3D Aided Duet GANs for Multi-View Face Image Synthesis

Multi-view face synthesis from a single image is an ill-posed computer vision problem. It often suffers from appearance distortions if it is not well-defined. Producing photo-realistic and identity preserving multi-view results is still a not well-defined synthesis problem. This paper proposes 3D ai...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 14; no. 8; pp. 2028 - 2042
Main Authors Cao, Jie, Hu, Yibo, Yu, Bing, He, Ran, Sun, Zhenan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-view face synthesis from a single image is an ill-posed computer vision problem. It often suffers from appearance distortions if it is not well-defined. Producing photo-realistic and identity preserving multi-view results is still a not well-defined synthesis problem. This paper proposes 3D aided duet generative adversarial networks (AD-GAN) to precisely rotate the yaw angle of an input face image to any specified angle. AD-GAN decomposes the challenging synthesis problem into two well-constrained subtasks that correspond to a face normalizer and a face editor. The normalizer first frontalizes an input image, and then the editor rotates the frontalized image to a desired pose guided by a remote code. In the meantime, the face normalizer is designed to estimate a novel dense UV correspondence field, making our model aware of 3D face geometry information. In order to generate photo-realistic local details and accelerate convergence process, the normalizer and the editor are trained in a two-stage manner and regulated by a conditional self-cycle loss and a perceptual loss. Exhaustive experiments on both controlled and uncontrolled environments demonstrate that the proposed method not only improves the visual realism of multi-view synthetic images but also preserves identity information well.
AbstractList Multi-view face synthesis from a single image is an ill-posed computer vision problem. It often suffers from appearance distortions if it is not well-defined. Producing photo-realistic and identity preserving multi-view results is still a not well-defined synthesis problem. This paper proposes 3D aided duet generative adversarial networks (AD-GAN) to precisely rotate the yaw angle of an input face image to any specified angle. AD-GAN decomposes the challenging synthesis problem into two well-constrained subtasks that correspond to a face normalizer and a face editor. The normalizer first frontalizes an input image, and then the editor rotates the frontalized image to a desired pose guided by a remote code. In the meantime, the face normalizer is designed to estimate a novel dense UV correspondence field, making our model aware of 3D face geometry information. In order to generate photo-realistic local details and accelerate convergence process, the normalizer and the editor are trained in a two-stage manner and regulated by a conditional self-cycle loss and a perceptual loss. Exhaustive experiments on both controlled and uncontrolled environments demonstrate that the proposed method not only improves the visual realism of multi-view synthetic images but also preserves identity information well.
Author Ran He
Bing Yu
Zhenan Sun
Jie Cao
Yibo Hu
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0001-6368-4495
  surname: Cao
  fullname: Cao, Jie
– sequence: 2
  givenname: Yibo
  surname: Hu
  fullname: Hu, Yibo
– sequence: 3
  givenname: Bing
  surname: Yu
  fullname: Yu, Bing
– sequence: 4
  givenname: Ran
  orcidid: 0000-0002-3807-991X
  surname: He
  fullname: He, Ran
– sequence: 5
  givenname: Zhenan
  orcidid: 0000-0003-4029-9935
  surname: Sun
  fullname: Sun, Zhenan
BookMark eNp9kDFPwzAQhS1UJNrCD0AslphTfHHqxGPV0lKpwNDCajnJGVy1SbEdof57ErViYOCWu-F9957egPSqukJCboGNAJh82Czn61HMQI7iTAKAuCB9GI9FJFgMvd8b-BUZeL9lLElAZH0i-IxObIklnTUY6GLy4qmpHX1udsFG7xa_6VwXSJd7_YF0fazCJ3rrr8ml0TuPN-c9JG_zx830KVq9LpbTySoqYslDpNEkTJd5IlFgDEaaPGeZ4UVa6nRscJy32TNeyjzVKTeJyDVLeZumzFhaguBDcn_6e3D1V4M-qG3duKq1VHE3DEAmrQpOqsLV3js06uDsXrujAqa6elRXj-rqUed6Wib9wxQ26GDrKjhtd_-SdyfSIuKvUyYYzxLGfwApjHJs
CODEN ITIFA6
CitedBy_id crossref_primary_10_1049_2024_7886911
crossref_primary_10_1177_02704676231224705
crossref_primary_10_1016_j_jmapro_2021_03_053
crossref_primary_10_1016_j_neucom_2021_08_103
crossref_primary_10_1007_s11263_019_01229_6
crossref_primary_10_1145_3463475
crossref_primary_10_1080_1475939X_2024_2337924
crossref_primary_10_1007_s11042_020_09479_0
crossref_primary_10_1109_TIP_2023_3341303
crossref_primary_10_1016_j_caeai_2021_100040
crossref_primary_10_1109_TIFS_2020_3033184
crossref_primary_10_1007_s11263_020_01308_z
crossref_primary_10_1109_TNNLS_2022_3216018
crossref_primary_10_1016_j_autcon_2024_105430
crossref_primary_10_1109_TIP_2021_3090658
crossref_primary_10_1007_s11760_024_03577_4
crossref_primary_10_1002_cpe_6147
crossref_primary_10_1145_3425780
crossref_primary_10_1016_j_neucom_2021_10_048
crossref_primary_10_1016_j_patcog_2024_110425
crossref_primary_10_1007_s11042_024_18665_3
crossref_primary_10_1109_TKDE_2021_3130191
crossref_primary_10_1109_TIP_2025_3548896
crossref_primary_10_1109_TMM_2022_3151507
crossref_primary_10_1016_j_neucom_2021_04_068
crossref_primary_10_1109_TDSC_2024_3371530
crossref_primary_10_1109_ACCESS_2020_2976121
crossref_primary_10_1109_TIFS_2021_3053460
crossref_primary_10_1007_s11042_020_09308_4
crossref_primary_10_1145_3459992
crossref_primary_10_1049_ipr2_12414
crossref_primary_10_1109_TIP_2021_3112059
Cites_doi 10.1109/WACV.2016.7477557
10.1109/CVPR.2015.7298803
10.1016/j.imavis.2009.08.002
10.1109/AVSS.2009.58
10.1007/978-3-540-24671-8_8
10.1109/ICCV.2013.448
10.1109/CVPR.2017.141
10.1109/ICCV.2017.310
10.1109/CVPR.2016.455
10.1109/CVPR.2018.00876
10.1109/ICCV.2017.180
10.1109/ICCV.2013.21
10.1109/FG.2017.137
10.1109/ICCV.2017.430
10.1109/CVPR.2015.7298876
10.1109/CVPR.2017.632
10.1109/CVPR.2014.243
10.1109/CVPR.2016.524
10.1109/WACV.2016.7477555
10.1109/ICCV.2013.300
10.1145/311535.311556
10.1109/ICCV.2015.425
10.1109/CVPR.2018.00235
10.1109/ICIP.2014.7025947
10.1007/978-3-319-46475-6_43
10.1109/CVPR.2015.7298594
10.5244/C.30.101
10.1109/ICCV.2017.244
10.1109/ICCV.2017.267
10.1109/ICPR.2016.7899774
10.1109/TPAMI.2018.2868350
10.1109/CVPR.2017.280
10.1109/CVPRW.2016.23
10.1109/CVPR.2016.523
10.1109/WACV.2016.7477558
10.1007/978-3-319-46454-1_35
10.1109/CVPR.2005.145
10.1109/CVPR.2016.23
10.1109/CVPR.2016.90
10.1109/CVPR.2015.7299058
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TIFS.2019.2891116
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 2042
ExternalDocumentID 10_1109_TIFS_2019_2891116
8603840
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1836217; 61427811; 61573360; 61721004
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2017YFC0821602
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-aef40adb49e6e21f9fbb08f3c7da75fe5b10983d9b7a73f46ba073dedd807d163
IEDL.DBID RIE
ISSN 1556-6013
IngestDate Mon Jun 30 04:33:18 EDT 2025
Tue Jul 01 02:34:14 EDT 2025
Thu Apr 24 22:52:06 EDT 2025
Wed Aug 27 02:54:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-aef40adb49e6e21f9fbb08f3c7da75fe5b10983d9b7a73f46ba073dedd807d163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4029-9935
0000-0002-3807-991X
0000-0001-6368-4495
PQID 2222201194
PQPubID 85506
PageCount 15
ParticipantIDs proquest_journals_2222201194
crossref_citationtrail_10_1109_TIFS_2019_2891116
crossref_primary_10_1109_TIFS_2019_2891116
ieee_primary_8603840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref53
ref52
ref11
ref17
ref16
ref19
ref18
zhao (ref9) 2017
van der maaten (ref56) 2008; 9
goodfellow (ref10) 2014
ref51
ref50
yi (ref42) 2014
heusel (ref54) 2017
ref45
ref48
ref41
ref44
ref43
ref49
miyato (ref55) 2018
ref8
ref3
ref6
zhu (ref4) 2015
ref5
ref40
ref35
ref34
ref30
ref33
ref32
mirza (ref31) 2014
ref2
yang (ref21) 2015
ref1
ref39
ref38
zhu (ref24) 2014
ref23
parkhi (ref36) 2015
ref26
ref25
ref20
ref22
radford (ref47) 2016
ref28
ref27
ref29
he (ref37) 2017
huang (ref12) 2007
yim (ref7) 2015
kingma (ref46) 2015
References_xml – ident: ref27
  doi: 10.1109/WACV.2016.7477557
– ident: ref11
  doi: 10.1109/CVPR.2015.7298803
– ident: ref13
  doi: 10.1016/j.imavis.2009.08.002
– ident: ref43
  doi: 10.1109/AVSS.2009.58
– year: 2014
  ident: ref31
  publication-title: Conditional generative adversarial nets
– ident: ref16
  doi: 10.1007/978-3-540-24671-8_8
– start-page: 1
  year: 2016
  ident: ref47
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: Proc Int Conf Learn Represent
– start-page: 41.1
  year: 2015
  ident: ref36
  article-title: Deep face recognition
  publication-title: Proc Brit Mach Vis Conf (BMVC)
– ident: ref17
  doi: 10.1109/ICCV.2013.448
– ident: ref8
  doi: 10.1109/CVPR.2017.141
– ident: ref34
  doi: 10.1109/ICCV.2017.310
– ident: ref15
  doi: 10.1109/CVPR.2016.455
– ident: ref22
  doi: 10.1109/CVPR.2018.00876
– start-page: 6629
  year: 2017
  ident: ref54
  article-title: GANs trained by a two time-scale update rule converge to a Nash equilibrium
  publication-title: Proc Conf Neural Inf Process Syst (NIPS)
– ident: ref26
  doi: 10.1109/ICCV.2017.180
– ident: ref18
  doi: 10.1109/ICCV.2013.21
– ident: ref51
  doi: 10.1109/FG.2017.137
– ident: ref29
  doi: 10.1109/ICCV.2017.430
– start-page: 65
  year: 2017
  ident: ref9
  article-title: Dual-agent GANs for photorealistic and identity preserving profile face synthesis
  publication-title: Proc 31st Conf Neural Inf Process Syst (NIPS)
– ident: ref14
  doi: 10.1109/CVPR.2015.7298876
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref56
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– year: 2007
  ident: ref12
  article-title: Labeled faces in the wild: A database for studying face recognition in unconstrained environments
– ident: ref32
  doi: 10.1109/CVPR.2017.632
– start-page: 787
  year: 2015
  ident: ref4
  article-title: High-fidelity pose and expression normalization for face recognition in the wild
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– start-page: 1099
  year: 2015
  ident: ref21
  article-title: Weakly-supervised disentangling with recurrent transformations for 3D view synthesis
  publication-title: Proc Conf Neural Inf Process Syst (NIPS)
– ident: ref20
  doi: 10.1109/CVPR.2014.243
– ident: ref25
  doi: 10.1109/CVPR.2016.524
– ident: ref49
  doi: 10.1109/WACV.2016.7477555
– start-page: 1
  year: 2018
  ident: ref55
  article-title: cGANs with projection discriminator
  publication-title: Proc Int Conf Learn Represent
– ident: ref19
  doi: 10.1109/ICCV.2013.300
– ident: ref5
  doi: 10.1145/311535.311556
– ident: ref40
  doi: 10.1109/ICCV.2015.425
– ident: ref30
  doi: 10.1109/CVPR.2018.00235
– ident: ref45
  doi: 10.1109/ICIP.2014.7025947
– start-page: 676
  year: 2015
  ident: ref7
  article-title: Rotating your face using multi-task deep neural network
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref35
  doi: 10.1007/978-3-319-46475-6_43
– start-page: 217
  year: 2014
  ident: ref24
  article-title: Multi-view perceptron: A deep model for learning face identity and view representations
  publication-title: Proc Conf Neural Inf Process Syst (NIPS)
– ident: ref53
  doi: 10.1109/CVPR.2015.7298594
– ident: ref6
  doi: 10.5244/C.30.101
– year: 2014
  ident: ref42
  publication-title: Learning face representation from scratch
– ident: ref33
  doi: 10.1109/ICCV.2017.244
– ident: ref23
  doi: 10.1109/ICCV.2017.267
– ident: ref1
  doi: 10.1109/ICPR.2016.7899774
– ident: ref52
  doi: 10.1109/TPAMI.2018.2868350
– ident: ref38
  doi: 10.1109/CVPR.2017.280
– ident: ref48
  doi: 10.1109/CVPRW.2016.23
– start-page: 2000
  year: 2017
  ident: ref37
  article-title: Learning invariant deep representation for NIR-VIS face recognition
  publication-title: Proc AAAI Conf Artif Intell (AAAI)
– ident: ref28
  doi: 10.1109/CVPR.2016.523
– ident: ref41
  doi: 10.1109/WACV.2016.7477558
– ident: ref50
  doi: 10.1007/978-3-319-46454-1_35
– ident: ref44
  doi: 10.1109/CVPR.2005.145
– ident: ref3
  doi: 10.1109/CVPR.2016.23
– start-page: 1
  year: 2015
  ident: ref46
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– ident: ref39
  doi: 10.1109/CVPR.2016.90
– ident: ref2
  doi: 10.1109/CVPR.2015.7299058
– start-page: 2672
  year: 2014
  ident: ref10
  article-title: Generative adversarial nets
  publication-title: Proc Conf Neural Inf Process Syst (NIPS)
SSID ssj0044168
Score 2.4261556
Snippet Multi-view face synthesis from a single image is an ill-posed computer vision problem. It often suffers from appearance distortions if it is not well-defined....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2028
SubjectTerms Computer vision
Face
Face recognition
face reconstruction
Face rotation and frontalization
Gallium nitride
Generative adversarial networks
Generators
Ill posed problems
multi-view face synthesis
pose-invariant face recognition
Synthesis
Three dimensional models
Three-dimensional displays
Training
Yaw
Title 3D Aided Duet GANs for Multi-View Face Image Synthesis
URI https://ieeexplore.ieee.org/document/8603840
https://www.proquest.com/docview/2222201194
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gJz2IokYUzR48GYul2922RyIimMAFMdya7naaEBWMlBj99c72QXzF2FMPu9vNzM7j684D4Ez5WnlOhBaZSmW5muCOb6NjkTOaCIekS_omUXg4kv2JezsV0wpcrHNhEDELPsOWec3u8uOFXplfZZe-tDkBkg3YIOCW52qVWpesep72JoS0CGTw4gazbQeXd4Pe2ARxBS1CFyTb8osNypqq_NDEmXnp1WBYbiyPKnlorVLV0u_fajb-d-c7sF34mayTH4xdqOC8DrWyhwMrRLoOW58KEu6B5F3WmcUYs-4KU3bTGS0ZebUsS9O17mf4ynqRRjZ4IjXExm9zch-Xs-U-THrXd1d9q-isYGky76kVYeLaUazcACU67SRIlLL9hGsvjjyRoFBEN5_HgfIijyeuVBGpAvp67NteTC7cAVTnizkeAnN8oWgR08Cj7dKCQZsr6REIEhFywXUD7JLWoS7KjpvuF49hBj_sIDTsCQ17woI9DThfT3nOa278NXjPkHs9sKB0A5olQ8NCKpehYx5T5M49-n3WMWyatfMAvyZU05cVnpDTkarT7LR9AEdgz3Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIAD4ykGA3LghOhomyZtjxMwNmC7MBC3qkldaQIGYp0Q_HqcPiZeQvTUQ_OQHdufGz8ADlSgle_GaJGpVJanyd0JbHQtAqOpcEm6ZGAShXt92bnxLu7E3QwcTXNhEDEPPsOmec3v8pMnPTG_yo4DaXNySGZhnuy-cIpsrUrvkl0vEt-EkBa5Gby8w3Ts8HjQbV-bMK6wSf4FSbf8YoXytio_dHFuYNo16FVbK-JK7puTTDX1-7eqjf_d-wosl0iTtYqjsQozOFqDWtXFgZVCvQZLn0oSroPkp6w1TDBhpxPM2HmrP2aEa1meqGvdDvGVtWONrPtIiohdv40IQI6H4w24aZ8NTjpW2VvB0mTgMyvG1LPjRHkhSnSdNEyVsoOUaz-JfZGiUES3gCeh8mOfp55UMSkDWj0JbD8hELcJc6OnEW4BcwOhaBLTwsPxaMLQ4Ur65AaJGLngug52RetIl4XHTf-Lhyh3QOwwMuyJDHuikj11OJwOeS6qbvz18boh9_TDktJ1aFQMjUq5HEeueUyZO2_791H7sNAZ9K6iq27_cgcWzTpFuF8D5rKXCe4SBMnUXn7yPgBIh9K9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Aided+Duet+GANs+for+Multi-View+Face+Image+Synthesis&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Cao%2C+Jie&rft.au=Hu%2C+Yibo&rft.au=Yu%2C+Bing&rft.au=He%2C+Ran&rft.date=2019-08-01&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=14&rft.issue=8&rft.spage=2028&rft.epage=2042&rft_id=info:doi/10.1109%2FTIFS.2019.2891116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2019_2891116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon