STTM-SFR: Spatial-Temporal Tensor Modeling With Saliency Filter Regularization for Infrared Small Target Detection

Detecting small infrared (IR) targets against low-altitude complex background is always a challenge for IR search and tracking (IRST) system due to limited small target characteristics, the moving background caused by camera motion, and extremely cluttered backgrounds. The existing methods usually c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 18
Main Authors Pang, Dongdong, Ma, Pengge, Shan, Tao, Li, Wei, Tao, Ran, Ma, Yueran, Wang, Tianrun
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2022.3172745

Cover

Loading…
Abstract Detecting small infrared (IR) targets against low-altitude complex background is always a challenge for IR search and tracking (IRST) system due to limited small target characteristics, the moving background caused by camera motion, and extremely cluttered backgrounds. The existing methods usually cause high false alarm or do not work against the chaotic low-altitude complex background. In this article, a novel spatial-temporal tensor model with saliency filter regularization (STTM-SFR) is developed to detect small IR targets. First, the small target detection task is transformed into a sparse and low-rank tensor optimization problem using the spatial-temporal prior knowledge of background and target. The construction of the holistic STTM can retain the complete spatial-temporal information of the original IR image sequence. Then, the SFR term limited between background and foreground aims to promote target saliency learning. That is to say, the SFR term can avoid the offset approximation of the low-rank tensor, so as to recover a clean target image from the original IR tensor. Finally, an effective alternating direction method of multipliers (ADMM) algorithm framework is designed to solve the proposed STTM-SFR model. The effectiveness and robustness of the STTM-SFR model are verified in six real IR scenes. Experimental results show that our method outperforms other baseline methods. Moreover, the proposed STTM-SFR method is more robust than the existing state-of-the-art STTMs against low-altitude moving backgrounds.
AbstractList Detecting small infrared (IR) targets against low-altitude complex background is always a challenge for IR search and tracking (IRST) system due to limited small target characteristics, the moving background caused by camera motion, and extremely cluttered backgrounds. The existing methods usually cause high false alarm or do not work against the chaotic low-altitude complex background. In this article, a novel spatial–temporal tensor model with saliency filter regularization (STTM-SFR) is developed to detect small IR targets. First, the small target detection task is transformed into a sparse and low-rank tensor optimization problem using the spatial–temporal prior knowledge of background and target. The construction of the holistic STTM can retain the complete spatial–temporal information of the original IR image sequence. Then, the SFR term limited between background and foreground aims to promote target saliency learning. That is to say, the SFR term can avoid the offset approximation of the low-rank tensor, so as to recover a clean target image from the original IR tensor. Finally, an effective alternating direction method of multipliers (ADMM) algorithm framework is designed to solve the proposed STTM-SFR model. The effectiveness and robustness of the STTM-SFR model are verified in six real IR scenes. Experimental results show that our method outperforms other baseline methods. Moreover, the proposed STTM-SFR method is more robust than the existing state-of-the-art STTMs against low-altitude moving backgrounds.
Author Ma, Yueran
Wang, Tianrun
Ma, Pengge
Pang, Dongdong
Li, Wei
Shan, Tao
Tao, Ran
Author_xml – sequence: 1
  givenname: Dongdong
  orcidid: 0000-0002-2934-1840
  surname: Pang
  fullname: Pang, Dongdong
  email: 3120185397@bit.edu.cn
  organization: Beijing Key Laboratory of Fractional Signals and Systems, School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Pengge
  surname: Ma
  fullname: Ma, Pengge
  email: mapenge@163.com
  organization: School of Intelligent Engineering, Zhengzhou University of Aeronautics, Zhengzhou, China
– sequence: 3
  givenname: Tao
  orcidid: 0000-0002-5351-2312
  surname: Shan
  fullname: Shan, Tao
  email: shantao@bit.edu.cn
  organization: Beijing Key Laboratory of Fractional Signals and Systems, School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0001-7015-7335
  surname: Li
  fullname: Li, Wei
  email: liwei089@ieee.org
  organization: Beijing Key Laboratory of Fractional Signals and Systems, School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Ran
  orcidid: 0000-0002-5243-7189
  surname: Tao
  fullname: Tao, Ran
  email: rantao@bit.edu.cn
  organization: Beijing Key Laboratory of Fractional Signals and Systems, School of Information and Electronics, Beijing Institute of Technology, Beijing, China
– sequence: 6
  givenname: Yueran
  surname: Ma
  fullname: Ma, Yueran
  email: 202011081013@mail.bnu.edu.cn
  organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China
– sequence: 7
  givenname: Tianrun
  surname: Wang
  fullname: Wang, Tianrun
  organization: Beijing Key Laboratory of Fractional Signals and Systems, School of Information and Electronics, Beijing Institute of Technology, Beijing, China
BookMark eNp9kEFLwzAUx4MoOKcfQLwEPHfmJW3SeBN1KijCWvFYsvZlZmTtTLODfno7Jx48eHo8-P_-j_c7Ivtt1yIhp8AmAExflHezYsIZ5xMBiqs02yMjyLI8YTJN98mIgZYJzzU_JEd9v2QM0gzUiISiLJ-SYjq7pMXaRGd8UuJq3QXjaYlt3wX61DXoXbugry6-0cJ4h239QafORwx0houNN8F9DnDXUjsAD60NJmBDi5XxQ40JC4z0BiPW28wxObDG93jyM8fkZXpbXt8nj893D9dXj0nNtYiJYVALJmxqMj23rGGNVWhRY40SGs0EcNmoWuBcqWEBmUrMrRQ5S9O5ESDG5HzXuw7d-wb7WC27TWiHkxWXUoMELvIhpXapOnR9H9BWtYvfv8RgnK-AVVvB1VZwtRVc_QgeSPhDroNbmfDxL3O2Yxwi_ua1krmUSnwB1AKI0g
CODEN IGRSD2
CitedBy_id crossref_primary_10_1049_2024_9914774
crossref_primary_10_1109_TIM_2024_3480220
crossref_primary_10_1109_LGRS_2024_3467676
crossref_primary_10_1109_TGRS_2023_3277848
crossref_primary_10_1109_JSTARS_2024_3491221
crossref_primary_10_1109_TGRS_2024_3446608
crossref_primary_10_1109_TGRS_2024_3358831
crossref_primary_10_1109_TGRS_2023_3347420
crossref_primary_10_1109_TGRS_2024_3422404
crossref_primary_10_1109_TAES_2023_3320635
crossref_primary_10_1109_TGRS_2022_3230051
crossref_primary_10_1109_JSEN_2023_3309849
crossref_primary_10_1109_JSTARS_2024_3463017
crossref_primary_10_1109_TGRS_2023_3263677
crossref_primary_10_1109_TGRS_2024_3431698
Cites_doi 10.1109/ACCESS.2019.2912976
10.1109/SENSORS47125.2020.9278924
10.1109/JSTARS.2017.2700023
10.1016/j.patcog.2016.04.002
10.3390/rs10111821
10.1016/j.infrared.2019.103050
10.1109/TGRS.2021.3068465
10.1109/TPAMI.2020.3017672
10.1109/ICNISC.2018.00036
10.1109/TGRS.2021.3098969
10.1109/ICASSP.2018.8461540
10.1109/MSP.2018.2826566
10.1016/j.patcog.2017.11.016
10.1109/LGRS.2019.2912989
10.23919/ICIF.2017.8009810
10.1109/7.7174
10.1109/JSTARS.2019.2931566
10.1049/el:20081781
10.1109/TGRS.2017.2709250
10.1109/TGRS.2021.3057696
10.1117/12.492788
10.1109/LGRS.2019.2954715
10.1109/TAES.2002.1008987
10.3390/rs12091520
10.1109/TIP.2013.2281420
10.1109/JSTARS.2020.2998822
10.1145/1970392.1970395
10.1016/j.laa.2010.09.020
10.1109/CYBER.2017.8446117
10.1109/LGRS.2017.2711047
10.1109/TGRS.2019.2911513
10.1109/JSTARS.2018.2877501
10.1109/TIP.2020.3028457
10.1109/LGRS.2018.2790909
10.1016/j.infrared.2016.02.010
10.1109/LGRS.2016.2594299
10.1109/TGRS.2020.3022069
10.1109/TAES.2015.140878
10.1109/TPAMI.2019.2891760
10.24963/ijcai.2017/303
10.3390/rs11040382
10.1109/TGRS.2020.2989825
10.1109/TGRS.2020.3037938
10.1109/TGRS.2020.3022863
10.1109/TGRS.2017.2660879
10.1109/LGRS.2020.3048199
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2022.3172745
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 18
ExternalDocumentID 10_1109_TGRS_2022_3172745
9768667
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1833203; 61931015; 61922013
  funderid: 10.13039/501100001809
– fundername: Key Scientific and Technological Projects in Henan Province
  grantid: 212102210519
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-a01c303f4a59bf0d0df7efe9ece61d903126d7c3eb770311646e8f638044ba313
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:12:20 EDT 2025
Tue Jul 01 01:34:37 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Wed Aug 27 02:36:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-a01c303f4a59bf0d0df7efe9ece61d903126d7c3eb770311646e8f638044ba313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5351-2312
0000-0002-2934-1840
0000-0002-5243-7189
0000-0001-7015-7335
PQID 2669161238
PQPubID 85465
PageCount 18
ParticipantIDs ieee_primary_9768667
crossref_citationtrail_10_1109_TGRS_2022_3172745
proquest_journals_2669161238
crossref_primary_10_1109_TGRS_2022_3172745
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
Zhou (ref47)
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref16
  doi: 10.1109/ACCESS.2019.2912976
– ident: ref22
  doi: 10.1109/SENSORS47125.2020.9278924
– ident: ref32
  doi: 10.1109/JSTARS.2017.2700023
– ident: ref2
  doi: 10.1016/j.patcog.2016.04.002
– ident: ref28
  doi: 10.3390/rs10111821
– ident: ref38
  doi: 10.1016/j.infrared.2019.103050
– ident: ref36
  doi: 10.1109/TGRS.2021.3068465
– ident: ref43
  doi: 10.1109/TPAMI.2020.3017672
– ident: ref25
  doi: 10.1109/ICNISC.2018.00036
– ident: ref41
  doi: 10.1109/TGRS.2021.3098969
– ident: ref20
  doi: 10.1109/ICASSP.2018.8461540
– ident: ref18
  doi: 10.1109/MSP.2018.2826566
– ident: ref30
  doi: 10.1016/j.patcog.2017.11.016
– ident: ref5
  doi: 10.1109/LGRS.2019.2912989
– ident: ref10
  doi: 10.23919/ICIF.2017.8009810
– ident: ref9
  doi: 10.1109/7.7174
– ident: ref26
  doi: 10.1109/JSTARS.2019.2931566
– ident: ref42
  doi: 10.1049/el:20081781
– ident: ref27
  doi: 10.1109/TGRS.2017.2709250
– ident: ref35
  doi: 10.1109/TGRS.2021.3057696
– ident: ref11
  doi: 10.1117/12.492788
– ident: ref13
  doi: 10.1109/LGRS.2019.2954715
– ident: ref8
  doi: 10.1109/TAES.2002.1008987
– ident: ref34
  doi: 10.3390/rs12091520
– ident: ref23
  doi: 10.1109/TIP.2013.2281420
– ident: ref31
  doi: 10.1109/JSTARS.2020.2998822
– ident: ref17
  doi: 10.1145/1970392.1970395
– start-page: 650
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref47
  article-title: Greedy bilateral sketch, completion & smoothing
– ident: ref44
  doi: 10.1016/j.laa.2010.09.020
– ident: ref24
  doi: 10.1109/CYBER.2017.8446117
– ident: ref46
  doi: 10.1109/LGRS.2017.2711047
– ident: ref4
  doi: 10.1109/TGRS.2019.2911513
– ident: ref45
  doi: 10.1109/JSTARS.2018.2877501
– ident: ref29
  doi: 10.1109/TIP.2020.3028457
– ident: ref1
  doi: 10.1109/LGRS.2018.2790909
– ident: ref12
  doi: 10.1016/j.infrared.2016.02.010
– ident: ref7
  doi: 10.1109/LGRS.2016.2594299
– ident: ref39
  doi: 10.1109/TGRS.2020.3022069
– ident: ref3
  doi: 10.1109/TAES.2015.140878
– ident: ref19
  doi: 10.1109/TPAMI.2019.2891760
– ident: ref21
  doi: 10.24963/ijcai.2017/303
– ident: ref33
  doi: 10.3390/rs11040382
– ident: ref37
  doi: 10.1109/TGRS.2020.2989825
– ident: ref40
  doi: 10.1109/TGRS.2020.3037938
– ident: ref6
  doi: 10.1109/TGRS.2020.3022863
– ident: ref15
  doi: 10.1109/TGRS.2017.2660879
– ident: ref14
  doi: 10.1109/LGRS.2020.3048199
SSID ssj0014517
Score 2.5082965
Snippet Detecting small infrared (IR) targets against low-altitude complex background is always a challenge for IR search and tracking (IRST) system due to limited...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Alternating direction method of multipliers (ADMM)
Altitude
Analytical models
Approximation
Data models
Detection
False alarms
Image edge detection
image sequence
Infrared filters
Infrared imaging
Low altitude
low-altitude moving background
Mathematical analysis
Matrix decomposition
Methods
Object detection
Optimization
Regularization
Salience
saliency filter regularization (SFR)
small infrared (IR) target detection
spatial–temporal tensor model (STTM)
Target detection
Tensors
Tracking
Title STTM-SFR: Spatial-Temporal Tensor Modeling With Saliency Filter Regularization for Infrared Small Target Detection
URI https://ieeexplore.ieee.org/document/9768667
https://www.proquest.com/docview/2669161238
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaSkhw4NGCWCjIB04Ibx3HeXFDwFKQlsMmFb1FtjMWFUsWpdkLv54Zx7uqACFuPtiWpRl7ZjzzfcPYC7w_4JUuBXQmFdp4KSoNktKFyhS5y0xApS0_5-cX-tNldnnAXu2xMAAQis9gTsOQy-82bktfZWdoOss8Lw7ZIQZuE1ZrnzHQWRKh0bnAIELFDGYiq7Pmw6rGSFApDFDRXBNy6YYNCk1V_niJg3lZ3GPL3cGmqpJv8-1o5-7nb5yN_3vy--xu9DP5m0kxHrAD6I_ZnRvsg8fsVqj-dNcnbKibZinqxeo1pxbFqJKimSir1rzBOHczcOqZRsh1_uVq_Mpr9N4Js8kXV5Rt56vQ0X6ImE6OjjD_2PuBitt5_d2scZtQcc7fwRhqv_qH7GLxvnl7LmIzBuHQIxiFkYlDc-e1ySrrZSc7X4CHChzkSVfh26DyrnAp2IIo8Ym2DEqPt1tqbU2apI_YUb_p4THjFBQbowpQNtU29aWxurS4uVRQQpHNmNyJp3WRqZwaZqzbELHIqiWJtiTRNkp0xl7ul_yYaDr-NfmEJLSfGIUzY6c7HWjjRb5u0X9BBxrNe_nk76uestu09_Qrc8qOxmELz9BPGe3zoKC_AHfo42E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQ98GiLulDAB06IbJ3EeXGrCssWuj1sUtFbZDsTUbHNVmn2wq9nxsmuKkCIWw62Y2nGnhnPfN8AvKXzg3WgUg8rHXpK19LLFEpOFwY6iW2kHSptdh5PL9SXy-hyC95vsDCI6IrPcMyfLpdfLe2Kn8qOyHSmcZzcg_sRg3F7tNYmZ6AifwBHxx6FEcGQw_RldlR8nucUCwYBhahksBm7dMcKubYqf9zFzsBMnsBsvbW-ruTHeNWZsf35G2vj_-79KTwePE1x3KvGM9jCZhd27vAP7sIDV_9pb_egzYti5uWT-QfBTYpJKb2iJ61aiIIi3WUruGsaY9fFt6vuu8jJf2fUpphccb5dzF1P-3ZAdQpyhcVpU7dc3i7ya72gZVzNufiInav-avbhYvKpOJl6QzsGz5JP0Hla-pYMXq10lJlaVrKqE6wxQ4uxX2V0OwRxldgQTcKk-ExchmlN51sqZXToh89hu1k2eACCw2KtgwQDEyoT1qk2KjW0uAwwxSQagVyLp7QDVzm3zFiULmaRWckSLVmi5SDREbzbTLnpiTr-NXiPJbQZOAhnBIdrHSiHo3xbkgdDLjQZ-PTF32e9gYfTYnZWnp2ef30Jj_g__RvNIWx37QpfkdfSmddOWX8BeZPmqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STTM-SFR%3A+Spatial%E2%80%93Temporal+Tensor+Modeling+With+Saliency+Filter+Regularization+for+Infrared+Small+Target+Detection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Pang%2C+Dongdong&rft.au=Ma%2C+Pengge&rft.au=Shan%2C+Tao&rft.au=Li%2C+Wei&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1109%2FTGRS.2022.3172745&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2022_3172745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon