary_10_1080_2150704X_2022_2161842
crossref_primary_10_1109_LGRS_2019_2937749
crossref_primary_10_1109_LGRS_2021_3089246
crossref_primary_10_1109_ACCESS_2024_3397465
crossref_primary_10_1109_TGRS_2023_3308205
crossref_primary_10_3390_rs16061043
crossref_primary_10_1109_TGRS_2021_3098122
crossref_primary_10_1109_ACCESS_2020_2988333
crossref_primary_10_1080_01431161_2020_1763508
crossref_primary_10_1109_LGRS_2022_3177011
crossref_primary_10_1109_TGRS_2024_3360101
crossref_primary_10_1016_j_ndteint_2025_103366
crossref_primary_10_1109_LGRS_2024_3385694
crossref_primary_10_3390_rs13102005
Cites_doi 10.1117/12.2177944
10.1109/LGRS.2016.2535161
10.1109/SSP.2001.955243
10.3997/1873-0604.2006018
10.1109/ISIT.2010.5513535
10.1109/TGRS.2006.888136
10.1109/JSTARS.2015.2468597
10.1109/LGRS.2011.2138116
10.1137/080716542
10.1109/TGRS.2004.834800
10.1109/TGRS.2013.2259243
10.1145/1970392.1970395
10.1109/TGRS.2010.2051675
10.1109/JSTARS.2013.2287016
10.1049/PBRA015E_ch7
10.1109/TGRS.2007.900677
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2017.2711251
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1342
ExternalDocumentID 10_1109_LGRS_2017_2711251
7970124
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
RIG
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-af06ee4030053ea99d835e6ab35d54546d0bacbcc36247384bcbe6039a6e68ba3
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 08:40:52 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Tue Jul 01 03:45:34 EDT 2025
Tue Aug 26 17:04:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-af06ee4030053ea99d835e6ab35d54546d0bacbcc36247384bcbe6039a6e68ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0152-6621
0000-0001-9039-4784
PQID 1923019047
PQPubID 75725
PageCount 5
ParticipantIDs crossref_primary_10_1109_LGRS_2017_2711251
ieee_primary_7970124
proquest_journals_1923019047
crossref_citationtrail_10_1109_LGRS_2017_2711251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref2
(ref1) 2016
kalika (ref11) 2015; 9454
ref17
ref16
ref19
ref8
ref7
(ref18) 2016
ref9
ref4
ref3
ref6
ref5
candès (ref10) 2009; 58
yilmaz (ref14) 1987
References_xml – volume: 9454
  start-page: 94541d
  year: 2015
  ident: ref11
  article-title: Leveraging robust principal component analysis to detect buried explosive threats in handheld ground-penetrating radar data
  publication-title: Proc SPIE
  doi: 10.1117/12.2177944
– year: 2016
  ident: ref18
  publication-title: Multistatic Beamforming Data
– ident: ref12
  doi: 10.1109/LGRS.2016.2535161
– ident: ref5
  doi: 10.1109/SSP.2001.955243
– ident: ref2
  doi: 10.3997/1873-0604.2006018
– ident: ref13
  doi: 10.1109/ISIT.2010.5513535
– ident: ref6
  doi: 10.1109/TGRS.2006.888136
– ident: ref17
  doi: 10.1109/JSTARS.2015.2468597
– ident: ref15
  doi: 10.1109/LGRS.2011.2138116
– ident: ref16
  doi: 10.1137/080716542
– ident: ref8
  doi: 10.1109/TGRS.2004.834800
– ident: ref9
  doi: 10.1109/TGRS.2013.2259243
– volume: 58
  start-page: 1
  year: 2009
  ident: ref10
  article-title: Robust principal component analysis?
  publication-title: J ACM
  doi: 10.1145/1970392.1970395
– start-page: 241
  year: 1987
  ident: ref14
  article-title: Migration
  publication-title: Seismic Data Processing
– year: 2016
  ident: ref1
  publication-title: International Campaign to Ban Landmines
– ident: ref7
  doi: 10.1109/TGRS.2010.2051675
– ident: ref4
  doi: 10.1109/JSTARS.2013.2287016
– ident: ref3
  doi: 10.1049/PBRA015E_ch7
– ident: ref19
  doi: 10.1109/TGRS.2007.900677
SSID ssj0024887
Score 2.4547415
Snippet Detecting shallow buried antipersonnel mines (APMs) with a ground-penetrating radar (GPR) is a challenging task because of clutter contamination, which often...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1338
SubjectTerms Antennas
Antipersonnel mines
Clutter
Clutter suppression
Computer simulation
Contamination
Detection
Ground penetrating radar
ground-penetrating radar (GPR)
Imaging techniques
Information retrieval
Land mines
landmine detection
Mathematical models
Matrix decomposition
Methods
Mines
Numerical simulations
Permits
Principal component analysis
Principal components analysis
Radar
robust principal component analysis (RPCA)
Simulation
Soil contamination
Sparse matrices
System effectiveness
Target recognition
Title Improving RPCA-Based Clutter Suppression in GPR Detection of Antipersonnel Mines
URI https://ieeexplore.ieee.org/document/7970124
https://www.proquest.com/docview/1923019047
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEoKFN6K85IEJkeI0jpOMpUARoqgqIHWLbOcqKqoUQTrAr8fnpEU8hNgy2JF1Z_v7bN_dB3BkQUwNNIlmBL7xLP8PvVgL6RHWWzaS-cZleHdu5dWDuO6H_Tk4meXCIKILPsM6fbq3_GxsJnRVdholkd1PxTzM24Nbmav1WVcvdmJ4xAi8MIn71Qumz5PTm3bvjoK4onoj8gnQv2CQE1X5sRM7eLlchc50YGVUyVN9Uui6ef9Ws_G_I1-DlYpnsmY5MdZhDvMNWKokzx_fNmCx7TR93zahO7tYYL1uq-mdWWDLWGvkJKwZyX6WsbI5G-as3e2xcyxcAFfOxgPWzIvhs6PtOY5Yh6Lot-Dh8uK-deVVQguesWhfeGrAJaLgVLo-QJUkmeVlKJUOwszaU8iMa2W0MRbtRBTEQhuNkgeJkihjrYJtWMjHOe4AQ6VCrnxfq4wLo7WSMiOKInUD1aAR1IBPTZ-aqgo5iWGMUnca4UlK3krJW2nlrRocz7o8lyU4_mq8SdafNawMX4P9qX_TapG-pkRuKZVeRLu_99qDZfp3Ge-3DwvFywQPLAcp9KGbfB8JwNZI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH6CIsQu_EYrv-bDTmgpTuM4ybEUaLe1qOpA6i2ynVdRUaUVpAf218_PSTuxTRO3HGzF8nP8fbG_9z6AzxbE1FiTaUbgG8_y_9CLtZAeYb1lI5lvXIZ3_052H8S3UThagy-rXBhEdOIzbNCju8vPZmZBR2WXURLZ_VSsw4bF_dAvs7V-V9aLnR0ecQIvTOJRdYfp8-Sy1xn-IBlX1GhGPkH6GxRytip_7cUOYG53oL8cWqkreWosCt0wP_-o2vjese_CdsU0WatcGnuwhvk-bFWm54-v-7DZca6-rwcwWB0tsOGg3fKuLLRlrD11JtaMjD9LtWzOJjnrDIbsGgsn4crZbMxaeTGZO-Ke45T1SUd_CA-3N_ftrldZLXjG4n3hqTGXiIJT8foAVZJklpmhVDoIMzufQmZcK6ONsXgnoiAW2miUPEiURBlrFRxBLZ_l-BEYKhVy5ftaZVwYrZWUGZEUqZuoxs2gDnw59amp6pCTHcY0df8jPEkpWilFK62iVYeLVZd5WYTjf40PaPZXDauJr8PpMr5p9Zm-pERvKZleRMf_7vUJtrr3_V7a-3r3_QQ-0HtK9d8p1IrnBZ5ZRlLoc7cQfwFhUtmR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+RPCA-Based+Clutter+Suppression+in+GPR+Detection+of+Antipersonnel+Mines&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Song%2C+Xiaoji&rft.au=Xiang%2C+Deliang&rft.au=Zhou%2C+Kai&rft.au=Su%2C+Yi&rft.date=2017-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=14&rft.issue=8&rft.spage=1338&rft_id=info:doi/10.1109%2FLGRS.2017.2711251&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon