Extracting the Forest Type From Remote Sensing Images by Random Forest
Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method...
Saved in:
Published in | IEEE sensors journal Vol. 21; no. 16; pp. 17447 - 17454 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method. The GF-2 remote sensing image in the Laoshan construction area of the Maoershan Forest Farm, Heilongjiang Province was as the data source, supplemented by aerial RGB images with a resolution of 0.2 m and the second type inventory of forest resources data. Considering the spatial characteristics of the spectrum, texture, vegetation index, terrain, multiscale segmentation was performed, the optimal feature space was constructed, and the number of decision trees was estimated. In this manner, an object-oriented random forest (RF) scheme was established. Comparative experiments were performed using the support vector machine(SVM) classifier. The experimental results indicated that the overall accuracy and kappa coefficient of the proposed method was 83.16% and 79.86%, respectively, higher than those of the SVM classification method. These findings demonstrated that the proposed method can effectively increase the classification accuracy of forest types. |
---|---|
AbstractList | Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method. The GF-2 remote sensing image in the Laoshan construction area of the Maoershan Forest Farm, Heilongjiang Province was as the data source, supplemented by aerial RGB images with a resolution of 0.2 m and the second type inventory of forest resources data. Considering the spatial characteristics of the spectrum, texture, vegetation index, terrain, multiscale segmentation was performed, the optimal feature space was constructed, and the number of decision trees was estimated. In this manner, an object-oriented random forest (RF) scheme was established. Comparative experiments were performed using the support vector machine(SVM) classifier. The experimental results indicated that the overall accuracy and kappa coefficient of the proposed method was 83.16% and 79.86%, respectively, higher than those of the SVM classification method. These findings demonstrated that the proposed method can effectively increase the classification accuracy of forest types. |
Author | Huihui, Wang Linhui, Li Weipeng, Jing |
Author_xml | – sequence: 1 givenname: Li surname: Linhui fullname: Linhui, Li email: linhuili@nefu.edu.cn organization: College of Information and Computer Engineering, Northeast Forestry University, Harbin, China – sequence: 2 givenname: Jing orcidid: 0000-0001-7933-6946 surname: Weipeng fullname: Weipeng, Jing email: weipeng.jing@outlook.com organization: College of Information and Computer Engineering, Northeast Forestry University, Harbin, China – sequence: 3 givenname: Wang orcidid: 0000-0002-4098-5313 surname: Huihui fullname: Huihui, Wang email: hwang1@ju.edu organization: National Society of Professional Engineering (NSPE), Jacksonville University, Jacksonville, FL, USA |
BookMark | eNp9kE1LAzEQhoNUsK3-APGy4HlrPpvNUUqrlaLQVvAWkuxs3dLu1mQL9t-bZYsHD55mYN5nhnkGqFfVFSB0S_CIEKweXlbT1xHFFI8Y5kJgcoH6RIgsJZJnvbZnOOVMflyhQQhbjImSQvbRbPrdeOOastokzScks9pDaJL16RB7X--TJezrBpIVVKHNzPdmAyGxp2RpqjzOO-AaXRZmF-DmXIfofTZdT57TxdvTfPK4SB1VrEkNzW3hCmclLjLLlBUMchCsoMRyC5l1xlrOhSNMCcYzRYlxGPLcEMgYHrMhuu_2Hnz9dYyH9bY--iqe1FSMsYouuIwp2aWcr0PwUGhXNqYp6yr-Wu40wbqVpltpupWmz9IiSf6QB1_ujT_9y9x1TAkAv3lF1Vhywn4AF1R5vA |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1080_17538947_2024_2447347 crossref_primary_10_3390_rs14051118 crossref_primary_10_3390_rs15123168 crossref_primary_10_3390_app112110062 crossref_primary_10_3390_drones6120399 crossref_primary_10_1109_JSEN_2022_3179810 crossref_primary_10_1080_17538947_2024_2353113 crossref_primary_10_1109_JSEN_2022_3177777 crossref_primary_10_3390_f14020292 crossref_primary_10_3390_rs16050798 crossref_primary_10_1016_j_measurement_2023_113925 crossref_primary_10_1109_JSEN_2025_3528034 crossref_primary_10_3390_land13040439 crossref_primary_10_1016_j_compbiolchem_2024_108215 crossref_primary_10_3390_f14122301 crossref_primary_10_1117_1_JRS_17_046506 crossref_primary_10_1109_JSTARS_2024_3382096 crossref_primary_10_3390_rs14010055 crossref_primary_10_1016_j_compag_2023_107822 crossref_primary_10_3390_rs16224194 crossref_primary_10_3390_rs17050904 |
Cites_doi | 10.1016/j.isprsjprs.2011.02.006 10.1080/01431161.2018.1483090 10.1016/j.isprsjprs.2003.10.002 10.1016/j.isprsjprs.2016.01.011 10.1117/1.JRS.11.026011 10.1080/2150704X.2017.1420265 10.3390/rs70101074 10.1016/j.ejrs.2018.03.003 10.1016/j.rse.2016.02.028 10.1007/s11430-012-4445-9 10.14358/PERS.83.1.27 10.1007/s12665-018-7534-z 10.1109/JSTARS.2017.2672736 10.3390/s16071075 10.1007/s12665-018-7334-5 10.1590/0102-311X00059414 10.1016/j.isprsjprs.2017.06.001 10.1016/j.jag.2018.05.005 10.1023/A:1010933404324 10.3390/rs4092661 10.1002/(SICI)1096-9837(199807)23:7<581::AID-ESP863>3.0.CO;2-S 10.1016/j.resconrec.2016.06.026 10.3390/s18030821 10.1016/B978-0-12-811318-9.00033-8 10.3390/s19143120 10.1016/j.cageo.2007.07.001 10.1080/01431161.2012.718463 10.3390/rs9040333 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2020.3045501 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering Forestry |
EISSN | 1558-1748 |
EndPage | 17454 |
ExternalDocumentID | 10_1109_JSEN_2020_3045501 9296741 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2572017PZ04 funderid: 10.13039/501100012226 – fundername: Heilongjiang Province Applied Technology Research and Development Program Major Project grantid: GA18B301; GA20A301 – fundername: Science and Technology Project Plan of Heilongjiang Archives Bureau grantid: HDK2018-20 – fundername: China State Forestry Administration Forestry Industry Public Welfare Project grantid: 201504307 – fundername: Fundamental Research Funds for the Central Universities grantid: 2572014BB13 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 31770768 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-a2dbfcfcb70f8b39b53ede53f21b4be8bcabb445c1395348921ac0edda1e83063 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:13:27 EDT 2025 Tue Jul 01 03:37:00 EDT 2025 Thu Apr 24 22:56:49 EDT 2025 Wed Aug 27 02:26:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-a2dbfcfcb70f8b39b53ede53f21b4be8bcabb445c1395348921ac0edda1e83063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4098-5313 0000-0001-7933-6946 |
PQID | 2560911047 |
PQPubID | 75733 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2560911047 crossref_citationtrail_10_1109_JSEN_2020_3045501 crossref_primary_10_1109_JSEN_2020_3045501 ieee_primary_9296741 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-15 |
PublicationDateYYYYMMDD | 2021-08-15 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref9 doi: 10.1016/j.isprsjprs.2011.02.006 – ident: ref10 doi: 10.1080/01431161.2018.1483090 – ident: ref20 doi: 10.1016/j.isprsjprs.2003.10.002 – ident: ref13 doi: 10.1016/j.isprsjprs.2016.01.011 – ident: ref7 doi: 10.1117/1.JRS.11.026011 – ident: ref15 doi: 10.1080/2150704X.2017.1420265 – ident: ref4 doi: 10.3390/rs70101074 – ident: ref1 doi: 10.1016/j.ejrs.2018.03.003 – ident: ref6 doi: 10.1016/j.rse.2016.02.028 – ident: ref3 doi: 10.1007/s11430-012-4445-9 – ident: ref14 doi: 10.14358/PERS.83.1.27 – ident: ref2 doi: 10.1007/s12665-018-7534-z – ident: ref21 doi: 10.1109/JSTARS.2017.2672736 – ident: ref8 doi: 10.3390/s16071075 – ident: ref16 doi: 10.1007/s12665-018-7334-5 – ident: ref19 doi: 10.1590/0102-311X00059414 – ident: ref5 doi: 10.1016/j.isprsjprs.2017.06.001 – ident: ref23 doi: 10.1016/j.jag.2018.05.005 – ident: ref12 doi: 10.1023/A:1010933404324 – ident: ref24 doi: 10.3390/rs4092661 – ident: ref25 doi: 10.1002/(SICI)1096-9837(199807)23:7<581::AID-ESP863>3.0.CO;2-S – ident: ref22 doi: 10.1016/j.resconrec.2016.06.026 – ident: ref26 doi: 10.3390/s18030821 – ident: ref17 doi: 10.1016/B978-0-12-811318-9.00033-8 – ident: ref18 doi: 10.3390/s19143120 – ident: ref27 doi: 10.1016/j.cageo.2007.07.001 – ident: ref28 doi: 10.1080/01431161.2012.718463 – ident: ref11 doi: 10.3390/rs9040333 |
SSID | ssj0019757 |
Score | 2.4492896 |
Snippet | Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17447 |
SubjectTerms | Accuracy Classification Color imagery Decision trees Feature extraction Forest type extraction Forestry Identification methods Image resolution Image segmentation object oriented Random forests Remote sensing RF classification Sensors Spatial data Support vector machines SVM classification Vegetation Vegetation index Vegetation mapping |
Title | Extracting the Forest Type From Remote Sensing Images by Random Forest |
URI | https://ieeexplore.ieee.org/document/9296741 https://www.proquest.com/docview/2560911047 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ug4-Dj1VxfZGDJ7Fr0qbb9iiyiwp68AF7K00yUVC7ol1Qf72TtLv4QryVdtKGTJKZr5mZD2DPEPQPu2gCtJIH0sYiSKOuCIQhY244Yub5U84vuic38mwQD6bgYJILg4g--Aw77tKf5ZuhHrlfZYdkyruJy1KfJuBW52pNTgyyxFf1pAVMn4ySQXOCKXh2eHbVuyAkGBJA5S6JV3yxQZ5U5cdO7M1LfwnOxx2ro0ruO6NKdfT7t5qN_-35Miw2fiY7qifGCkxh2YKFT9UHWzDraDkd11sL5hou9Lu3Vej3XiufOlXeMvIOWS3FHGBl_efhI7tEUi-yKxf6TjKnj7QlvTD1xi6L0tDzusEa3PR718cnQcO2EGgy-VVQhEZZbbVKuE1VlKk4QoNxZEOhpMJU6UIpKWNNPmMcyTQLRaE5GlMITAl4ROswUw5L3AAmCgwt3U9tijIs6HVSWK7TTEcmM4lqAx-Pf66bUuSOEeMh95CEZ7lTWe5Uljcqa8P-pMlTXYfjL-FVp4KJYDP6bdgeKzlvVupL7lw-2vC5TDZ_b7UF86GLY3FlcONtmKmeR7hDjkildv0M_ADwRNk5 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lj9MwEB4ti8TCgUd3VxQW8AEuSOnajtMkBw4IWrX76GEfUm8hticgLZuibSoov4W_wn9j7LgVL3FbiVuUjC3Z82kemRfAc0uuv-yjjbBSPFJVIqIs7otIWFLmliPmfn7K8aQ_OlcH02S6Ad_WtTCI6JPPsOcefSzfzszC_SrbJ1XeJw0YUigPcfmZHLT5q_Fb4uYLKYeDszejKMwQiAwpsiYqpdWVqYxOeZXpONdJjBaTuJJCK42ZNqXWSiWGLKEkVlkuRWk4WlsKzMicjmnfG3CT7IxEttVh6xhFnvo-oiQy6JBxOg0xU8Hz_YPTwYR8T0kuMXdlw-IXrefHuPwh-71CG96D76uraPNYLnqLRvfM19-6RP6vd3Uf7gZLmr1uof8ANrDuwJ2f-it24JYbPOqm2XVgK0x7_7DchuHgS-OLw-r3jOxf1lIx55Kz4dXskp0gARjZqUvuJ5rxJQndOdNLdlLWlr63C3bg_FrOtwub9azGh8BEibKi91mVoZIlbadExU2Wm9jmNtVd4Ct-FyY0W3czPz4W3unieeEgUjiIFAEiXXi5XvKp7TTyL-Jtx_I1YeB2F_ZWoCqCLJoXzqgllcZV-ujvq57B1ujs-Kg4Gk8OH8Nt6bJ2XNPfZA82m6sFPiGzq9FPPfoZvLtuCP0APyc6JA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+the+Forest+Type+From+Remote+Sensing+Images+by+Random+Forest&rft.jtitle=IEEE+sensors+journal&rft.au=Li%2C+Linhui&rft.au=Weipeng%2C+Jing&rft.au=Wang%2C+Huihui&rft.date=2021-08-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=16&rft.spage=17447&rft_id=info:doi/10.1109%2FJSEN.2020.3045501&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |