A novel framework for generalizing dynamic movement primitives under kinematic constraints
In this work, we propose a novel framework for generalizing a desired trajectory pattern, encoded using Dynamic Movement Primitives (DMP), subject to kinematic constraints. DMP have been extensively used in robotics for encoding and reproducing kinematic behaviours, thanks to their generalization, s...
Saved in:
Published in | Autonomous robots Vol. 47; no. 1; pp. 37 - 50 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we propose a novel framework for generalizing a desired trajectory pattern, encoded using Dynamic Movement Primitives (DMP), subject to kinematic constraints. DMP have been extensively used in robotics for encoding and reproducing kinematic behaviours, thanks to their generalization, stability and robustness properties. However, incorporating kinematic constraints has not yet been fully addressed. To this end, we design an optimization framework, based on the DMP formulation from our previous work, for generalizing trajectory patterns, encoded with DMP subject to kinematic constraints, considering also time-varying target and time duration, via-point and obstacle constraints. Simulations highlight these properties and comparisons are drawn with other approaches for enforcing constraints on DMP. The usefulness and applicability of the proposed framework is showcased in experimental scenarios, including a handover, where the target and time duration vary, and placing scenarios, where obstacles are dynamically introduced in the scene. |
---|---|
AbstractList | In this work, we propose a novel framework for generalizing a desired trajectory pattern, encoded using Dynamic Movement Primitives (DMP), subject to kinematic constraints. DMP have been extensively used in robotics for encoding and reproducing kinematic behaviours, thanks to their generalization, stability and robustness properties. However, incorporating kinematic constraints has not yet been fully addressed. To this end, we design an optimization framework, based on the DMP formulation from our previous work, for generalizing trajectory patterns, encoded with DMP subject to kinematic constraints, considering also time-varying target and time duration, via-point and obstacle constraints. Simulations highlight these properties and comparisons are drawn with other approaches for enforcing constraints on DMP. The usefulness and applicability of the proposed framework is showcased in experimental scenarios, including a handover, where the target and time duration vary, and placing scenarios, where obstacles are dynamically introduced in the scene. |
Author | Sidiropoulos, Antonis Doulgeri, Zoe Papageorgiou, Dimitrios |
Author_xml | – sequence: 1 givenname: Antonis orcidid: 0000-0002-6089-5980 surname: Sidiropoulos fullname: Sidiropoulos, Antonis email: antosidi@ece.auth.gr organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki – sequence: 2 givenname: Dimitrios orcidid: 0000-0003-0361-8757 surname: Papageorgiou fullname: Papageorgiou, Dimitrios organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki – sequence: 3 givenname: Zoe orcidid: 0000-0003-2188-9358 surname: Doulgeri fullname: Doulgeri, Zoe organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki |
BookMark | eNp9kMtqAyEYRqWk0CTtC3QldD3trzOO4zKE3iDQTbvpRoyjwSSjqU5S0qevaQqFLrIS4Rz9OCM08MEbhK4J3BIAfpcIMFIVQGmR7zUvqjM0JIyXBWeUD9AQBBUFY6K8QKOUlgAgOMAQvU-wDzuzxjaqznyGuMI2RLww3kS1dl_OL3C796pzGncZ7Izv8Sa6zvVuZxLe-tZEvHLedKrPjA4-9VE536dLdG7VOpmr33OM3h7uX6dPxezl8Xk6mRWairIvlAWgNaWCEa4sF1o0iirFW2Dzxlo6V6QEzauWArWirkhbGt0087LVipOalmN0c3x3E8PH1qReLsM2-vylpLymrBKCsUw1R0rHkFI0VmrX58nBH-auJQF5KCmPJWUuKX9Kyiqr9J96CKDi_rRUHqWUYb8w8W_VCesbd7eJXQ |
CitedBy_id | crossref_primary_10_1016_j_rcim_2024_102817 crossref_primary_10_1007_s10846_024_02051_0 crossref_primary_10_3390_electronics13193860 crossref_primary_10_3390_robotics13070100 |
Cites_doi | 10.1016/j.rcim.2021.102223 10.1109/ICRA48506.2021.9562059 10.1177/0278364912472380 10.1109/ICRA.2014.6907265 10.1109/IROS45743.2020.9341728 10.1007/s12532-020-00179-2 10.1109/HUMANOIDS.2018.8624934 10.1007/978-3-540-30301-5_60 10.1109/HUMANOIDS.2014.7041413 10.1007/s10514-017-9648-7 10.1162/NECO_a_00393 10.1109/ROBOT.2009.5152423 10.1109/ICRA48506.2021.9561120 10.1109/IROS51168.2021.9636674 10.23919/ECC.2019.8796278 10.1109/ICRA.2015.7139285 10.1007/s10846-014-0100-3 10.1109/LCSYS.2019.2946761 10.1109/TRO.2021.3127108 10.1007/s10514-009-9118-y 10.1109/RO-MAN47096.2020.9223579 10.1017/S0263574717000133 10.1109/ROBOT.2010.5509672 10.1109/RO-MAN47096.2020.9223500 10.1109/IROS.2016.7759617 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. corrected publication 2023 The Author(s) 2022. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022. corrected publication 2023 – notice: The Author(s) 2022. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 7SP 7TB 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO F28 FR3 HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W |
DOI | 10.1007/s10514-022-10067-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Technology Collection CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-7527 |
EndPage | 50 |
ExternalDocumentID | 10_1007_s10514_022_10067_4 |
GrantInformation_xml | – fundername: Aristotle University of Thessaloniki |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR _50 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7SP 7TB 8FD ABRTQ DWQXO F28 FR3 JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c293t-af0026229517af79c98a2aa7d05b8ff2ba130c74d202f9641d3ec88b3dca71623 |
IEDL.DBID | BENPR |
ISSN | 0929-5593 |
IngestDate | Fri Jul 25 12:16:20 EDT 2025 Tue Jul 01 01:26:01 EDT 2025 Thu Apr 24 23:11:54 EDT 2025 Fri Feb 21 02:45:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Dynamic movement primitives Constrained motion generation Online trajectory adaptation Constrained optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-af0026229517af79c98a2aa7d05b8ff2ba130c74d202f9641d3ec88b3dca71623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2188-9358 0000-0003-0361-8757 0000-0002-6089-5980 |
OpenAccessLink | https://link.springer.com/10.1007/s10514-022-10067-4 |
PQID | 2762549955 |
PQPubID | 326361 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2762549955 crossref_citationtrail_10_1007_s10514_022_10067_4 crossref_primary_10_1007_s10514_022_10067_4 springer_journals_10_1007_s10514_022_10067_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230100 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Autonomous robots |
PublicationTitleAbbrev | Auton Robot |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Kober, J., Mülling, K., Krömer, O., Lampert, C.H., Schölkopf, B., Peters, J. (2010). Movement templates for learning of hitting and batting. In 2010 IEEE International Conference on Robotics and Automation pp. 853–858 https://doi.org/10.1109/ROBOT.2010.5509672 DahlinAKarayiannidisYAdaptive trajectory generation under velocity constraints using dynamical movement primitivesIEEE Control Systems Letters202042438443421132410.1109/LCSYS.2019.2946761 Kastritsi, T., Papageorgiou, D., Sarantopoulos, I., Doulgeri, Z., Rovithakis, G.A. (2019). Stability of active constraints enforcement in sensitive regions defined by point-clouds for robotic surgical procedures. In 2019 18th European Control Conference (ECC), pp. 1604–1609 https://doi.org/10.23919/ECC.2019.8796278 MüllingKKoberJKroemerOPetersJLearning to select and generalize striking movements in robot table tennisThe International Journal of Robotics Research201332326327910.1177/0278364912472380 Hoffmann, H., Pastor, P., Park, D., Schaal, S. (2009). Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance. In 2009 IEEE International Conference on Robotics and Automation, pp. 2587–2592. Maeda, G., Ewerton, M., Lioutikov, R., Amor, H.B., Peters, J., Neumann, G. (2014). Learning interaction for collaborative tasks with probabilistic movement primitives. In 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 527–534. ParaschosADanielCPetersJNeumannGUsing probabilistic movement primitives in roboticsAutonomous Robots201842352955110.1007/s10514-017-9648-7 Sidiropoulos, A., Doulgeri, Z. (2021). A reversible dynamic movement primitive formulation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3147–3153 https://doi.org/10.1109/ICRA48506.2021.9562059 GamsAIjspeertAJSchaalSLenarcicJOn-line learning and modulation of periodic movements with nonlinear dynamical systemsAutonomous Robots20092732310.1007/s10514-009-9118-y Wen, Y., R. Pagilla, P. (2021). Path-constrained optimal trajectory planning for robot manipulators with obstacle avoidance. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Accepted). Ben Amor, H., Neumann, G., Kamthe, S., Kroemer, O., Peters, J. (2014). Interaction primitives for human-robot cooperation tasks. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2831–2837 https://doi.org/10.1109/ICRA.2014.6907265 Duan, A., Camoriano, R., Ferigo, D., Calandriello, D., Rosasco, L., Pucci, D. (2018). Constrained dmps for feasible skill learning on humanoid robots. In 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), pp. 1–6 https://doi.org/10.1109/HUMANOIDS.2018.8624934 Mghames, S., Hanheide, M., Ghalamzan, E. A.(2020). Interactive movement primitives: Planning to push occluding pieces for fruit picking. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2616–2623 https://doi.org/10.1109/IROS45743.2020.9341728 StellatoBBanjacGGoulartPBemporadABoydSOSQP: An operator splitting solver for quadratic programsMathematical Programming Computation2020124637672416355710.1007/s12532-020-00179-21452.90236 IjspeertAJNakanishiJHoffmannHPastorPSchaalSDynamical movement primitives: Learning attractor models for motor behaviorsNeural Computation2013252328373305849910.1162/NECO_a_003931269.92002 Frank, F., Paraschos, A., & vander Smagt, P., Cseke, B. (2021). Constrained probabilistic movement primitives for robot trajectory adaptation. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2021.3127108. KrugRDimitrovDModel predictive motion control based on generalized dynamical movement primitivesJournal of Intelligent & Robotic Systems2015771173510.1007/s10846-014-0100-3 Cardoso, C., Jamone, L., Bernardino, A. (2015) A novel approach to dynamic movement imitation based on quadratic programming. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 906–911 . https://doi.org/10.1109/ICRA.2015.7139285 Koutras, L., Doulgeri, Z. (2020). A novel dmp formulation for global and frame independent spatial scaling in the task space. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 727–732 . https://doi.org/10.1109/RO-MAN47096.2020.9223500 Buizza AvanziniGZanchettinAMRoccoPConstrained model predictive control for mobile robotic manipulatorsRobotica2018361193810.1017/S0263574717000133 Billard, A., Calinon, S., Dillmann, R., Schaal, S. (2008). In textitSiciliano, B., Khatib, O. (eds.) Robot Programming by Demonstration, pp. 1371–1394. Springer. https://doi.org/10.1007/978-3-540-30301-5_60 Liang, Y., Li, W., Wang, Y., Xiong, R., Mao, Y., Zhang, J. (2021). Dynamic movement primitive based motion retargeting for dual-arm sign language motions. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 8195–8201 https://doi.org/10.1109/ICRA48506.2021.9561120 Wang, J., Olson, E. (2016). AprilTag 2: Efficient and robust fiducial detection. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4193–4198. IEEE, https://doi.org/10.1109/IROS.2016.7759617 MerckaertKConvensBWuC-JRonconeANicotraMMVanderborghtBReal-time motion control of robotic manipulators for safe human-robot coexistenceRobotics and Computer-Integrated Manufacturing20227310.1016/j.rcim.2021.102223 Papageorgiou, D., Doulgeri, Z. (2020). Learning by demonstration for constrained tasks. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1088–1093 https://doi.org/10.1109/RO-MAN47096.2020.9223579 10067_CR1 AJ Ijspeert (10067_CR10) 2013; 25 10067_CR2 10067_CR9 G Buizza Avanzini (10067_CR3) 2018; 36 K Mülling (10067_CR19) 2013; 32 10067_CR4 10067_CR7 A Gams (10067_CR8) 2009; 27 10067_CR6 A Dahlin (10067_CR5) 2020; 4 10067_CR12 10067_CR11 10067_CR13 10067_CR16 10067_CR15 10067_CR18 R Krug (10067_CR14) 2015; 77 B Stellato (10067_CR23) 2020; 12 K Merckaert (10067_CR17) 2022; 73 A Paraschos (10067_CR21) 2018; 42 10067_CR20 10067_CR22 10067_CR25 10067_CR24 |
References_xml | – reference: Wen, Y., R. Pagilla, P. (2021). Path-constrained optimal trajectory planning for robot manipulators with obstacle avoidance. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Accepted). – reference: Kober, J., Mülling, K., Krömer, O., Lampert, C.H., Schölkopf, B., Peters, J. (2010). Movement templates for learning of hitting and batting. In 2010 IEEE International Conference on Robotics and Automation pp. 853–858 https://doi.org/10.1109/ROBOT.2010.5509672 – reference: Ben Amor, H., Neumann, G., Kamthe, S., Kroemer, O., Peters, J. (2014). Interaction primitives for human-robot cooperation tasks. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2831–2837 https://doi.org/10.1109/ICRA.2014.6907265 – reference: StellatoBBanjacGGoulartPBemporadABoydSOSQP: An operator splitting solver for quadratic programsMathematical Programming Computation2020124637672416355710.1007/s12532-020-00179-21452.90236 – reference: Wang, J., Olson, E. (2016). AprilTag 2: Efficient and robust fiducial detection. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4193–4198. IEEE, https://doi.org/10.1109/IROS.2016.7759617 – reference: DahlinAKarayiannidisYAdaptive trajectory generation under velocity constraints using dynamical movement primitivesIEEE Control Systems Letters202042438443421132410.1109/LCSYS.2019.2946761 – reference: Kastritsi, T., Papageorgiou, D., Sarantopoulos, I., Doulgeri, Z., Rovithakis, G.A. (2019). Stability of active constraints enforcement in sensitive regions defined by point-clouds for robotic surgical procedures. In 2019 18th European Control Conference (ECC), pp. 1604–1609 https://doi.org/10.23919/ECC.2019.8796278 – reference: MüllingKKoberJKroemerOPetersJLearning to select and generalize striking movements in robot table tennisThe International Journal of Robotics Research201332326327910.1177/0278364912472380 – reference: Koutras, L., Doulgeri, Z. (2020). A novel dmp formulation for global and frame independent spatial scaling in the task space. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 727–732 . https://doi.org/10.1109/RO-MAN47096.2020.9223500 – reference: Billard, A., Calinon, S., Dillmann, R., Schaal, S. (2008). In textitSiciliano, B., Khatib, O. (eds.) Robot Programming by Demonstration, pp. 1371–1394. Springer. https://doi.org/10.1007/978-3-540-30301-5_60 – reference: MerckaertKConvensBWuC-JRonconeANicotraMMVanderborghtBReal-time motion control of robotic manipulators for safe human-robot coexistenceRobotics and Computer-Integrated Manufacturing20227310.1016/j.rcim.2021.102223 – reference: Buizza AvanziniGZanchettinAMRoccoPConstrained model predictive control for mobile robotic manipulatorsRobotica2018361193810.1017/S0263574717000133 – reference: Hoffmann, H., Pastor, P., Park, D., Schaal, S. (2009). Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance. In 2009 IEEE International Conference on Robotics and Automation, pp. 2587–2592. – reference: ParaschosADanielCPetersJNeumannGUsing probabilistic movement primitives in roboticsAutonomous Robots201842352955110.1007/s10514-017-9648-7 – reference: Cardoso, C., Jamone, L., Bernardino, A. (2015) A novel approach to dynamic movement imitation based on quadratic programming. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 906–911 . https://doi.org/10.1109/ICRA.2015.7139285 – reference: Maeda, G., Ewerton, M., Lioutikov, R., Amor, H.B., Peters, J., Neumann, G. (2014). Learning interaction for collaborative tasks with probabilistic movement primitives. In 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 527–534. – reference: Duan, A., Camoriano, R., Ferigo, D., Calandriello, D., Rosasco, L., Pucci, D. (2018). Constrained dmps for feasible skill learning on humanoid robots. In 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), pp. 1–6 https://doi.org/10.1109/HUMANOIDS.2018.8624934 – reference: GamsAIjspeertAJSchaalSLenarcicJOn-line learning and modulation of periodic movements with nonlinear dynamical systemsAutonomous Robots20092732310.1007/s10514-009-9118-y – reference: Papageorgiou, D., Doulgeri, Z. (2020). Learning by demonstration for constrained tasks. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1088–1093 https://doi.org/10.1109/RO-MAN47096.2020.9223579 – reference: Sidiropoulos, A., Doulgeri, Z. (2021). A reversible dynamic movement primitive formulation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3147–3153 https://doi.org/10.1109/ICRA48506.2021.9562059 – reference: Frank, F., Paraschos, A., & vander Smagt, P., Cseke, B. (2021). Constrained probabilistic movement primitives for robot trajectory adaptation. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2021.3127108. – reference: KrugRDimitrovDModel predictive motion control based on generalized dynamical movement primitivesJournal of Intelligent & Robotic Systems2015771173510.1007/s10846-014-0100-3 – reference: Liang, Y., Li, W., Wang, Y., Xiong, R., Mao, Y., Zhang, J. (2021). Dynamic movement primitive based motion retargeting for dual-arm sign language motions. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 8195–8201 https://doi.org/10.1109/ICRA48506.2021.9561120 – reference: IjspeertAJNakanishiJHoffmannHPastorPSchaalSDynamical movement primitives: Learning attractor models for motor behaviorsNeural Computation2013252328373305849910.1162/NECO_a_003931269.92002 – reference: Mghames, S., Hanheide, M., Ghalamzan, E. A.(2020). Interactive movement primitives: Planning to push occluding pieces for fruit picking. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2616–2623 https://doi.org/10.1109/IROS45743.2020.9341728 – volume: 73 year: 2022 ident: 10067_CR17 publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2021.102223 – ident: 10067_CR22 doi: 10.1109/ICRA48506.2021.9562059 – volume: 32 start-page: 263 issue: 3 year: 2013 ident: 10067_CR19 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364912472380 – ident: 10067_CR1 doi: 10.1109/ICRA.2014.6907265 – ident: 10067_CR18 doi: 10.1109/IROS45743.2020.9341728 – volume: 12 start-page: 637 issue: 4 year: 2020 ident: 10067_CR23 publication-title: Mathematical Programming Computation doi: 10.1007/s12532-020-00179-2 – ident: 10067_CR6 doi: 10.1109/HUMANOIDS.2018.8624934 – ident: 10067_CR2 doi: 10.1007/978-3-540-30301-5_60 – ident: 10067_CR16 doi: 10.1109/HUMANOIDS.2014.7041413 – volume: 42 start-page: 529 issue: 3 year: 2018 ident: 10067_CR21 publication-title: Autonomous Robots doi: 10.1007/s10514-017-9648-7 – volume: 25 start-page: 328 issue: 2 year: 2013 ident: 10067_CR10 publication-title: Neural Computation doi: 10.1162/NECO_a_00393 – ident: 10067_CR9 doi: 10.1109/ROBOT.2009.5152423 – ident: 10067_CR15 doi: 10.1109/ICRA48506.2021.9561120 – ident: 10067_CR25 doi: 10.1109/IROS51168.2021.9636674 – ident: 10067_CR11 doi: 10.23919/ECC.2019.8796278 – ident: 10067_CR4 doi: 10.1109/ICRA.2015.7139285 – volume: 77 start-page: 17 issue: 1 year: 2015 ident: 10067_CR14 publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-014-0100-3 – volume: 4 start-page: 438 issue: 2 year: 2020 ident: 10067_CR5 publication-title: IEEE Control Systems Letters doi: 10.1109/LCSYS.2019.2946761 – ident: 10067_CR7 doi: 10.1109/TRO.2021.3127108 – volume: 27 start-page: 3 year: 2009 ident: 10067_CR8 publication-title: Autonomous Robots doi: 10.1007/s10514-009-9118-y – ident: 10067_CR20 doi: 10.1109/RO-MAN47096.2020.9223579 – volume: 36 start-page: 19 issue: 1 year: 2018 ident: 10067_CR3 publication-title: Robotica doi: 10.1017/S0263574717000133 – ident: 10067_CR12 doi: 10.1109/ROBOT.2010.5509672 – ident: 10067_CR13 doi: 10.1109/RO-MAN47096.2020.9223500 – ident: 10067_CR24 doi: 10.1109/IROS.2016.7759617 |
SSID | ssj0009700 |
Score | 2.4244769 |
Snippet | In this work, we propose a novel framework for generalizing a desired trajectory pattern, encoded using Dynamic Movement Primitives (DMP), subject to kinematic... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 37 |
SubjectTerms | Artificial Intelligence Barriers Computer Imaging Constraints Control Design optimization Engineering Kinematics Mechatronics Optimization Pattern Recognition and Graphics Robotics Robotics and Automation Robots Trajectories Velocity Vision |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvQgPrFaZQ_edKF5bHZzLGIpgp4sFC9hnyLWtjTRg7_emTxMFRU8ZzOEmd2Zb7Iz3xByHmlwjI5bxq23LFZOMiWFYH2uQ8gwuBQa-51v75LROL6Z8EndFJY31e7NlWTpqVea3SC4M6w-D9DHsnidbHDM3WEXj8NBS7VbN55A4GeAl6O6VeZnGV_DUYsxv12LltFmuEO2a5hIB5Vdd8mam-2RrRXywH3yMKCz-ZubUt_UV1EAoPSx4pF-eodF1Fbz5unLvKQFL-gCp3ihh8spdo8t6TMILFlbqUGkiAMjivyAjIfX91cjVk9KYAbCdcGUx1wKJ3MHQnmRmlSqUClhQeXS-1ArsIgRsQV1-TSJAxs5I6WOrFFIIRUdks5sPnNHhMpEy75R3gGejVVqpFdBYkzswsj3vRZdEjQKy0xNI44fN81aAmRUcgZKzkolZ3GXXHy-s6hINP5c3WvskNUHKs9CcNqYynLeJZeNbdrHv0s7_t_yE7KJA-Wrnyw90imWr-4UYEehz8pd9gH4Nc6E priority: 102 providerName: Springer Nature |
Title | A novel framework for generalizing dynamic movement primitives under kinematic constraints |
URI | https://link.springer.com/article/10.1007/s10514-022-10067-4 https://www.proquest.com/docview/2762549955 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED4BXWBAPEV5VB7YwKJ5uxMqVQsCgRCiErBEjh8IAW2hgYFfz13iEECCJUPiWNGdc_7O9n0fwG6QYWA0keaRtpqH0gguRZLwdpT5mGFEIsmo3vn8Ij4Zhqc30Y1bcJu6Y5VVTCwCtR4rWiM_8PGvpVwmig4nL5xUo2h31UlozEIDQ7DA5Ktx1L-4vKppd10RCoIAjtg5cGUzrngOwQKn0-wexWwe_pyaarz5a4u0mHkGS7DoICPrlj5ehhkzWoGFb0SCq3DXZaPxu3litjprxRCMsvuSU_rhAxsxXWrPs-dxQRGeswkpelG0mzKqJHtlj9hhweDKFKFGEo_Ip2swHPSveyfcqSZwhVN3zqWlvIpUur1E2qSjOkL6UiYazS-s9TOJ3lFJqP22bztx6OnAKCGyQCtJdFLBOsyNxiOzAUzEmWgraQ1i21B2lLDSi5UKjR_Yts2SJniVwVLlKMXp457SmgyZjJyikdPCyGnYhL2vdyYloca_rbcrP6Tu55qm9VBown7lm_rx371t_t_bFsyTmHy5wLINc_nrm9lByJFnLZgVg-MWNLrHt2f9lhtleLcX9_A69LufYs7Xbw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6FcigcUKGghqatD-VELbJeb9Z7QCiCpukrp0SKelm8fiBESdJmAcGP4jcysw-2rdTcel7vyBqPZ76xPd8A7IcZOkYXWR5Zb7nUTnGt4ph3o0xghhGpOKN65_NRbziRJ9No2oK_dS0MPausfWLhqO3c0Bn5O4G7lnKZKPqwuOLUNYpuV-sWGqVZnLrfvzBlW74__oTr-0aIweH445BXXQW4wdCWc-0p76Au1kGsfZyYRGmhdWxxesp7kWmcvYmlFV3hk54MbOiMUllojSa6pRDlPoLHMgwT2lFqcNSQ_FYlLwg5OCL1sCrSqUr1EJpwejsfUITg8nYgbNDtnQvZIs4NNuBZBVBZv7So59Bysxfw9AZt4SZc9Nls_tNdMl-_7GIIfdmXksH66x8cxGzZ6Z59nxeE5DlbUP8w8q1LRnVr1-wbCiz4YpkhjEqtKvLlS5g8iDZfwdpsPnNbwFQvU12jvUMkLXVilNdBzxjpROi7PovbENQKS01FYE6Tu0wb6mVScopKTgslp7INb___syjpO1aO7tTrkFZbeZk2hteGg3ptms_3S3u9WtoerA_H52fp2fHodBueUBv78minA2v59Q-3g2Anz3YLC2Pw-aFN-h9GWQ5m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRB5MH4RDk7dB3nSDe22vd17MOQULiByIUQS4kvZ7ocxwN3BVY38af51zrRbqyTwxnO3k-3s7OxvujO_AXidFOgYXWZ5Zr3lqXaKayUlj7JCYISRKVlQvfPBuL97nH48yU4W4HdTC0NplY1PrBy1nRr6R74pcNdSLJNlmz6kRRxuj7Zml5w6SNFNa9NOozaRfffrJ4Zv83d727jWG0KMdj5_2OWhwwA3eMyVXHuKQaijdSy1lwMzUFpoLS1OVXkvCo1fYmRqRST8oJ_GNnFGqSKxRhP1UoJyH8CixKgo6sDi-53x4VFL-RsKYBCAcMTtSSjZCYV7CFQ4ZdLHdF7w9P9jscW6N65nq1Nv9BgeBbjKhrV9PYEFN3kKy_-QGD6DL0M2mf5w58w3eV4MgTD7WvNZf7vGQczWfe_ZxbSiJy_ZjLqJkaedM6piu2JnKLBij2WGECs1rijnz-H4XvS5Ap3JdOJWgal-oSKjvUNcneqBUV7HfWNSJxIf-UJ2IW4UlptAZ06TO89bImZSco5Kzisl52kX3vx9Z1aTedw5utesQx429jxvzbALb5u1aR_fLm3tbmmvYAnNOf-0N95fh4fU077-z9ODTnn13b1A5FMWL4OJMTi9b6v-A218E_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+framework+for+generalizing+dynamic+movement+primitives+under+kinematic+constraints&rft.jtitle=Autonomous+robots&rft.au=Sidiropoulos%2C+Antonis&rft.au=Papageorgiou%2C+Dimitrios&rft.au=Doulgeri%2C+Zoe&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=47&rft.issue=1&rft.spage=37&rft.epage=50&rft_id=info:doi/10.1007%2Fs10514-022-10067-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon |