Extracting the Forest Type From Remote Sensing Images by Random Forest

Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 21; no. 16; pp. 17447 - 17454
Main Authors Linhui, Li, Weipeng, Jing, Huihui, Wang
Format Journal Article
LanguageEnglish
Published New York IEEE 15.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method. The GF-2 remote sensing image in the Laoshan construction area of the Maoershan Forest Farm, Heilongjiang Province was as the data source, supplemented by aerial RGB images with a resolution of 0.2 m and the second type inventory of forest resources data. Considering the spatial characteristics of the spectrum, texture, vegetation index, terrain, multiscale segmentation was performed, the optimal feature space was constructed, and the number of decision trees was estimated. In this manner, an object-oriented random forest (RF) scheme was established. Comparative experiments were performed using the support vector machine(SVM) classifier. The experimental results indicated that the overall accuracy and kappa coefficient of the proposed method was 83.16% and 79.86%, respectively, higher than those of the SVM classification method. These findings demonstrated that the proposed method can effectively increase the classification accuracy of forest types.
AbstractList Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method. The GF-2 remote sensing image in the Laoshan construction area of the Maoershan Forest Farm, Heilongjiang Province was as the data source, supplemented by aerial RGB images with a resolution of 0.2 m and the second type inventory of forest resources data. Considering the spatial characteristics of the spectrum, texture, vegetation index, terrain, multiscale segmentation was performed, the optimal feature space was constructed, and the number of decision trees was estimated. In this manner, an object-oriented random forest (RF) scheme was established. Comparative experiments were performed using the support vector machine(SVM) classifier. The experimental results indicated that the overall accuracy and kappa coefficient of the proposed method was 83.16% and 79.86%, respectively, higher than those of the SVM classification method. These findings demonstrated that the proposed method can effectively increase the classification accuracy of forest types.
Author Huihui, Wang
Linhui, Li
Weipeng, Jing
Author_xml – sequence: 1
  givenname: Li
  surname: Linhui
  fullname: Linhui, Li
  email: linhuili@nefu.edu.cn
  organization: College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
– sequence: 2
  givenname: Jing
  orcidid: 0000-0001-7933-6946
  surname: Weipeng
  fullname: Weipeng, Jing
  email: weipeng.jing@outlook.com
  organization: College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
– sequence: 3
  givenname: Wang
  orcidid: 0000-0002-4098-5313
  surname: Huihui
  fullname: Huihui, Wang
  email: hwang1@ju.edu
  organization: National Society of Professional Engineering (NSPE), Jacksonville University, Jacksonville, FL, USA
BookMark eNp9kE1LAzEQhoNUsK3-APGy4HlrPpvNUUqrlaLQVvAWkuxs3dLu1mQL9t-bZYsHD55mYN5nhnkGqFfVFSB0S_CIEKweXlbT1xHFFI8Y5kJgcoH6RIgsJZJnvbZnOOVMflyhQQhbjImSQvbRbPrdeOOastokzScks9pDaJL16RB7X--TJezrBpIVVKHNzPdmAyGxp2RpqjzOO-AaXRZmF-DmXIfofTZdT57TxdvTfPK4SB1VrEkNzW3hCmclLjLLlBUMchCsoMRyC5l1xlrOhSNMCcYzRYlxGPLcEMgYHrMhuu_2Hnz9dYyH9bY--iqe1FSMsYouuIwp2aWcr0PwUGhXNqYp6yr-Wu40wbqVpltpupWmz9IiSf6QB1_ujT_9y9x1TAkAv3lF1Vhywn4AF1R5vA
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1080_17538947_2024_2447347
crossref_primary_10_3390_rs14051118
crossref_primary_10_3390_rs15123168
crossref_primary_10_3390_app112110062
crossref_primary_10_3390_drones6120399
crossref_primary_10_1109_JSEN_2022_3179810
crossref_primary_10_1080_17538947_2024_2353113
crossref_primary_10_1109_JSEN_2022_3177777
crossref_primary_10_3390_f14020292
crossref_primary_10_3390_rs16050798
crossref_primary_10_1016_j_measurement_2023_113925
crossref_primary_10_1109_JSEN_2025_3528034
crossref_primary_10_3390_land13040439
crossref_primary_10_1016_j_compbiolchem_2024_108215
crossref_primary_10_3390_f14122301
crossref_primary_10_1117_1_JRS_17_046506
crossref_primary_10_1109_JSTARS_2024_3382096
crossref_primary_10_3390_rs14010055
crossref_primary_10_1016_j_compag_2023_107822
crossref_primary_10_3390_rs16224194
crossref_primary_10_3390_rs17050904
Cites_doi 10.1016/j.isprsjprs.2011.02.006
10.1080/01431161.2018.1483090
10.1016/j.isprsjprs.2003.10.002
10.1016/j.isprsjprs.2016.01.011
10.1117/1.JRS.11.026011
10.1080/2150704X.2017.1420265
10.3390/rs70101074
10.1016/j.ejrs.2018.03.003
10.1016/j.rse.2016.02.028
10.1007/s11430-012-4445-9
10.14358/PERS.83.1.27
10.1007/s12665-018-7534-z
10.1109/JSTARS.2017.2672736
10.3390/s16071075
10.1007/s12665-018-7334-5
10.1590/0102-311X00059414
10.1016/j.isprsjprs.2017.06.001
10.1016/j.jag.2018.05.005
10.1023/A:1010933404324
10.3390/rs4092661
10.1002/(SICI)1096-9837(199807)23:7<581::AID-ESP863>3.0.CO;2-S
10.1016/j.resconrec.2016.06.026
10.3390/s18030821
10.1016/B978-0-12-811318-9.00033-8
10.3390/s19143120
10.1016/j.cageo.2007.07.001
10.1080/01431161.2012.718463
10.3390/rs9040333
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.3045501
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Forestry
EISSN 1558-1748
EndPage 17454
ExternalDocumentID 10_1109_JSEN_2020_3045501
9296741
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2572017PZ04
  funderid: 10.13039/501100012226
– fundername: Heilongjiang Province Applied Technology Research and Development Program Major Project
  grantid: GA18B301; GA20A301
– fundername: Science and Technology Project Plan of Heilongjiang Archives Bureau
  grantid: HDK2018-20
– fundername: China State Forestry Administration Forestry Industry Public Welfare Project
  grantid: 201504307
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2572014BB13
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 31770768
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-a2dbfcfcb70f8b39b53ede53f21b4be8bcabb445c1395348921ac0edda1e83063
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:13:27 EDT 2025
Tue Jul 01 03:37:00 EDT 2025
Thu Apr 24 22:56:49 EDT 2025
Wed Aug 27 02:26:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-a2dbfcfcb70f8b39b53ede53f21b4be8bcabb445c1395348921ac0edda1e83063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4098-5313
0000-0001-7933-6946
PQID 2560911047
PQPubID 75733
PageCount 8
ParticipantIDs proquest_journals_2560911047
crossref_citationtrail_10_1109_JSEN_2020_3045501
crossref_primary_10_1109_JSEN_2020_3045501
ieee_primary_9296741
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-15
PublicationDateYYYYMMDD 2021-08-15
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref9
  doi: 10.1016/j.isprsjprs.2011.02.006
– ident: ref10
  doi: 10.1080/01431161.2018.1483090
– ident: ref20
  doi: 10.1016/j.isprsjprs.2003.10.002
– ident: ref13
  doi: 10.1016/j.isprsjprs.2016.01.011
– ident: ref7
  doi: 10.1117/1.JRS.11.026011
– ident: ref15
  doi: 10.1080/2150704X.2017.1420265
– ident: ref4
  doi: 10.3390/rs70101074
– ident: ref1
  doi: 10.1016/j.ejrs.2018.03.003
– ident: ref6
  doi: 10.1016/j.rse.2016.02.028
– ident: ref3
  doi: 10.1007/s11430-012-4445-9
– ident: ref14
  doi: 10.14358/PERS.83.1.27
– ident: ref2
  doi: 10.1007/s12665-018-7534-z
– ident: ref21
  doi: 10.1109/JSTARS.2017.2672736
– ident: ref8
  doi: 10.3390/s16071075
– ident: ref16
  doi: 10.1007/s12665-018-7334-5
– ident: ref19
  doi: 10.1590/0102-311X00059414
– ident: ref5
  doi: 10.1016/j.isprsjprs.2017.06.001
– ident: ref23
  doi: 10.1016/j.jag.2018.05.005
– ident: ref12
  doi: 10.1023/A:1010933404324
– ident: ref24
  doi: 10.3390/rs4092661
– ident: ref25
  doi: 10.1002/(SICI)1096-9837(199807)23:7<581::AID-ESP863>3.0.CO;2-S
– ident: ref22
  doi: 10.1016/j.resconrec.2016.06.026
– ident: ref26
  doi: 10.3390/s18030821
– ident: ref17
  doi: 10.1016/B978-0-12-811318-9.00033-8
– ident: ref18
  doi: 10.3390/s19143120
– ident: ref27
  doi: 10.1016/j.cageo.2007.07.001
– ident: ref28
  doi: 10.1080/01431161.2012.718463
– ident: ref11
  doi: 10.3390/rs9040333
SSID ssj0019757
Score 2.4492896
Snippet Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17447
SubjectTerms Accuracy
Classification
Color imagery
Decision trees
Feature extraction
Forest type extraction
Forestry
Identification methods
Image resolution
Image segmentation
object oriented
Random forests
Remote sensing
RF classification
Sensors
Spatial data
Support vector machines
SVM classification
Vegetation
Vegetation index
Vegetation mapping
Title Extracting the Forest Type From Remote Sensing Images by Random Forest
URI https://ieeexplore.ieee.org/document/9296741
https://www.proquest.com/docview/2560911047
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ug4-Dj1VxfZGDJ7Fr0qbb9iiyiwp68AF7K00yUVC7ol1Qf72TtLv4QryVdtKGTJKZr5mZD2DPEPQPu2gCtJIH0sYiSKOuCIQhY244Yub5U84vuic38mwQD6bgYJILg4g--Aw77tKf5ZuhHrlfZYdkyruJy1KfJuBW52pNTgyyxFf1pAVMn4ySQXOCKXh2eHbVuyAkGBJA5S6JV3yxQZ5U5cdO7M1LfwnOxx2ro0ruO6NKdfT7t5qN_-35Miw2fiY7qifGCkxh2YKFT9UHWzDraDkd11sL5hou9Lu3Vej3XiufOlXeMvIOWS3FHGBl_efhI7tEUi-yKxf6TjKnj7QlvTD1xi6L0tDzusEa3PR718cnQcO2EGgy-VVQhEZZbbVKuE1VlKk4QoNxZEOhpMJU6UIpKWNNPmMcyTQLRaE5GlMITAl4ROswUw5L3AAmCgwt3U9tijIs6HVSWK7TTEcmM4lqAx-Pf66bUuSOEeMh95CEZ7lTWe5Uljcqa8P-pMlTXYfjL-FVp4KJYDP6bdgeKzlvVupL7lw-2vC5TDZ_b7UF86GLY3FlcONtmKmeR7hDjkildv0M_ADwRNk5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lj9MwEB4ti8TCgUd3VxQW8AEuSOnajtMkBw4IWrX76GEfUm8hticgLZuibSoov4W_wn9j7LgVL3FbiVuUjC3Z82kemRfAc0uuv-yjjbBSPFJVIqIs7otIWFLmliPmfn7K8aQ_OlcH02S6Ad_WtTCI6JPPsOcefSzfzszC_SrbJ1XeJw0YUigPcfmZHLT5q_Fb4uYLKYeDszejKMwQiAwpsiYqpdWVqYxOeZXpONdJjBaTuJJCK42ZNqXWSiWGLKEkVlkuRWk4WlsKzMicjmnfG3CT7IxEttVh6xhFnvo-oiQy6JBxOg0xU8Hz_YPTwYR8T0kuMXdlw-IXrefHuPwh-71CG96D76uraPNYLnqLRvfM19-6RP6vd3Uf7gZLmr1uof8ANrDuwJ2f-it24JYbPOqm2XVgK0x7_7DchuHgS-OLw-r3jOxf1lIx55Kz4dXskp0gARjZqUvuJ5rxJQndOdNLdlLWlr63C3bg_FrOtwub9azGh8BEibKi91mVoZIlbadExU2Wm9jmNtVd4Ct-FyY0W3czPz4W3unieeEgUjiIFAEiXXi5XvKp7TTyL-Jtx_I1YeB2F_ZWoCqCLJoXzqgllcZV-ujvq57B1ujs-Kg4Gk8OH8Nt6bJ2XNPfZA82m6sFPiGzq9FPPfoZvLtuCP0APyc6JA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+the+Forest+Type+From+Remote+Sensing+Images+by+Random+Forest&rft.jtitle=IEEE+sensors+journal&rft.au=Li%2C+Linhui&rft.au=Weipeng%2C+Jing&rft.au=Wang%2C+Huihui&rft.date=2021-08-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=16&rft.spage=17447&rft_id=info:doi/10.1109%2FJSEN.2020.3045501&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon