Separation of Overlapped Non-Stationary Signals by Ridge Path Regrouping and Intrinsic Chirp Component Decomposition

In some applications, it is necessary to analyze multi-component non-stationary signals whose components severely overlap in the time-frequency (T-F) domain. Separating those signal components is desired but very challenging for existing methods. To address this issue, we propose a novel non-paramet...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 17; no. 18; pp. 5994 - 6005
Main Authors Chen, Shiqian, Dong, Xingjian, Xing, Guanpei, Peng, Zhike, Zhang, Wenming, Meng, Guang
Format Journal Article
LanguageEnglish
Published New York IEEE 15.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In some applications, it is necessary to analyze multi-component non-stationary signals whose components severely overlap in the time-frequency (T-F) domain. Separating those signal components is desired but very challenging for existing methods. To address this issue, we propose a novel non-parametric algorithm called ridge path regrouping (RPRG) to extract the instantaneous frequencies (IFs) of the overlapped components from a T-F representation (TFR). The RPRG first detects the ridges of a multi-component signal from a TFR and then extracts the desired IFs by regrouping the ridge curves according to their variation rates at the intersections. After the IFs are obtained, component separation is achieved by using the intrinsic chirp component decomposition (ICCD) method. Different from traditional T-F filter-based methods, the ICCD can accurately reconstruct overlapped components by using a joint-estimation scheme. Finally, applications of separating some simulated and experimental micro-Doppler signals are presented to show the effectiveness of the method.
AbstractList In some applications, it is necessary to analyze multi-component non-stationary signals whose components severely overlap in the time-frequency (T-F) domain. Separating those signal components is desired but very challenging for existing methods. To address this issue, we propose a novel non-parametric algorithm called ridge path regrouping (RPRG) to extract the instantaneous frequencies (IFs) of the overlapped components from a T-F representation (TFR). The RPRG first detects the ridges of a multi-component signal from a TFR and then extracts the desired IFs by regrouping the ridge curves according to their variation rates at the intersections. After the IFs are obtained, component separation is achieved by using the intrinsic chirp component decomposition (ICCD) method. Different from traditional T-F filter-based methods, the ICCD can accurately reconstruct overlapped components by using a joint-estimation scheme. Finally, applications of separating some simulated and experimental micro-Doppler signals are presented to show the effectiveness of the method.
Author Shiqian Chen
Xingjian Dong
Guanpei Xing
Guang Meng
Wenming Zhang
Zhike Peng
Author_xml – sequence: 1
  givenname: Shiqian
  surname: Chen
  fullname: Chen, Shiqian
– sequence: 2
  givenname: Xingjian
  surname: Dong
  fullname: Dong, Xingjian
– sequence: 3
  givenname: Guanpei
  surname: Xing
  fullname: Xing, Guanpei
– sequence: 4
  givenname: Zhike
  surname: Peng
  fullname: Peng, Zhike
– sequence: 5
  givenname: Wenming
  surname: Zhang
  fullname: Zhang, Wenming
– sequence: 6
  givenname: Guang
  surname: Meng
  fullname: Meng, Guang
BookMark eNp9UE1PAjEUbAwmAvoDjJcmnhf7tXR7NIiKIWBYTbxtukuBEmjXtpjw7-26xIMH8w5vms5M3kwPdIw1CoBrjAYYI3H3ko9nA4IwHxBOORvyM9DFaZolmLOs02CKEkb5xwXoeb9FCAue8i4Iuaqlk0FbA-0Kzr-U28m6Vks4sybJw8-PdEeY67WROw_LI1zo5VrBVxk2cKHWzh5qbdZQmiWcmOC08bqCo412NRzZfR3vNAE-qKrBXjd-l-B8Fb3U1Wn3wfvj-G30nEznT5PR_TSpiKAhkYyVnFQsxmKEiwxl5Wq4jEOIGHJO2FBKklaZUCURIkIuyvgqSyQQSUtG--C29a2d_TwoH4qtPbgmRoEFJYTSqIks3rIqZ713alVUus0dnNS7AqOiqbhoKi6aiotTxVGJ_yhrp_exrX81N61GK6V--RlCjNGMfgPx94mo
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_sigpro_2022_108507
crossref_primary_10_3390_a13040105
crossref_primary_10_1016_j_dsp_2020_102783
crossref_primary_10_1016_j_dsp_2022_103635
crossref_primary_10_1088_1742_6596_1880_1_012003
crossref_primary_10_1155_2018_8426790
crossref_primary_10_1109_JSEN_2017_2778294
crossref_primary_10_1109_LGRS_2022_3148594
crossref_primary_10_3390_rs14153691
crossref_primary_10_1016_j_conengprac_2023_105715
crossref_primary_10_1109_ACCESS_2020_2980363
crossref_primary_10_1063_1_5082776
crossref_primary_10_1016_j_measen_2023_100758
crossref_primary_10_1016_j_sigpro_2023_109035
crossref_primary_10_1016_j_apnum_2024_11_004
crossref_primary_10_1177_10775463221106524
crossref_primary_10_1007_s11276_022_03086_7
crossref_primary_10_1016_j_measurement_2021_109949
crossref_primary_10_1007_s00034_019_01278_9
crossref_primary_10_1109_LSP_2018_2858018
crossref_primary_10_1088_1742_6596_1820_1_012124
crossref_primary_10_1016_j_fraope_2025_100217
crossref_primary_10_1016_j_dsp_2020_102771
crossref_primary_10_3390_e24040452
crossref_primary_10_1360_SSI_2023_0040
crossref_primary_10_1049_joe_2019_0387
crossref_primary_10_1016_j_sigpro_2019_05_008
crossref_primary_10_1109_TIM_2021_3072105
crossref_primary_10_1109_TIE_2018_2868296
crossref_primary_10_1016_j_sigpro_2024_109541
crossref_primary_10_1016_j_ymssp_2018_06_052
crossref_primary_10_1016_j_ymssp_2022_109329
crossref_primary_10_1088_1361_6501_ab6278
crossref_primary_10_1016_j_ymssp_2025_112477
crossref_primary_10_1109_LAWP_2023_3267238
crossref_primary_10_1109_TAES_2024_3373719
crossref_primary_10_1109_TIM_2024_3502823
crossref_primary_10_1109_TSP_2021_3093786
crossref_primary_10_1109_JSEN_2024_3435701
crossref_primary_10_1016_j_sigpro_2020_107830
crossref_primary_10_1016_j_sigpro_2021_108009
crossref_primary_10_1016_j_jappgeo_2023_104993
crossref_primary_10_1016_j_ymssp_2018_08_006
crossref_primary_10_1007_s11760_020_01711_6
crossref_primary_10_1049_rsn2_12172
crossref_primary_10_1109_TIM_2024_3451599
crossref_primary_10_1007_s00034_018_0960_z
crossref_primary_10_1016_j_ymssp_2024_111835
crossref_primary_10_1016_j_ymssp_2025_112407
crossref_primary_10_1109_TGRS_2021_3098783
crossref_primary_10_1109_JSEN_2018_2812848
crossref_primary_10_1109_TAES_2023_3244180
crossref_primary_10_1016_j_apacoust_2023_109239
crossref_primary_10_1109_LGRS_2023_3251723
crossref_primary_10_1016_j_dsp_2021_103262
crossref_primary_10_1109_TIM_2020_3033061
crossref_primary_10_3390_en18051026
crossref_primary_10_3390_s25072030
crossref_primary_10_1109_TUFFC_2023_3271638
crossref_primary_10_1109_JSEN_2023_3330955
crossref_primary_10_1016_j_ymssp_2018_07_039
crossref_primary_10_1115_1_4043542
crossref_primary_10_1016_j_jsv_2020_115800
crossref_primary_10_1007_s11760_021_01906_5
crossref_primary_10_1016_j_ymssp_2022_109822
crossref_primary_10_1016_j_sigpro_2019_107342
crossref_primary_10_1007_s42417_024_01443_8
crossref_primary_10_1038_s41598_024_70317_6
crossref_primary_10_1007_s00034_019_01314_8
crossref_primary_10_2139_ssrn_4189355
crossref_primary_10_3390_app12052342
crossref_primary_10_1016_j_jsv_2024_118358
crossref_primary_10_1109_JSEN_2022_3187763
crossref_primary_10_1016_j_dsp_2023_104122
crossref_primary_10_1016_j_dsp_2022_103392
crossref_primary_10_1016_j_aei_2025_103250
crossref_primary_10_1016_j_imavis_2023_104812
crossref_primary_10_1016_j_dsp_2020_102860
crossref_primary_10_1016_j_sigpro_2022_108541
crossref_primary_10_1109_LGRS_2020_3033809
crossref_primary_10_1016_j_isatra_2021_10_011
crossref_primary_10_1016_j_dsp_2023_104129
crossref_primary_10_1007_s12206_021_0405_7
crossref_primary_10_1109_JSEN_2019_2919776
crossref_primary_10_1142_S0219455424500317
crossref_primary_10_3390_rs14194764
crossref_primary_10_1016_j_inffus_2023_101859
crossref_primary_10_1007_s11045_021_00769_w
crossref_primary_10_1109_TII_2022_3185771
crossref_primary_10_1109_TMECH_2023_3239159
crossref_primary_10_1007_s00034_021_01825_3
crossref_primary_10_1109_TIM_2022_3146948
crossref_primary_10_1109_TSP_2022_3220027
crossref_primary_10_1109_LGRS_2021_3066522
crossref_primary_10_1016_j_measurement_2025_117302
crossref_primary_10_1016_j_sigpro_2020_107728
crossref_primary_10_1109_JSEN_2024_3490184
crossref_primary_10_1177_14759217231197110
crossref_primary_10_3390_rs15204917
crossref_primary_10_1007_s11760_018_1377_7
crossref_primary_10_1016_j_sigpro_2022_108494
crossref_primary_10_1088_1361_6501_abb50f
crossref_primary_10_3390_app11041849
crossref_primary_10_1016_j_sigpro_2018_07_026
crossref_primary_10_1109_LGRS_2019_2946368
crossref_primary_10_1109_TIM_2019_2937531
crossref_primary_10_1121_10_0014696
crossref_primary_10_1016_j_apacoust_2024_110024
crossref_primary_10_1109_ACCESS_2020_3003254
crossref_primary_10_1109_JSEN_2021_3131994
crossref_primary_10_1007_s00034_023_02388_1
crossref_primary_10_3390_math8122170
crossref_primary_10_3390_s23083837
crossref_primary_10_1109_JSEN_2020_2998285
crossref_primary_10_1364_OL_457157
crossref_primary_10_1016_j_ymssp_2023_110108
crossref_primary_10_1016_j_ymssp_2024_111475
crossref_primary_10_1109_JSEN_2022_3224961
crossref_primary_10_1016_j_ymssp_2018_06_047
crossref_primary_10_1109_ACCESS_2020_2966529
crossref_primary_10_1109_TAES_2022_3192221
crossref_primary_10_1117_1_JRS_14_046506
crossref_primary_10_1088_1361_6501_ad3297
crossref_primary_10_1109_TIE_2020_3013537
crossref_primary_10_1016_j_sigpro_2022_108911
crossref_primary_10_1049_iet_rsn_2020_0091
crossref_primary_10_1016_j_ultras_2025_107635
crossref_primary_10_3390_sym16040432
crossref_primary_10_1109_JSEN_2020_2964109
crossref_primary_10_1109_ACCESS_2019_2896337
crossref_primary_10_1109_JSEN_2023_3303324
crossref_primary_10_3390_info11010056
crossref_primary_10_1109_TIM_2022_3149326
crossref_primary_10_1088_1742_6596_2184_1_012052
crossref_primary_10_1016_j_ymssp_2024_111588
crossref_primary_10_1109_TAP_2022_3172759
crossref_primary_10_1016_j_ymssp_2024_111741
crossref_primary_10_1016_j_sigpro_2023_109181
crossref_primary_10_3390_math9030247
crossref_primary_10_1016_j_sigpro_2019_107260
Cites_doi 10.1109/TSP.2014.2314061
10.1109/TSP.2013.2288675
10.1016/j.acha.2012.10.001
10.1109/JSEN.2014.2314219
10.1109/78.258082
10.1016/j.jfranklin.2008.01.003
10.1109/TSP.2013.2271752
10.1109/TGRS.2014.2322438
10.1109/TAES.2017.2649798
10.1109/TGRS.2013.2271706
10.1109/TIM.2015.2494632
10.1016/j.acha.2010.08.002
10.1109/TSP.2008.924856
10.1109/TSP.2010.2048102
10.1007/s11760-011-0263-3
10.1016/j.sigpro.2003.12.006
10.1109/TAES.2014.130554
10.1109/JSEN.2013.2272119
10.1109/TBME.2012.2217495
10.1109/TSP.2012.2212891
10.1016/j.sigpro.2017.03.022
10.1016/j.sigpro.2014.07.008
10.1109/LSP.2012.2236088
10.1109/TGRS.2007.907105
10.1109/TAES.2013.6494410
10.1155/S1110865704404193
10.1016/j.apacoust.2010.04.009
10.1109/TAES.2006.314590
10.1109/TGRS.2013.2292826
10.1098/rsif.2005.0058
10.1109/TAES.2014.140098
10.1109/TGRS.2013.2249588
10.1109/TIM.2014.2313961
10.1016/j.ymssp.2013.01.017
10.1109/JSEN.2015.2509185
10.1016/j.sigpro.2017.01.027
10.1109/TGRS.2008.2002322
10.1109/LSP.2014.2377038
10.1109/TAES.2006.1603402
10.1109/TSP.2013.2265222
10.1098/rspa.1998.0193
10.1109/TIE.2016.2612174
10.1137/0914086
10.1109/TIM.2011.2124770
10.1016/j.sigpro.2016.01.024
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2017.2737467
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 6005
ExternalDocumentID 10_1109_JSEN_2017_2737467
8004438
Genre orig-research
GrantInformation_xml – fundername: Technology Innovation Program of Advanced Aerospace Technology Joint Center
  grantid: USCAST2016-26
– fundername: National Natural Science Foundation of China
  grantid: 11632011; 11472170; 51121063
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-a44b72c42014279808bf6d6d6229677246aa25c89eb299a2579bc89bb09025b43
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:24:49 EDT 2025
Tue Jul 01 03:36:39 EDT 2025
Thu Apr 24 22:56:49 EDT 2025
Wed Aug 27 03:06:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-a44b72c42014279808bf6d6d6229677246aa25c89eb299a2579bc89bb09025b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1932233257
PQPubID 75733
PageCount 12
ParticipantIDs proquest_journals_1932233257
crossref_citationtrail_10_1109_JSEN_2017_2737467
crossref_primary_10_1109_JSEN_2017_2737467
ieee_primary_8004438
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-15
PublicationDateYYYYMMDD 2017-09-15
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref45
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref5
  doi: 10.1109/TSP.2014.2314061
– ident: ref12
  doi: 10.1109/TSP.2013.2288675
– ident: ref14
  doi: 10.1016/j.acha.2012.10.001
– ident: ref41
  doi: 10.1109/JSEN.2014.2314219
– ident: ref13
  doi: 10.1109/78.258082
– ident: ref27
  doi: 10.1016/j.jfranklin.2008.01.003
– ident: ref31
  doi: 10.1109/TSP.2013.2271752
– ident: ref6
  doi: 10.1109/TGRS.2014.2322438
– ident: ref43
  doi: 10.1109/TAES.2017.2649798
– ident: ref32
  doi: 10.1109/TGRS.2013.2271706
– ident: ref17
  doi: 10.1109/TIM.2015.2494632
– ident: ref10
  doi: 10.1016/j.acha.2010.08.002
– ident: ref37
  doi: 10.1109/TSP.2008.924856
– ident: ref21
  doi: 10.1109/TSP.2010.2048102
– ident: ref28
  doi: 10.1007/s11760-011-0263-3
– ident: ref25
  doi: 10.1016/j.sigpro.2003.12.006
– ident: ref35
  doi: 10.1109/TAES.2014.130554
– ident: ref42
  doi: 10.1109/JSEN.2013.2272119
– ident: ref3
  doi: 10.1109/TBME.2012.2217495
– ident: ref38
  doi: 10.1109/TSP.2012.2212891
– ident: ref44
  doi: 10.1016/j.sigpro.2017.03.022
– ident: ref26
  doi: 10.1016/j.sigpro.2014.07.008
– ident: ref39
  doi: 10.1109/LSP.2012.2236088
– ident: ref24
  doi: 10.1109/TGRS.2007.907105
– ident: ref29
  doi: 10.1109/TAES.2013.6494410
– ident: ref40
  doi: 10.1155/S1110865704404193
– ident: ref20
  doi: 10.1016/j.apacoust.2010.04.009
– ident: ref30
  doi: 10.1109/TAES.2006.314590
– ident: ref16
  doi: 10.1109/TGRS.2013.2292826
– ident: ref9
  doi: 10.1098/rsif.2005.0058
– ident: ref23
  doi: 10.1109/TAES.2014.140098
– ident: ref34
  doi: 10.1109/TGRS.2013.2249588
– ident: ref18
  doi: 10.1109/TIM.2014.2313961
– ident: ref2
  doi: 10.1016/j.ymssp.2013.01.017
– ident: ref7
  doi: 10.1109/JSEN.2015.2509185
– ident: ref15
  doi: 10.1016/j.sigpro.2017.01.027
– ident: ref33
  doi: 10.1109/TGRS.2008.2002322
– ident: ref19
  doi: 10.1109/LSP.2014.2377038
– ident: ref1
  doi: 10.1109/TAES.2006.1603402
– ident: ref11
  doi: 10.1109/TSP.2013.2265222
– ident: ref8
  doi: 10.1098/rspa.1998.0193
– ident: ref22
  doi: 10.1109/TIE.2016.2612174
– ident: ref36
  doi: 10.1137/0914086
– ident: ref4
  doi: 10.1109/TIM.2011.2124770
– ident: ref45
  doi: 10.1016/j.sigpro.2016.01.024
SSID ssj0019757
Score 2.5470133
Snippet In some applications, it is necessary to analyze multi-component non-stationary signals whose components severely overlap in the time-frequency (T-F) domain....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5994
SubjectTerms Adaptation models
Chirp
Computer simulation
instantaneous frequency (IF)
intersected IFs
Intersections
micro-Doppler (m-D)
Multi-component signal
overlapped signals
Radar
Sensors
Separation
signal decomposition
Signal resolution
time frequency (T-F)
Time-frequency analysis
Transforms
Title Separation of Overlapped Non-Stationary Signals by Ridge Path Regrouping and Intrinsic Chirp Component Decomposition
URI https://ieeexplore.ieee.org/document/8004438
https://www.proquest.com/docview/1932233257
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BF9pDy6MVSwH50FOFl2zixPYR8RAgsa1YkPYW2Y63oKJktc0iLb-emcS7VBQhlIsj-THJ-DHj-WYG4LtVUo1S2eOJsyMuXBJziwRzVICMQInAY0NCW_SzsxtxMUyHS7C_8IXx3jfgM9-lYmPLLyo3pauyA0Xmx0QtwzIqbq2v1sJioGUT1RMXcMRFIofBgtmL9MHF4KRPIC7ZxbNatinln8-gJqnKfztxc7ycfobLOWEtquRPd1rbrnt8EbPxvZSvwacgZ7LDdmKsw5IvN-DjP9EHN2A1JEC_nW1CPfBtEPCqZNWI_Xyga77x2BesX5V80NrrzWTGBne_KeIyszN2Ra5e7BeKkOzKN94h2C0zZcHOyxqHQP6zo9u7yZjRplOVSCE79oRhD0CxL3BzenJ9dMZDQgbuUCqouRHCytgJ_JcillpFyo6yAp841hmK6SIzJk6d0qiua41FqS2-WUvgz9SK5CuslDjcFjClcSpYlM4KZYU2PWuoUuq0SEwmrOhANGdR7kK0ckqacZ83Wkukc-JqTlzNA1c78GPRZNyG6nir8iZxaVExMKgDO_N5kIfF_DcnGTdOEvyc7ddbfYMP1DfBSHrpDqzUk6nfRVmltnvNJH0CTfXlkg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qZVFY8GipGCjgBWyQMs04TmwvWKA-NNOWAXVaaXbBdjy0AiWjaQY0fAu_wr9xb-IZECB2lVA2juRH4pzY59rH9wI8t0qqSSp7UeLsJBIu4ZHFB47QADICGYHHgqS2GGb9c3E0Tsdr8G11FsZ734jPfJeSzV5-Ubk5LZXtKtp-TFSQUB77xRc00K5eDfbxa77g_PDgbK8fhRgCkcOJrI6MEFZyJ3CeE1xqFSs7yQq8ONcZMkuRGcNTpzRamFpjUmqLd9aSXjG1IsF6b8BN5Bkpb0-HrfYotGz8iOKQEUcikeOwZ9qL9e7R6GBIsjHZRXYg2yD2P2e9JozLH2N_M6Ed3oXvy65odSwfu_Padt3X37xE_q99dQ_uBCbNXrfQvw9rvtyE27_4V9yEjRDi_WKxBfXIt27Oq5JVE_b2My1kTqe-YMOqjEatIsHMFmx0-YF8SjO7YKd0mI29Q5LMTn1z_gWrZaYs2KCssQlEONu7uJxNGQ2rVYk9wvY9qfSDFO4BnF9LF2zDeonNPQSmNILdIv8slBXa9KyhTKnTIjGZsKID8RISuQv-2CksyKe8sctinROKckJRHlDUgZerItPWGcm_Mm8RKlYZAyA6sLPEXR6Gq6ucWDxPEnydR38v9Qw2-mdvTvKTwfD4Mdyidkg000t3YL2ezf0TZGa1fdr8IAzeXzfKfgDeJD-c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Separation+of+Overlapped+Non-Stationary+Signals+by+Ridge+Path+Regrouping+and+Intrinsic+Chirp+Component+Decomposition&rft.jtitle=IEEE+sensors+journal&rft.au=Chen%2C+Shiqian&rft.au=Dong%2C+Xingjian&rft.au=Xing%2C+Guanpei&rft.au=Peng%2C+Zhike&rft.date=2017-09-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=17&rft.issue=18&rft.spage=5994&rft.epage=6005&rft_id=info:doi/10.1109%2FJSEN.2017.2737467&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2017_2737467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon