GossipFL: A Decentralized Federated Learning Framework With Sparsified and Adaptive Communication
Recently, federated learning (FL) techniques have enabled multiple users to train machine learning models collaboratively without data sharing. However, existing FL algorithms suffer from the communication bottleneck due to network bandwidth pressure and/or low bandwidth utilization of the participa...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 34; no. 3; pp. 909 - 922 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, federated learning (FL) techniques have enabled multiple users to train machine learning models collaboratively without data sharing. However, existing FL algorithms suffer from the communication bottleneck due to network bandwidth pressure and/or low bandwidth utilization of the participating clients in both centralized and decentralized architectures. To deal with the communication problem while preserving the convergence performance, we introduce a communication-efficient decentralized FL framework GossipFL. In GossipFL, we 1) design a novel sparsification algorithm to enable that each client only needs to communicate with one peer with a highly sparsified model, and 2) propose a new and novel gossip matrix generation algorithm that can better utilize the bandwidth resources while preserving the convergence property. We also theoretically prove that GossipFL has convergence guarantees. We conduct experiments with three convolutional neural networks on two datasets (IID and non-IID) under two distributed environments (14 clients and 100 clients) to verify the effectiveness of GossipFL. Experimental results show that GossipFL takes less communication traffic for 38.5% and less communication time for <inline-formula><tex-math notation="LaTeX">49.8</tex-math> <mml:math><mml:mrow><mml:mn>49</mml:mn><mml:mo>.</mml:mo><mml:mn>8</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="chu-ieq1-3230938.gif"/> </inline-formula>% than state-of-the-art solutions while achieving comparative model accuracy. |
---|---|
AbstractList | Recently, federated learning (FL) techniques have enabled multiple users to train machine learning models collaboratively without data sharing. However, existing FL algorithms suffer from the communication bottleneck due to network bandwidth pressure and/or low bandwidth utilization of the participating clients in both centralized and decentralized architectures. To deal with the communication problem while preserving the convergence performance, we introduce a communication-efficient decentralized FL framework GossipFL. In GossipFL, we 1) design a novel sparsification algorithm to enable that each client only needs to communicate with one peer with a highly sparsified model, and 2) propose a new and novel gossip matrix generation algorithm that can better utilize the bandwidth resources while preserving the convergence property. We also theoretically prove that GossipFL has convergence guarantees. We conduct experiments with three convolutional neural networks on two datasets (IID and non-IID) under two distributed environments (14 clients and 100 clients) to verify the effectiveness of GossipFL. Experimental results show that GossipFL takes less communication traffic for 38.5% and less communication time for [Formula Omitted]% than state-of-the-art solutions while achieving comparative model accuracy. Recently, federated learning (FL) techniques have enabled multiple users to train machine learning models collaboratively without data sharing. However, existing FL algorithms suffer from the communication bottleneck due to network bandwidth pressure and/or low bandwidth utilization of the participating clients in both centralized and decentralized architectures. To deal with the communication problem while preserving the convergence performance, we introduce a communication-efficient decentralized FL framework GossipFL. In GossipFL, we 1) design a novel sparsification algorithm to enable that each client only needs to communicate with one peer with a highly sparsified model, and 2) propose a new and novel gossip matrix generation algorithm that can better utilize the bandwidth resources while preserving the convergence property. We also theoretically prove that GossipFL has convergence guarantees. We conduct experiments with three convolutional neural networks on two datasets (IID and non-IID) under two distributed environments (14 clients and 100 clients) to verify the effectiveness of GossipFL. Experimental results show that GossipFL takes less communication traffic for 38.5% and less communication time for <inline-formula><tex-math notation="LaTeX">49.8</tex-math> <mml:math><mml:mrow><mml:mn>49</mml:mn><mml:mo>.</mml:mo><mml:mn>8</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="chu-ieq1-3230938.gif"/> </inline-formula>% than state-of-the-art solutions while achieving comparative model accuracy. |
Author | Chu, Xiaowen Li, Bo Tang, Zhenheng Shi, Shaohuai |
Author_xml | – sequence: 1 givenname: Zhenheng orcidid: 0000-0001-8769-9974 surname: Tang fullname: Tang, Zhenheng email: zhtang@comp.hkbu.edu.hk organization: Hong Kong Baptist University, Hong Kong – sequence: 2 givenname: Shaohuai orcidid: 0000-0002-1418-5160 surname: Shi fullname: Shi, Shaohuai email: shaohuais@hit.edu.cn organization: Harbin Institute of Technology, Shenzhen, China – sequence: 3 givenname: Bo orcidid: 0000-0003-2083-9105 surname: Li fullname: Li, Bo email: bli@cse.ust.hk organization: The Hong Kong University of Science and Technology, Hong Kong – sequence: 4 givenname: Xiaowen orcidid: 0000-0001-9745-4372 surname: Chu fullname: Chu, Xiaowen email: xwchu@ust.hk organization: The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China |
BookMark | eNp9kEtLw0AUhQepYFv9AeIm4Dp1nknGXWlNFQIKrbgM08wdndpO4iRV9Nc7tcWFC1f3wP3OfZwB6rnaAULnBI8IwfJq8TCdjyimdMQow5JlR6hPhMhiSjLWCxpzEUtK5AkatO0KY8IF5n2kZnXb2iYvrqNxNIUKXOfV2n6BjnLQ4FUXVAHKO-ueo9yrDXzU_jV6st1LNG-Ub62xAVFOR2Otms6-QzSpN5uts5XqbO1O0bFR6xbODnWIHvObxeQ2Lu5nd5NxEVdUsi5WEhItTCYFXyYmy5gWaaIzapKKC9B4ycUyVTzj2ijghlNhUi6FMSS0ksSwIbrcz218_baFtitX9da7sLKkaSI5piwlgUr3VOXD4x5MWdnu587wt12XBJe7PMtdnuUuz_KQZ3CSP87G243yn_96LvYeCwC_vJQyITRl3zQlg0o |
CODEN | ITDSEO |
CitedBy_id | crossref_primary_10_1109_LWC_2024_3457921 crossref_primary_10_1109_TCAD_2023_3346274 crossref_primary_10_1016_j_sysarc_2023_102927 crossref_primary_10_1109_TCOMM_2024_3362143 crossref_primary_10_1016_j_future_2024_07_045 crossref_primary_10_1109_TPDS_2024_3501581 crossref_primary_10_1007_s13042_024_02119_1 crossref_primary_10_1109_TWC_2024_3432758 crossref_primary_10_1016_j_ins_2024_120582 crossref_primary_10_1109_TPDS_2025_3539738 crossref_primary_10_1109_TMC_2024_3369188 crossref_primary_10_1016_j_inffus_2023_102028 crossref_primary_10_1109_JIOT_2024_3379395 crossref_primary_10_1016_j_comnet_2024_110663 crossref_primary_10_1016_j_patcog_2025_111362 crossref_primary_10_1109_JIOT_2024_3417212 crossref_primary_10_1109_JIOT_2023_3264611 crossref_primary_10_26599_BDMA_2024_9020029 crossref_primary_10_3390_electronics13061105 crossref_primary_10_1109_TPDS_2024_3413751 crossref_primary_10_1109_JIOT_2023_3329128 crossref_primary_10_1109_JIOT_2024_3481257 crossref_primary_10_1109_TPDS_2023_3277423 crossref_primary_10_1109_TNSE_2024_3447904 crossref_primary_10_1109_OJCOMS_2024_3458088 crossref_primary_10_3390_info15070379 crossref_primary_10_1016_j_icte_2024_12_005 crossref_primary_10_1109_JIOT_2024_3400512 crossref_primary_10_1109_TII_2024_3468446 crossref_primary_10_1145_3625558 crossref_primary_10_32604_cmes_2023_043247 crossref_primary_10_1109_TNET_2023_3329005 crossref_primary_10_1109_COMST_2023_3315746 crossref_primary_10_1109_TMLCN_2024_3409205 crossref_primary_10_1016_j_neunet_2025_107199 crossref_primary_10_1109_COMST_2023_3316615 crossref_primary_10_1109_JIOT_2024_3453964 |
Cites_doi | 10.1109/ICC47138.2019.9123209 10.1109/INFCOM.2005.1498447 10.1007/978-3-030-63076-8_2 10.1109/JIOT.2021.3095077 10.1109/SFCS.2000.892324 10.1145/3298981 10.1109/ICDCS47774.2020.00153 10.1109/MNET.112.2100706 10.1609/aaai.v32i1.11728 10.1109/INFOCOM41043.2020.9155269 10.1016/j.neucom.2018.11.002 10.1145/3485730.3485929 10.1109/CVPR.2016.90 10.1137/16M1081257 10.1007/978-3-030-22496-7_5 10.1109/MNET.011.2000263 10.24963/ijcai.2019/473 10.1109/TPDS.2020.3046440 10.1145/3429252 10.1109/TIT.2006.874516 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TPDS.2022.3230938 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2183 |
EndPage | 922 |
ExternalDocumentID | 10_1109_TPDS_2022_3230938 9996127 |
Genre | orig-research |
GrantInformation_xml | – fundername: RGC GRF grantid: 16209120; 16200221 – fundername: RGC RIF grantid: R6021-20 |
GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-a9e6d5f8954b6f883d576d82f6c45ed0b45b7a484dfae4f425f7495ff10b466f3 |
IEDL.DBID | RIE |
ISSN | 1045-9219 |
IngestDate | Mon Jun 30 04:14:40 EDT 2025 Tue Jul 01 03:58:41 EDT 2025 Thu Apr 24 23:13:02 EDT 2025 Wed Aug 27 02:00:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-a9e6d5f8954b6f883d576d82f6c45ed0b45b7a484dfae4f425f7495ff10b466f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8769-9974 0000-0003-2083-9105 0000-0002-1418-5160 0000-0001-9745-4372 |
PQID | 2769402371 |
PQPubID | 85437 |
PageCount | 14 |
ParticipantIDs | ieee_primary_9996127 proquest_journals_2769402371 crossref_primary_10_1109_TPDS_2022_3230938 crossref_citationtrail_10_1109_TPDS_2022_3230938 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on parallel and distributed systems |
PublicationTitleAbbrev | TPDS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 Vandegriend (ref42) 1998; 9 Li (ref5) ref16 ref19 Luo (ref25) 2021 Karimireddy (ref37) ref51 ref50 Lin (ref45) Wen (ref43) ref46 Tang (ref20) 2020 Lin (ref11) 2021 ref47 Zhang (ref22) Yu (ref9) Alistarh (ref44) ref49 Gibbons (ref31) 1985 ref4 ref3 Krizhevsky (ref39) 2010 ref40 Wang (ref35) Shi (ref48) Luo (ref33) 2019 ref34 Lian (ref53) ref36 Rothchild (ref10) ref30 McMahan (ref2) Lian (ref13) He (ref41) 2020 Hu (ref17) He (ref32) 2021 ref24 ref23 Koloskova (ref18) Koloskova (ref26) Tang (ref6) LeCun (ref38) 2010; 2 Konečnỳ (ref1) ref21 ref28 ref27 Bonawitz (ref8) 2019 Tang (ref14) ref29 Hsieh (ref7) Hsieh (ref15) Daily (ref52) 2018 |
References_xml | – start-page: 493 volume-title: Proc. USENIX Conf. Usenix Annu. Tech. Conf. ident: ref22 article-title: BatchCrypt: Efficient homomorphic encryption for cross-silo federated learning – start-page: 1 volume-title: Proc. Int. Workshop Federated Mach. Learn. User Privacy Data Confidentiality ident: ref17 article-title: Decentralized federated learning: A segmented gossip approach – start-page: 3043 volume-title: Proc. 35th Int. Conf. Mach. Learn. ident: ref53 article-title: Asynchronous decentralized parallel stochastic gradient descent – ident: ref27 doi: 10.1109/ICC47138.2019.9123209 – volume-title: Proc. 37th Int. Conf. Mach. Learn. ident: ref15 article-title: The non-IID data quagmire of decentralized machine learning – year: 2010 ident: ref39 article-title: CIFAR-10 (Canadian Institute for Advanced Research) – ident: ref28 doi: 10.1109/INFCOM.2005.1498447 – volume-title: Proc. 37th Int. Conf. Mach. Learn. ident: ref10 article-title: FetchSGD: Communication-efficient federated learning with sketching – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref5 article-title: On the convergence of FedAvg on non-IID data – ident: ref34 doi: 10.1007/978-3-030-63076-8_2 – start-page: 7202 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref9 article-title: Distributed learning over unreliable networks – ident: ref12 doi: 10.1109/JIOT.2021.3095077 – ident: ref30 doi: 10.1109/SFCS.2000.892324 – ident: ref3 doi: 10.1145/3298981 – start-page: 7663 volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst. ident: ref14 article-title: Communication compression for decentralized training – start-page: 1707 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref44 article-title: QSGD: Communication-efficient SGD via gradient quantization and encoding – ident: ref21 doi: 10.1109/ICDCS47774.2020.00153 – volume: 9 start-page: 219 issue: 1 year: 1998 ident: ref42 article-title: The Gn,mphase transition is not hard for the hamiltonian cycle problem publication-title: J. Artif. Int. Res. – volume-title: Algorithmic Graph Theory year: 1985 ident: ref31 – start-page: 9706 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref35 article-title: Variational model inversion attacks – ident: ref4 doi: 10.1109/MNET.112.2100706 – year: 2021 ident: ref32 article-title: FedCV: A federated learning framework for diverse computer vision tasks – year: 2020 ident: ref41 article-title: FedML: A research library and benchmark for federated machine learning – start-page: 1509 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref43 article-title: TernGrad: Ternary gradients to reduce communication in distributed deep learning – year: 2020 ident: ref20 article-title: Communication-efficient distributed deep learning: A comprehensive survey – start-page: 1 volume-title: Proc. Conf. Neural Inf. Process. Syst. Workshop ident: ref1 article-title: Federated learning: Strategies for improving communication efficiency – ident: ref36 doi: 10.1609/aaai.v32i1.11728 – start-page: 5336 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref13 article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent – start-page: 3478 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref26 article-title: Decentralized stochastic optimization and gossip algorithms with compressed communication – year: 2021 ident: ref25 article-title: Tackling system and statistical heterogeneity for federated learning with adaptive client sampling – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref45 article-title: Deep gradient compression: Reducing the communication bandwidth for distributed training – start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. ident: ref2 article-title: Communication-efficient learning of deep networks from decentralized data – volume: 2 year: 2010 ident: ref38 article-title: MNIST handwritten digit database publication-title: AT&T Labs – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref18 article-title: Decentralized deep learning with arbitrary communication compression – ident: ref47 doi: 10.1109/INFOCOM41043.2020.9155269 – ident: ref51 doi: 10.1016/j.neucom.2018.11.002 – start-page: 629 volume-title: Proc. 14th USENIX Conf. Netw. Syst. Des. Implementation ident: ref7 article-title: Gaia: Geo-distributed machine learning approaching LAN speeds – ident: ref49 doi: 10.1145/3485730.3485929 – ident: ref40 doi: 10.1109/CVPR.2016.90 – ident: ref50 doi: 10.1137/16M1081257 – ident: ref16 doi: 10.1007/978-3-030-22496-7_5 – start-page: 21111 volume-title: Proc. 39th Int. Conf. Mach. Learn. ident: ref6 article-title: Virtual homogeneity learning: Defending against data heterogeneity in federated learning – ident: ref23 doi: 10.1109/MNET.011.2000263 – year: 2021 ident: ref11 article-title: How to train your neural network: A comparative evaluation – start-page: 401 volume-title: Proc. 4th MLSys Conf. ident: ref48 article-title: Towards scalable distributed training of deep learning on public cloud clusters – ident: ref46 doi: 10.24963/ijcai.2019/473 – ident: ref19 doi: 10.1109/TPDS.2020.3046440 – year: 2018 ident: ref52 article-title: GossipGraD: Scalable deep learning using gossip communication based asynchronous gradient descent – year: 2019 ident: ref8 article-title: Towards federated learning at scale: System design – ident: ref24 doi: 10.1145/3429252 – ident: ref29 doi: 10.1109/TIT.2006.874516 – year: 2019 ident: ref33 article-title: Real-world image datasets for federated learning – start-page: 3252 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref37 article-title: Error feedback fixes SignSGD and other gradient compression schemes |
SSID | ssj0014504 |
Score | 2.5891535 |
Snippet | Recently, federated learning (FL) techniques have enabled multiple users to train machine learning models collaboratively without data sharing. However,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 909 |
SubjectTerms | Algorithms Artificial neural networks Bandwidth Bandwidths Clients Communication communication efficiency Communications traffic Convergence Data models Deep learning Federated learning Machine learning Model accuracy Servers Topology Training |
Title | GossipFL: A Decentralized Federated Learning Framework With Sparsified and Adaptive Communication |
URI | https://ieeexplore.ieee.org/document/9996127 https://www.proquest.com/docview/2769402371 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH6oJz04rjhu5OBJ7NglSRtvg1pFVAQVvZWkSXRQxkE7F3-9L206uCHeCkkg8OUl39e3AexIGVuj0ZCkRSOnJbeBilQa8BJHBJ4YLp1H9-KSn97Ss3t2PwV7k1wYY0wdfGZ67rP25euXcux-le07ch7F6TRMo3BrcrUmHgPK6laBqC5YINAMvQczCsX-zdXRNSrBOO4lsXP8ZV_eoLqpyo-buH5e8g5ctBtrokqeeuNK9cr3bzUb_7vzBZj3PJP0m4OxCFNmuASdtocD8Sa9BHOfChIugzzB_Q5G-fkB6ZMj4yM3B-9Gk9xVnUBiqokvyfpA8jawi9wNqkdyPUKRPLDIaYkcatLXcuTuUvIlB2UFbvPjm8PTwDdhCEpkAlUgheGa2UwwqrjNskSjQtFZbHlJmdGhokylkmZUW2moxSvApii6LEKvKOc2WYWZ4cvQrAFJQiO40DRJFfIYmUiWSS4ki7mMSpXZLoQtLEXpK5S7RhnPRa1UQlE4JAuHZOGR7MLuZMmoKc_x1-Rlh8xkogelC5st9oU34LciTrlAaZ2k0frvqzZg1nWeb8LRNmGmeh2bLeQnldquD-YHi_rh4w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5icNg4AIMhyk8fdpqWkji2E-9WDUK3tWgSReMW2bG9VZtKtaUX_nqeE6eCDaHdItmWLH1-9vfl_QJ4qxR11qAhKYdGzirhIp3oLBIVjkg8MUJ5j-74Ugyv2ecbfrMC75e5MNbaJvjM9v1n48s3t9XC_yo79eQ8odkLWMN3n9M2W2vpM2C8aRaI-oJHEg0x-DCTWJ5Ovp5doRaktJ9S7_rLH71CTVuVf-7i5oEpNmHcba2NK_nZX9S6X939VbXxf_e-BRuBaZJBezRew4qdbcNm18WBBKPehvUHJQl3QF3gfqfzYvSBDMiZDbGb0ztrSOHrTiA1NSQUZf1Oii60i3yb1j_I1Rxl8tQhqyVqZsjAqLm_TcmjLJQ3cF2cTz4Oo9CGIaqQC9SRklYY7nLJmRYuz1ODGsXk1ImKcWtizbjOFMuZccoyh5eAy1B2OQRfMyFcugurs9uZ3QOSxlYKaViaaWQyKlU8V0IqToVKKp27HsQdLGUVapT7Vhm_ykarxLL0SJYeyTIg2YN3yyXztkDHc5N3PDLLiQGUHhx22JfBhP-UNBMSxXWaJftPrzqBl8PJeFSOPl1-OYBXvg99G5x2CKv174U9QrZS6-PmkN4Df3PlLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GossipFL%3A+A+Decentralized+Federated+Learning+Framework+With+Sparsified+and+Adaptive+Communication&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Tang%2C+Zhenheng&rft.au=Shi%2C+Shaohuai&rft.au=Li%2C+Bo&rft.au=Chu%2C+Xiaowen&rft.date=2023-03-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=34&rft.issue=3&rft.spage=909&rft.epage=922&rft_id=info:doi/10.1109%2FTPDS.2022.3230938&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2022_3230938 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |