3D Aided Duet GANs for Multi-View Face Image Synthesis
Multi-view face synthesis from a single image is an ill-posed computer vision problem. It often suffers from appearance distortions if it is not well-defined. Producing photo-realistic and identity preserving multi-view results is still a not well-defined synthesis problem. This paper proposes 3D ai...
Saved in:
Published in | IEEE transactions on information forensics and security Vol. 14; no. 8; pp. 2028 - 2042 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multi-view face synthesis from a single image is an ill-posed computer vision problem. It often suffers from appearance distortions if it is not well-defined. Producing photo-realistic and identity preserving multi-view results is still a not well-defined synthesis problem. This paper proposes 3D aided duet generative adversarial networks (AD-GAN) to precisely rotate the yaw angle of an input face image to any specified angle. AD-GAN decomposes the challenging synthesis problem into two well-constrained subtasks that correspond to a face normalizer and a face editor. The normalizer first frontalizes an input image, and then the editor rotates the frontalized image to a desired pose guided by a remote code. In the meantime, the face normalizer is designed to estimate a novel dense UV correspondence field, making our model aware of 3D face geometry information. In order to generate photo-realistic local details and accelerate convergence process, the normalizer and the editor are trained in a two-stage manner and regulated by a conditional self-cycle loss and a perceptual loss. Exhaustive experiments on both controlled and uncontrolled environments demonstrate that the proposed method not only improves the visual realism of multi-view synthetic images but also preserves identity information well. |
---|---|
AbstractList | Multi-view face synthesis from a single image is an ill-posed computer vision problem. It often suffers from appearance distortions if it is not well-defined. Producing photo-realistic and identity preserving multi-view results is still a not well-defined synthesis problem. This paper proposes 3D aided duet generative adversarial networks (AD-GAN) to precisely rotate the yaw angle of an input face image to any specified angle. AD-GAN decomposes the challenging synthesis problem into two well-constrained subtasks that correspond to a face normalizer and a face editor. The normalizer first frontalizes an input image, and then the editor rotates the frontalized image to a desired pose guided by a remote code. In the meantime, the face normalizer is designed to estimate a novel dense UV correspondence field, making our model aware of 3D face geometry information. In order to generate photo-realistic local details and accelerate convergence process, the normalizer and the editor are trained in a two-stage manner and regulated by a conditional self-cycle loss and a perceptual loss. Exhaustive experiments on both controlled and uncontrolled environments demonstrate that the proposed method not only improves the visual realism of multi-view synthetic images but also preserves identity information well. |
Author | Ran He Bing Yu Zhenan Sun Jie Cao Yibo Hu |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0001-6368-4495 surname: Cao fullname: Cao, Jie – sequence: 2 givenname: Yibo surname: Hu fullname: Hu, Yibo – sequence: 3 givenname: Bing surname: Yu fullname: Yu, Bing – sequence: 4 givenname: Ran orcidid: 0000-0002-3807-991X surname: He fullname: He, Ran – sequence: 5 givenname: Zhenan orcidid: 0000-0003-4029-9935 surname: Sun fullname: Sun, Zhenan |
BookMark | eNp9kDFPwzAQhS1UJNrCD0AslphTfHHqxGPV0lKpwNDCajnJGVy1SbEdof57ErViYOCWu-F9957egPSqukJCboGNAJh82Czn61HMQI7iTAKAuCB9GI9FJFgMvd8b-BUZeL9lLElAZH0i-IxObIklnTUY6GLy4qmpHX1udsFG7xa_6VwXSJd7_YF0fazCJ3rrr8ml0TuPN-c9JG_zx830KVq9LpbTySoqYslDpNEkTJd5IlFgDEaaPGeZ4UVa6nRscJy32TNeyjzVKTeJyDVLeZumzFhaguBDcn_6e3D1V4M-qG3duKq1VHE3DEAmrQpOqsLV3js06uDsXrujAqa6elRXj-rqUed6Wib9wxQ26GDrKjhtd_-SdyfSIuKvUyYYzxLGfwApjHJs |
CODEN | ITIFA6 |
CitedBy_id | crossref_primary_10_1049_2024_7886911 crossref_primary_10_1177_02704676231224705 crossref_primary_10_1016_j_jmapro_2021_03_053 crossref_primary_10_1016_j_neucom_2021_08_103 crossref_primary_10_1007_s11263_019_01229_6 crossref_primary_10_1145_3463475 crossref_primary_10_1080_1475939X_2024_2337924 crossref_primary_10_1007_s11042_020_09479_0 crossref_primary_10_1109_TIP_2023_3341303 crossref_primary_10_1016_j_caeai_2021_100040 crossref_primary_10_1109_TIFS_2020_3033184 crossref_primary_10_1007_s11263_020_01308_z crossref_primary_10_1109_TNNLS_2022_3216018 crossref_primary_10_1016_j_autcon_2024_105430 crossref_primary_10_1109_TIP_2021_3090658 crossref_primary_10_1007_s11760_024_03577_4 crossref_primary_10_1002_cpe_6147 crossref_primary_10_1145_3425780 crossref_primary_10_1016_j_neucom_2021_10_048 crossref_primary_10_1016_j_patcog_2024_110425 crossref_primary_10_1007_s11042_024_18665_3 crossref_primary_10_1109_TKDE_2021_3130191 crossref_primary_10_1109_TIP_2025_3548896 crossref_primary_10_1109_TMM_2022_3151507 crossref_primary_10_1016_j_neucom_2021_04_068 crossref_primary_10_1109_TDSC_2024_3371530 crossref_primary_10_1109_ACCESS_2020_2976121 crossref_primary_10_1109_TIFS_2021_3053460 crossref_primary_10_1007_s11042_020_09308_4 crossref_primary_10_1145_3459992 crossref_primary_10_1049_ipr2_12414 crossref_primary_10_1109_TIP_2021_3112059 |
Cites_doi | 10.1109/WACV.2016.7477557 10.1109/CVPR.2015.7298803 10.1016/j.imavis.2009.08.002 10.1109/AVSS.2009.58 10.1007/978-3-540-24671-8_8 10.1109/ICCV.2013.448 10.1109/CVPR.2017.141 10.1109/ICCV.2017.310 10.1109/CVPR.2016.455 10.1109/CVPR.2018.00876 10.1109/ICCV.2017.180 10.1109/ICCV.2013.21 10.1109/FG.2017.137 10.1109/ICCV.2017.430 10.1109/CVPR.2015.7298876 10.1109/CVPR.2017.632 10.1109/CVPR.2014.243 10.1109/CVPR.2016.524 10.1109/WACV.2016.7477555 10.1109/ICCV.2013.300 10.1145/311535.311556 10.1109/ICCV.2015.425 10.1109/CVPR.2018.00235 10.1109/ICIP.2014.7025947 10.1007/978-3-319-46475-6_43 10.1109/CVPR.2015.7298594 10.5244/C.30.101 10.1109/ICCV.2017.244 10.1109/ICCV.2017.267 10.1109/ICPR.2016.7899774 10.1109/TPAMI.2018.2868350 10.1109/CVPR.2017.280 10.1109/CVPRW.2016.23 10.1109/CVPR.2016.523 10.1109/WACV.2016.7477558 10.1007/978-3-319-46454-1_35 10.1109/CVPR.2005.145 10.1109/CVPR.2016.23 10.1109/CVPR.2016.90 10.1109/CVPR.2015.7299058 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TIFS.2019.2891116 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1556-6021 |
EndPage | 2042 |
ExternalDocumentID | 10_1109_TIFS_2019_2891116 8603840 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1836217; 61427811; 61573360; 61721004 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2017YFC0821602 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-aef40adb49e6e21f9fbb08f3c7da75fe5b10983d9b7a73f46ba073dedd807d163 |
IEDL.DBID | RIE |
ISSN | 1556-6013 |
IngestDate | Mon Jun 30 04:33:18 EDT 2025 Tue Jul 01 02:34:14 EDT 2025 Thu Apr 24 22:52:06 EDT 2025 Wed Aug 27 02:54:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-aef40adb49e6e21f9fbb08f3c7da75fe5b10983d9b7a73f46ba073dedd807d163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4029-9935 0000-0002-3807-991X 0000-0001-6368-4495 |
PQID | 2222201194 |
PQPubID | 85506 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2222201194 crossref_citationtrail_10_1109_TIFS_2019_2891116 crossref_primary_10_1109_TIFS_2019_2891116 ieee_primary_8603840 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information forensics and security |
PublicationTitleAbbrev | TIFS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref53 ref52 ref11 ref17 ref16 ref19 ref18 zhao (ref9) 2017 van der maaten (ref56) 2008; 9 goodfellow (ref10) 2014 ref51 ref50 yi (ref42) 2014 heusel (ref54) 2017 ref45 ref48 ref41 ref44 ref43 ref49 miyato (ref55) 2018 ref8 ref3 ref6 zhu (ref4) 2015 ref5 ref40 ref35 ref34 ref30 ref33 ref32 mirza (ref31) 2014 ref2 yang (ref21) 2015 ref1 ref39 ref38 zhu (ref24) 2014 ref23 parkhi (ref36) 2015 ref26 ref25 ref20 ref22 radford (ref47) 2016 ref28 ref27 ref29 he (ref37) 2017 huang (ref12) 2007 yim (ref7) 2015 kingma (ref46) 2015 |
References_xml | – ident: ref27 doi: 10.1109/WACV.2016.7477557 – ident: ref11 doi: 10.1109/CVPR.2015.7298803 – ident: ref13 doi: 10.1016/j.imavis.2009.08.002 – ident: ref43 doi: 10.1109/AVSS.2009.58 – year: 2014 ident: ref31 publication-title: Conditional generative adversarial nets – ident: ref16 doi: 10.1007/978-3-540-24671-8_8 – start-page: 1 year: 2016 ident: ref47 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: Proc Int Conf Learn Represent – start-page: 41.1 year: 2015 ident: ref36 article-title: Deep face recognition publication-title: Proc Brit Mach Vis Conf (BMVC) – ident: ref17 doi: 10.1109/ICCV.2013.448 – ident: ref8 doi: 10.1109/CVPR.2017.141 – ident: ref34 doi: 10.1109/ICCV.2017.310 – ident: ref15 doi: 10.1109/CVPR.2016.455 – ident: ref22 doi: 10.1109/CVPR.2018.00876 – start-page: 6629 year: 2017 ident: ref54 article-title: GANs trained by a two time-scale update rule converge to a Nash equilibrium publication-title: Proc Conf Neural Inf Process Syst (NIPS) – ident: ref26 doi: 10.1109/ICCV.2017.180 – ident: ref18 doi: 10.1109/ICCV.2013.21 – ident: ref51 doi: 10.1109/FG.2017.137 – ident: ref29 doi: 10.1109/ICCV.2017.430 – start-page: 65 year: 2017 ident: ref9 article-title: Dual-agent GANs for photorealistic and identity preserving profile face synthesis publication-title: Proc 31st Conf Neural Inf Process Syst (NIPS) – ident: ref14 doi: 10.1109/CVPR.2015.7298876 – volume: 9 start-page: 2579 year: 2008 ident: ref56 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – year: 2007 ident: ref12 article-title: Labeled faces in the wild: A database for studying face recognition in unconstrained environments – ident: ref32 doi: 10.1109/CVPR.2017.632 – start-page: 787 year: 2015 ident: ref4 article-title: High-fidelity pose and expression normalization for face recognition in the wild publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – start-page: 1099 year: 2015 ident: ref21 article-title: Weakly-supervised disentangling with recurrent transformations for 3D view synthesis publication-title: Proc Conf Neural Inf Process Syst (NIPS) – ident: ref20 doi: 10.1109/CVPR.2014.243 – ident: ref25 doi: 10.1109/CVPR.2016.524 – ident: ref49 doi: 10.1109/WACV.2016.7477555 – start-page: 1 year: 2018 ident: ref55 article-title: cGANs with projection discriminator publication-title: Proc Int Conf Learn Represent – ident: ref19 doi: 10.1109/ICCV.2013.300 – ident: ref5 doi: 10.1145/311535.311556 – ident: ref40 doi: 10.1109/ICCV.2015.425 – ident: ref30 doi: 10.1109/CVPR.2018.00235 – ident: ref45 doi: 10.1109/ICIP.2014.7025947 – start-page: 676 year: 2015 ident: ref7 article-title: Rotating your face using multi-task deep neural network publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref35 doi: 10.1007/978-3-319-46475-6_43 – start-page: 217 year: 2014 ident: ref24 article-title: Multi-view perceptron: A deep model for learning face identity and view representations publication-title: Proc Conf Neural Inf Process Syst (NIPS) – ident: ref53 doi: 10.1109/CVPR.2015.7298594 – ident: ref6 doi: 10.5244/C.30.101 – year: 2014 ident: ref42 publication-title: Learning face representation from scratch – ident: ref33 doi: 10.1109/ICCV.2017.244 – ident: ref23 doi: 10.1109/ICCV.2017.267 – ident: ref1 doi: 10.1109/ICPR.2016.7899774 – ident: ref52 doi: 10.1109/TPAMI.2018.2868350 – ident: ref38 doi: 10.1109/CVPR.2017.280 – ident: ref48 doi: 10.1109/CVPRW.2016.23 – start-page: 2000 year: 2017 ident: ref37 article-title: Learning invariant deep representation for NIR-VIS face recognition publication-title: Proc AAAI Conf Artif Intell (AAAI) – ident: ref28 doi: 10.1109/CVPR.2016.523 – ident: ref41 doi: 10.1109/WACV.2016.7477558 – ident: ref50 doi: 10.1007/978-3-319-46454-1_35 – ident: ref44 doi: 10.1109/CVPR.2005.145 – ident: ref3 doi: 10.1109/CVPR.2016.23 – start-page: 1 year: 2015 ident: ref46 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent – ident: ref39 doi: 10.1109/CVPR.2016.90 – ident: ref2 doi: 10.1109/CVPR.2015.7299058 – start-page: 2672 year: 2014 ident: ref10 article-title: Generative adversarial nets publication-title: Proc Conf Neural Inf Process Syst (NIPS) |
SSID | ssj0044168 |
Score | 2.4261556 |
Snippet | Multi-view face synthesis from a single image is an ill-posed computer vision problem. It often suffers from appearance distortions if it is not well-defined.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2028 |
SubjectTerms | Computer vision Face Face recognition face reconstruction Face rotation and frontalization Gallium nitride Generative adversarial networks Generators Ill posed problems multi-view face synthesis pose-invariant face recognition Synthesis Three dimensional models Three-dimensional displays Training Yaw |
Title | 3D Aided Duet GANs for Multi-View Face Image Synthesis |
URI | https://ieeexplore.ieee.org/document/8603840 https://www.proquest.com/docview/2222201194 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gJz2IokYUzR48GYul2922RyIimMAFMdya7naaEBWMlBj99c72QXzF2FMPu9vNzM7j684D4Ez5WnlOhBaZSmW5muCOb6NjkTOaCIekS_omUXg4kv2JezsV0wpcrHNhEDELPsOWec3u8uOFXplfZZe-tDkBkg3YIOCW52qVWpesep72JoS0CGTw4gazbQeXd4Pe2ARxBS1CFyTb8osNypqq_NDEmXnp1WBYbiyPKnlorVLV0u_fajb-d-c7sF34mayTH4xdqOC8DrWyhwMrRLoOW58KEu6B5F3WmcUYs-4KU3bTGS0ZebUsS9O17mf4ynqRRjZ4IjXExm9zch-Xs-U-THrXd1d9q-isYGky76kVYeLaUazcACU67SRIlLL9hGsvjjyRoFBEN5_HgfIijyeuVBGpAvp67NteTC7cAVTnizkeAnN8oWgR08Cj7dKCQZsr6REIEhFywXUD7JLWoS7KjpvuF49hBj_sIDTsCQ17woI9DThfT3nOa278NXjPkHs9sKB0A5olQ8NCKpehYx5T5M49-n3WMWyatfMAvyZU05cVnpDTkarT7LR9AEdgz3Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIAD4ykGA3LghOhomyZtjxMwNmC7MBC3qkldaQIGYp0Q_HqcPiZeQvTUQ_OQHdufGz8ADlSgle_GaJGpVJanyd0JbHQtAqOpcEm6ZGAShXt92bnxLu7E3QwcTXNhEDEPPsOmec3v8pMnPTG_yo4DaXNySGZhnuy-cIpsrUrvkl0vEt-EkBa5Gby8w3Ts8HjQbV-bMK6wSf4FSbf8YoXytio_dHFuYNo16FVbK-JK7puTTDX1-7eqjf_d-wosl0iTtYqjsQozOFqDWtXFgZVCvQZLn0oSroPkp6w1TDBhpxPM2HmrP2aEa1meqGvdDvGVtWONrPtIiohdv40IQI6H4w24aZ8NTjpW2VvB0mTgMyvG1LPjRHkhSnSdNEyVsoOUaz-JfZGiUES3gCeh8mOfp55UMSkDWj0JbD8hELcJc6OnEW4BcwOhaBLTwsPxaMLQ4Ur65AaJGLngug52RetIl4XHTf-Lhyh3QOwwMuyJDHuikj11OJwOeS6qbvz18boh9_TDktJ1aFQMjUq5HEeueUyZO2_791H7sNAZ9K6iq27_cgcWzTpFuF8D5rKXCe4SBMnUXn7yPgBIh9K9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Aided+Duet+GANs+for+Multi-View+Face+Image+Synthesis&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Cao%2C+Jie&rft.au=Hu%2C+Yibo&rft.au=Yu%2C+Bing&rft.au=He%2C+Ran&rft.date=2019-08-01&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=14&rft.issue=8&rft.spage=2028&rft.epage=2042&rft_id=info:doi/10.1109%2FTIFS.2019.2891116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2019_2891116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |