A novel framework for generalizing dynamic movement primitives under kinematic constraints

In this work, we propose a novel framework for generalizing a desired trajectory pattern, encoded using Dynamic Movement Primitives (DMP), subject to kinematic constraints. DMP have been extensively used in robotics for encoding and reproducing kinematic behaviours, thanks to their generalization, s...

Full description

Saved in:
Bibliographic Details
Published inAutonomous robots Vol. 47; no. 1; pp. 37 - 50
Main Authors Sidiropoulos, Antonis, Papageorgiou, Dimitrios, Doulgeri, Zoe
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we propose a novel framework for generalizing a desired trajectory pattern, encoded using Dynamic Movement Primitives (DMP), subject to kinematic constraints. DMP have been extensively used in robotics for encoding and reproducing kinematic behaviours, thanks to their generalization, stability and robustness properties. However, incorporating kinematic constraints has not yet been fully addressed. To this end, we design an optimization framework, based on the DMP formulation from our previous work, for generalizing trajectory patterns, encoded with DMP subject to kinematic constraints, considering also time-varying target and time duration, via-point and obstacle constraints. Simulations highlight these properties and comparisons are drawn with other approaches for enforcing constraints on DMP. The usefulness and applicability of the proposed framework is showcased in experimental scenarios, including a handover, where the target and time duration vary, and placing scenarios, where obstacles are dynamically introduced in the scene.
AbstractList In this work, we propose a novel framework for generalizing a desired trajectory pattern, encoded using Dynamic Movement Primitives (DMP), subject to kinematic constraints. DMP have been extensively used in robotics for encoding and reproducing kinematic behaviours, thanks to their generalization, stability and robustness properties. However, incorporating kinematic constraints has not yet been fully addressed. To this end, we design an optimization framework, based on the DMP formulation from our previous work, for generalizing trajectory patterns, encoded with DMP subject to kinematic constraints, considering also time-varying target and time duration, via-point and obstacle constraints. Simulations highlight these properties and comparisons are drawn with other approaches for enforcing constraints on DMP. The usefulness and applicability of the proposed framework is showcased in experimental scenarios, including a handover, where the target and time duration vary, and placing scenarios, where obstacles are dynamically introduced in the scene.
Author Sidiropoulos, Antonis
Doulgeri, Zoe
Papageorgiou, Dimitrios
Author_xml – sequence: 1
  givenname: Antonis
  orcidid: 0000-0002-6089-5980
  surname: Sidiropoulos
  fullname: Sidiropoulos, Antonis
  email: antosidi@ece.auth.gr
  organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki
– sequence: 2
  givenname: Dimitrios
  orcidid: 0000-0003-0361-8757
  surname: Papageorgiou
  fullname: Papageorgiou, Dimitrios
  organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki
– sequence: 3
  givenname: Zoe
  orcidid: 0000-0003-2188-9358
  surname: Doulgeri
  fullname: Doulgeri, Zoe
  organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki
BookMark eNp9kMtqAyEYRqWk0CTtC3QldD3trzOO4zKE3iDQTbvpRoyjwSSjqU5S0qevaQqFLrIS4Rz9OCM08MEbhK4J3BIAfpcIMFIVQGmR7zUvqjM0JIyXBWeUD9AQBBUFY6K8QKOUlgAgOMAQvU-wDzuzxjaqznyGuMI2RLww3kS1dl_OL3C796pzGncZ7Izv8Sa6zvVuZxLe-tZEvHLedKrPjA4-9VE536dLdG7VOpmr33OM3h7uX6dPxezl8Xk6mRWairIvlAWgNaWCEa4sF1o0iirFW2Dzxlo6V6QEzauWArWirkhbGt0087LVipOalmN0c3x3E8PH1qReLsM2-vylpLymrBKCsUw1R0rHkFI0VmrX58nBH-auJQF5KCmPJWUuKX9Kyiqr9J96CKDi_rRUHqWUYb8w8W_VCesbd7eJXQ
CitedBy_id crossref_primary_10_1016_j_rcim_2024_102817
crossref_primary_10_1007_s10846_024_02051_0
crossref_primary_10_3390_electronics13193860
crossref_primary_10_3390_robotics13070100
Cites_doi 10.1016/j.rcim.2021.102223
10.1109/ICRA48506.2021.9562059
10.1177/0278364912472380
10.1109/ICRA.2014.6907265
10.1109/IROS45743.2020.9341728
10.1007/s12532-020-00179-2
10.1109/HUMANOIDS.2018.8624934
10.1007/978-3-540-30301-5_60
10.1109/HUMANOIDS.2014.7041413
10.1007/s10514-017-9648-7
10.1162/NECO_a_00393
10.1109/ROBOT.2009.5152423
10.1109/ICRA48506.2021.9561120
10.1109/IROS51168.2021.9636674
10.23919/ECC.2019.8796278
10.1109/ICRA.2015.7139285
10.1007/s10846-014-0100-3
10.1109/LCSYS.2019.2946761
10.1109/TRO.2021.3127108
10.1007/s10514-009-9118-y
10.1109/RO-MAN47096.2020.9223579
10.1017/S0263574717000133
10.1109/ROBOT.2010.5509672
10.1109/RO-MAN47096.2020.9223500
10.1109/IROS.2016.7759617
ContentType Journal Article
Copyright The Author(s) 2022. corrected publication 2023
The Author(s) 2022. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022. corrected publication 2023
– notice: The Author(s) 2022. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
7SP
7TB
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10514-022-10067-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Collection

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-7527
EndPage 50
ExternalDocumentID 10_1007_s10514_022_10067_4
GrantInformation_xml – fundername: Aristotle University of Thessaloniki
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
_50
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7SP
7TB
8FD
ABRTQ
DWQXO
F28
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c293t-af0026229517af79c98a2aa7d05b8ff2ba130c74d202f9641d3ec88b3dca71623
IEDL.DBID BENPR
ISSN 0929-5593
IngestDate Fri Jul 25 12:16:20 EDT 2025
Tue Jul 01 01:26:01 EDT 2025
Thu Apr 24 23:11:54 EDT 2025
Fri Feb 21 02:45:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Dynamic movement primitives
Constrained motion generation
Online trajectory adaptation
Constrained optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-af0026229517af79c98a2aa7d05b8ff2ba130c74d202f9641d3ec88b3dca71623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2188-9358
0000-0003-0361-8757
0000-0002-6089-5980
OpenAccessLink https://link.springer.com/10.1007/s10514-022-10067-4
PQID 2762549955
PQPubID 326361
PageCount 14
ParticipantIDs proquest_journals_2762549955
crossref_citationtrail_10_1007_s10514_022_10067_4
crossref_primary_10_1007_s10514_022_10067_4
springer_journals_10_1007_s10514_022_10067_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Autonomous robots
PublicationTitleAbbrev Auton Robot
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kober, J., Mülling, K., Krömer, O., Lampert, C.H., Schölkopf, B., Peters, J. (2010). Movement templates for learning of hitting and batting. In 2010 IEEE International Conference on Robotics and Automation pp. 853–858 https://doi.org/10.1109/ROBOT.2010.5509672
DahlinAKarayiannidisYAdaptive trajectory generation under velocity constraints using dynamical movement primitivesIEEE Control Systems Letters202042438443421132410.1109/LCSYS.2019.2946761
Kastritsi, T., Papageorgiou, D., Sarantopoulos, I., Doulgeri, Z., Rovithakis, G.A. (2019). Stability of active constraints enforcement in sensitive regions defined by point-clouds for robotic surgical procedures. In 2019 18th European Control Conference (ECC), pp. 1604–1609 https://doi.org/10.23919/ECC.2019.8796278
MüllingKKoberJKroemerOPetersJLearning to select and generalize striking movements in robot table tennisThe International Journal of Robotics Research201332326327910.1177/0278364912472380
Hoffmann, H., Pastor, P., Park, D., Schaal, S. (2009). Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance. In 2009 IEEE International Conference on Robotics and Automation, pp. 2587–2592.
Maeda, G., Ewerton, M., Lioutikov, R., Amor, H.B., Peters, J., Neumann, G. (2014). Learning interaction for collaborative tasks with probabilistic movement primitives. In 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 527–534.
ParaschosADanielCPetersJNeumannGUsing probabilistic movement primitives in roboticsAutonomous Robots201842352955110.1007/s10514-017-9648-7
Sidiropoulos, A., Doulgeri, Z. (2021). A reversible dynamic movement primitive formulation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3147–3153 https://doi.org/10.1109/ICRA48506.2021.9562059
GamsAIjspeertAJSchaalSLenarcicJOn-line learning and modulation of periodic movements with nonlinear dynamical systemsAutonomous Robots20092732310.1007/s10514-009-9118-y
Wen, Y., R. Pagilla, P. (2021). Path-constrained optimal trajectory planning for robot manipulators with obstacle avoidance. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Accepted).
Ben Amor, H., Neumann, G., Kamthe, S., Kroemer, O., Peters, J. (2014). Interaction primitives for human-robot cooperation tasks. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2831–2837 https://doi.org/10.1109/ICRA.2014.6907265
Duan, A., Camoriano, R., Ferigo, D., Calandriello, D., Rosasco, L., Pucci, D. (2018). Constrained dmps for feasible skill learning on humanoid robots. In 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), pp. 1–6 https://doi.org/10.1109/HUMANOIDS.2018.8624934
Mghames, S., Hanheide, M., Ghalamzan, E. A.(2020). Interactive movement primitives: Planning to push occluding pieces for fruit picking. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2616–2623 https://doi.org/10.1109/IROS45743.2020.9341728
StellatoBBanjacGGoulartPBemporadABoydSOSQP: An operator splitting solver for quadratic programsMathematical Programming Computation2020124637672416355710.1007/s12532-020-00179-21452.90236
IjspeertAJNakanishiJHoffmannHPastorPSchaalSDynamical movement primitives: Learning attractor models for motor behaviorsNeural Computation2013252328373305849910.1162/NECO_a_003931269.92002
Frank, F., Paraschos, A., & vander Smagt, P., Cseke, B. (2021). Constrained probabilistic movement primitives for robot trajectory adaptation. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2021.3127108.
KrugRDimitrovDModel predictive motion control based on generalized dynamical movement primitivesJournal of Intelligent & Robotic Systems2015771173510.1007/s10846-014-0100-3
Cardoso, C., Jamone, L., Bernardino, A. (2015) A novel approach to dynamic movement imitation based on quadratic programming. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 906–911 . https://doi.org/10.1109/ICRA.2015.7139285
Koutras, L., Doulgeri, Z. (2020). A novel dmp formulation for global and frame independent spatial scaling in the task space. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 727–732 . https://doi.org/10.1109/RO-MAN47096.2020.9223500
Buizza AvanziniGZanchettinAMRoccoPConstrained model predictive control for mobile robotic manipulatorsRobotica2018361193810.1017/S0263574717000133
Billard, A., Calinon, S., Dillmann, R., Schaal, S. (2008). In textitSiciliano, B., Khatib, O. (eds.) Robot Programming by Demonstration, pp. 1371–1394. Springer. https://doi.org/10.1007/978-3-540-30301-5_60
Liang, Y., Li, W., Wang, Y., Xiong, R., Mao, Y., Zhang, J. (2021). Dynamic movement primitive based motion retargeting for dual-arm sign language motions. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 8195–8201 https://doi.org/10.1109/ICRA48506.2021.9561120
Wang, J., Olson, E. (2016). AprilTag 2: Efficient and robust fiducial detection. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4193–4198. IEEE, https://doi.org/10.1109/IROS.2016.7759617
MerckaertKConvensBWuC-JRonconeANicotraMMVanderborghtBReal-time motion control of robotic manipulators for safe human-robot coexistenceRobotics and Computer-Integrated Manufacturing20227310.1016/j.rcim.2021.102223
Papageorgiou, D., Doulgeri, Z. (2020). Learning by demonstration for constrained tasks. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1088–1093 https://doi.org/10.1109/RO-MAN47096.2020.9223579
10067_CR1
AJ Ijspeert (10067_CR10) 2013; 25
10067_CR2
10067_CR9
G Buizza Avanzini (10067_CR3) 2018; 36
K Mülling (10067_CR19) 2013; 32
10067_CR4
10067_CR7
A Gams (10067_CR8) 2009; 27
10067_CR6
A Dahlin (10067_CR5) 2020; 4
10067_CR12
10067_CR11
10067_CR13
10067_CR16
10067_CR15
10067_CR18
R Krug (10067_CR14) 2015; 77
B Stellato (10067_CR23) 2020; 12
K Merckaert (10067_CR17) 2022; 73
A Paraschos (10067_CR21) 2018; 42
10067_CR20
10067_CR22
10067_CR25
10067_CR24
References_xml – reference: Wen, Y., R. Pagilla, P. (2021). Path-constrained optimal trajectory planning for robot manipulators with obstacle avoidance. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Accepted).
– reference: Kober, J., Mülling, K., Krömer, O., Lampert, C.H., Schölkopf, B., Peters, J. (2010). Movement templates for learning of hitting and batting. In 2010 IEEE International Conference on Robotics and Automation pp. 853–858 https://doi.org/10.1109/ROBOT.2010.5509672
– reference: Ben Amor, H., Neumann, G., Kamthe, S., Kroemer, O., Peters, J. (2014). Interaction primitives for human-robot cooperation tasks. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2831–2837 https://doi.org/10.1109/ICRA.2014.6907265
– reference: StellatoBBanjacGGoulartPBemporadABoydSOSQP: An operator splitting solver for quadratic programsMathematical Programming Computation2020124637672416355710.1007/s12532-020-00179-21452.90236
– reference: Wang, J., Olson, E. (2016). AprilTag 2: Efficient and robust fiducial detection. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4193–4198. IEEE, https://doi.org/10.1109/IROS.2016.7759617
– reference: DahlinAKarayiannidisYAdaptive trajectory generation under velocity constraints using dynamical movement primitivesIEEE Control Systems Letters202042438443421132410.1109/LCSYS.2019.2946761
– reference: Kastritsi, T., Papageorgiou, D., Sarantopoulos, I., Doulgeri, Z., Rovithakis, G.A. (2019). Stability of active constraints enforcement in sensitive regions defined by point-clouds for robotic surgical procedures. In 2019 18th European Control Conference (ECC), pp. 1604–1609 https://doi.org/10.23919/ECC.2019.8796278
– reference: MüllingKKoberJKroemerOPetersJLearning to select and generalize striking movements in robot table tennisThe International Journal of Robotics Research201332326327910.1177/0278364912472380
– reference: Koutras, L., Doulgeri, Z. (2020). A novel dmp formulation for global and frame independent spatial scaling in the task space. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 727–732 . https://doi.org/10.1109/RO-MAN47096.2020.9223500
– reference: Billard, A., Calinon, S., Dillmann, R., Schaal, S. (2008). In textitSiciliano, B., Khatib, O. (eds.) Robot Programming by Demonstration, pp. 1371–1394. Springer. https://doi.org/10.1007/978-3-540-30301-5_60
– reference: MerckaertKConvensBWuC-JRonconeANicotraMMVanderborghtBReal-time motion control of robotic manipulators for safe human-robot coexistenceRobotics and Computer-Integrated Manufacturing20227310.1016/j.rcim.2021.102223
– reference: Buizza AvanziniGZanchettinAMRoccoPConstrained model predictive control for mobile robotic manipulatorsRobotica2018361193810.1017/S0263574717000133
– reference: Hoffmann, H., Pastor, P., Park, D., Schaal, S. (2009). Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance. In 2009 IEEE International Conference on Robotics and Automation, pp. 2587–2592.
– reference: ParaschosADanielCPetersJNeumannGUsing probabilistic movement primitives in roboticsAutonomous Robots201842352955110.1007/s10514-017-9648-7
– reference: Cardoso, C., Jamone, L., Bernardino, A. (2015) A novel approach to dynamic movement imitation based on quadratic programming. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 906–911 . https://doi.org/10.1109/ICRA.2015.7139285
– reference: Maeda, G., Ewerton, M., Lioutikov, R., Amor, H.B., Peters, J., Neumann, G. (2014). Learning interaction for collaborative tasks with probabilistic movement primitives. In 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 527–534.
– reference: Duan, A., Camoriano, R., Ferigo, D., Calandriello, D., Rosasco, L., Pucci, D. (2018). Constrained dmps for feasible skill learning on humanoid robots. In 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), pp. 1–6 https://doi.org/10.1109/HUMANOIDS.2018.8624934
– reference: GamsAIjspeertAJSchaalSLenarcicJOn-line learning and modulation of periodic movements with nonlinear dynamical systemsAutonomous Robots20092732310.1007/s10514-009-9118-y
– reference: Papageorgiou, D., Doulgeri, Z. (2020). Learning by demonstration for constrained tasks. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1088–1093 https://doi.org/10.1109/RO-MAN47096.2020.9223579
– reference: Sidiropoulos, A., Doulgeri, Z. (2021). A reversible dynamic movement primitive formulation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3147–3153 https://doi.org/10.1109/ICRA48506.2021.9562059
– reference: Frank, F., Paraschos, A., & vander Smagt, P., Cseke, B. (2021). Constrained probabilistic movement primitives for robot trajectory adaptation. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2021.3127108.
– reference: KrugRDimitrovDModel predictive motion control based on generalized dynamical movement primitivesJournal of Intelligent & Robotic Systems2015771173510.1007/s10846-014-0100-3
– reference: Liang, Y., Li, W., Wang, Y., Xiong, R., Mao, Y., Zhang, J. (2021). Dynamic movement primitive based motion retargeting for dual-arm sign language motions. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 8195–8201 https://doi.org/10.1109/ICRA48506.2021.9561120
– reference: IjspeertAJNakanishiJHoffmannHPastorPSchaalSDynamical movement primitives: Learning attractor models for motor behaviorsNeural Computation2013252328373305849910.1162/NECO_a_003931269.92002
– reference: Mghames, S., Hanheide, M., Ghalamzan, E. A.(2020). Interactive movement primitives: Planning to push occluding pieces for fruit picking. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2616–2623 https://doi.org/10.1109/IROS45743.2020.9341728
– volume: 73
  year: 2022
  ident: 10067_CR17
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2021.102223
– ident: 10067_CR22
  doi: 10.1109/ICRA48506.2021.9562059
– volume: 32
  start-page: 263
  issue: 3
  year: 2013
  ident: 10067_CR19
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364912472380
– ident: 10067_CR1
  doi: 10.1109/ICRA.2014.6907265
– ident: 10067_CR18
  doi: 10.1109/IROS45743.2020.9341728
– volume: 12
  start-page: 637
  issue: 4
  year: 2020
  ident: 10067_CR23
  publication-title: Mathematical Programming Computation
  doi: 10.1007/s12532-020-00179-2
– ident: 10067_CR6
  doi: 10.1109/HUMANOIDS.2018.8624934
– ident: 10067_CR2
  doi: 10.1007/978-3-540-30301-5_60
– ident: 10067_CR16
  doi: 10.1109/HUMANOIDS.2014.7041413
– volume: 42
  start-page: 529
  issue: 3
  year: 2018
  ident: 10067_CR21
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-017-9648-7
– volume: 25
  start-page: 328
  issue: 2
  year: 2013
  ident: 10067_CR10
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00393
– ident: 10067_CR9
  doi: 10.1109/ROBOT.2009.5152423
– ident: 10067_CR15
  doi: 10.1109/ICRA48506.2021.9561120
– ident: 10067_CR25
  doi: 10.1109/IROS51168.2021.9636674
– ident: 10067_CR11
  doi: 10.23919/ECC.2019.8796278
– ident: 10067_CR4
  doi: 10.1109/ICRA.2015.7139285
– volume: 77
  start-page: 17
  issue: 1
  year: 2015
  ident: 10067_CR14
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-014-0100-3
– volume: 4
  start-page: 438
  issue: 2
  year: 2020
  ident: 10067_CR5
  publication-title: IEEE Control Systems Letters
  doi: 10.1109/LCSYS.2019.2946761
– ident: 10067_CR7
  doi: 10.1109/TRO.2021.3127108
– volume: 27
  start-page: 3
  year: 2009
  ident: 10067_CR8
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-009-9118-y
– ident: 10067_CR20
  doi: 10.1109/RO-MAN47096.2020.9223579
– volume: 36
  start-page: 19
  issue: 1
  year: 2018
  ident: 10067_CR3
  publication-title: Robotica
  doi: 10.1017/S0263574717000133
– ident: 10067_CR12
  doi: 10.1109/ROBOT.2010.5509672
– ident: 10067_CR13
  doi: 10.1109/RO-MAN47096.2020.9223500
– ident: 10067_CR24
  doi: 10.1109/IROS.2016.7759617
SSID ssj0009700
Score 2.4244769
Snippet In this work, we propose a novel framework for generalizing a desired trajectory pattern, encoded using Dynamic Movement Primitives (DMP), subject to kinematic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 37
SubjectTerms Artificial Intelligence
Barriers
Computer Imaging
Constraints
Control
Design optimization
Engineering
Kinematics
Mechatronics
Optimization
Pattern Recognition and Graphics
Robotics
Robotics and Automation
Robots
Trajectories
Velocity
Vision
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvQgPrFaZQ_edKF5bHZzLGIpgp4sFC9hnyLWtjTRg7_emTxMFRU8ZzOEmd2Zb7Iz3xByHmlwjI5bxq23LFZOMiWFYH2uQ8gwuBQa-51v75LROL6Z8EndFJY31e7NlWTpqVea3SC4M6w-D9DHsnidbHDM3WEXj8NBS7VbN55A4GeAl6O6VeZnGV_DUYsxv12LltFmuEO2a5hIB5Vdd8mam-2RrRXywH3yMKCz-ZubUt_UV1EAoPSx4pF-eodF1Fbz5unLvKQFL-gCp3ihh8spdo8t6TMILFlbqUGkiAMjivyAjIfX91cjVk9KYAbCdcGUx1wKJ3MHQnmRmlSqUClhQeXS-1ArsIgRsQV1-TSJAxs5I6WOrFFIIRUdks5sPnNHhMpEy75R3gGejVVqpFdBYkzswsj3vRZdEjQKy0xNI44fN81aAmRUcgZKzkolZ3GXXHy-s6hINP5c3WvskNUHKs9CcNqYynLeJZeNbdrHv0s7_t_yE7KJA-Wrnyw90imWr-4UYEehz8pd9gH4Nc6E
  priority: 102
  providerName: Springer Nature
Title A novel framework for generalizing dynamic movement primitives under kinematic constraints
URI https://link.springer.com/article/10.1007/s10514-022-10067-4
https://www.proquest.com/docview/2762549955
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED4BXWBAPEV5VB7YwKJ5uxMqVQsCgRCiErBEjh8IAW2hgYFfz13iEECCJUPiWNGdc_7O9n0fwG6QYWA0keaRtpqH0gguRZLwdpT5mGFEIsmo3vn8Ij4Zhqc30Y1bcJu6Y5VVTCwCtR4rWiM_8PGvpVwmig4nL5xUo2h31UlozEIDQ7DA5Ktx1L-4vKppd10RCoIAjtg5cGUzrngOwQKn0-wexWwe_pyaarz5a4u0mHkGS7DoICPrlj5ehhkzWoGFb0SCq3DXZaPxu3litjprxRCMsvuSU_rhAxsxXWrPs-dxQRGeswkpelG0mzKqJHtlj9hhweDKFKFGEo_Ip2swHPSveyfcqSZwhVN3zqWlvIpUur1E2qSjOkL6UiYazS-s9TOJ3lFJqP22bztx6OnAKCGyQCtJdFLBOsyNxiOzAUzEmWgraQ1i21B2lLDSi5UKjR_Yts2SJniVwVLlKMXp457SmgyZjJyikdPCyGnYhL2vdyYloca_rbcrP6Tu55qm9VBown7lm_rx371t_t_bFsyTmHy5wLINc_nrm9lByJFnLZgVg-MWNLrHt2f9lhtleLcX9_A69LufYs7Xbw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6FcigcUKGghqatD-VELbJeb9Z7QCiCpukrp0SKelm8fiBESdJmAcGP4jcysw-2rdTcel7vyBqPZ76xPd8A7IcZOkYXWR5Zb7nUTnGt4ph3o0xghhGpOKN65_NRbziRJ9No2oK_dS0MPausfWLhqO3c0Bn5O4G7lnKZKPqwuOLUNYpuV-sWGqVZnLrfvzBlW74__oTr-0aIweH445BXXQW4wdCWc-0p76Au1kGsfZyYRGmhdWxxesp7kWmcvYmlFV3hk54MbOiMUllojSa6pRDlPoLHMgwT2lFqcNSQ_FYlLwg5OCL1sCrSqUr1EJpwejsfUITg8nYgbNDtnQvZIs4NNuBZBVBZv7So59Bysxfw9AZt4SZc9Nls_tNdMl-_7GIIfdmXksH66x8cxGzZ6Z59nxeE5DlbUP8w8q1LRnVr1-wbCiz4YpkhjEqtKvLlS5g8iDZfwdpsPnNbwFQvU12jvUMkLXVilNdBzxjpROi7PovbENQKS01FYE6Tu0wb6mVScopKTgslp7INb___syjpO1aO7tTrkFZbeZk2hteGg3ptms_3S3u9WtoerA_H52fp2fHodBueUBv78minA2v59Q-3g2Anz3YLC2Pw-aFN-h9GWQ5m
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRB5MH4RDk7dB3nSDe22vd17MOQULiByIUQS4kvZ7ocxwN3BVY38af51zrRbqyTwxnO3k-3s7OxvujO_AXidFOgYXWZ5Zr3lqXaKayUlj7JCYISRKVlQvfPBuL97nH48yU4W4HdTC0NplY1PrBy1nRr6R74pcNdSLJNlmz6kRRxuj7Zml5w6SNFNa9NOozaRfffrJ4Zv83d727jWG0KMdj5_2OWhwwA3eMyVXHuKQaijdSy1lwMzUFpoLS1OVXkvCo1fYmRqRST8oJ_GNnFGqSKxRhP1UoJyH8CixKgo6sDi-53x4VFL-RsKYBCAcMTtSSjZCYV7CFQ4ZdLHdF7w9P9jscW6N65nq1Nv9BgeBbjKhrV9PYEFN3kKy_-QGD6DL0M2mf5w58w3eV4MgTD7WvNZf7vGQczWfe_ZxbSiJy_ZjLqJkaedM6piu2JnKLBij2WGECs1rijnz-H4XvS5Ap3JdOJWgal-oSKjvUNcneqBUV7HfWNSJxIf-UJ2IW4UlptAZ06TO89bImZSco5Kzisl52kX3vx9Z1aTedw5utesQx429jxvzbALb5u1aR_fLm3tbmmvYAnNOf-0N95fh4fU077-z9ODTnn13b1A5FMWL4OJMTi9b6v-A218E_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+framework+for+generalizing+dynamic+movement+primitives+under+kinematic+constraints&rft.jtitle=Autonomous+robots&rft.au=Sidiropoulos%2C+Antonis&rft.au=Papageorgiou%2C+Dimitrios&rft.au=Doulgeri%2C+Zoe&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=47&rft.issue=1&rft.spage=37&rft.epage=50&rft_id=info:doi/10.1007%2Fs10514-022-10067-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon