STTM-SFR: Spatial-Temporal Tensor Modeling With Saliency Filter Regularization for Infrared Small Target Detection
Detecting small infrared (IR) targets against low-altitude complex background is always a challenge for IR search and tracking (IRST) system due to limited small target characteristics, the moving background caused by camera motion, and extremely cluttered backgrounds. The existing methods usually c...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 18 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0196-2892 1558-0644 |
DOI | 10.1109/TGRS.2022.3172745 |
Cover
Loading…
Abstract | Detecting small infrared (IR) targets against low-altitude complex background is always a challenge for IR search and tracking (IRST) system due to limited small target characteristics, the moving background caused by camera motion, and extremely cluttered backgrounds. The existing methods usually cause high false alarm or do not work against the chaotic low-altitude complex background. In this article, a novel spatial-temporal tensor model with saliency filter regularization (STTM-SFR) is developed to detect small IR targets. First, the small target detection task is transformed into a sparse and low-rank tensor optimization problem using the spatial-temporal prior knowledge of background and target. The construction of the holistic STTM can retain the complete spatial-temporal information of the original IR image sequence. Then, the SFR term limited between background and foreground aims to promote target saliency learning. That is to say, the SFR term can avoid the offset approximation of the low-rank tensor, so as to recover a clean target image from the original IR tensor. Finally, an effective alternating direction method of multipliers (ADMM) algorithm framework is designed to solve the proposed STTM-SFR model. The effectiveness and robustness of the STTM-SFR model are verified in six real IR scenes. Experimental results show that our method outperforms other baseline methods. Moreover, the proposed STTM-SFR method is more robust than the existing state-of-the-art STTMs against low-altitude moving backgrounds. |
---|---|
AbstractList | Detecting small infrared (IR) targets against low-altitude complex background is always a challenge for IR search and tracking (IRST) system due to limited small target characteristics, the moving background caused by camera motion, and extremely cluttered backgrounds. The existing methods usually cause high false alarm or do not work against the chaotic low-altitude complex background. In this article, a novel spatial–temporal tensor model with saliency filter regularization (STTM-SFR) is developed to detect small IR targets. First, the small target detection task is transformed into a sparse and low-rank tensor optimization problem using the spatial–temporal prior knowledge of background and target. The construction of the holistic STTM can retain the complete spatial–temporal information of the original IR image sequence. Then, the SFR term limited between background and foreground aims to promote target saliency learning. That is to say, the SFR term can avoid the offset approximation of the low-rank tensor, so as to recover a clean target image from the original IR tensor. Finally, an effective alternating direction method of multipliers (ADMM) algorithm framework is designed to solve the proposed STTM-SFR model. The effectiveness and robustness of the STTM-SFR model are verified in six real IR scenes. Experimental results show that our method outperforms other baseline methods. Moreover, the proposed STTM-SFR method is more robust than the existing state-of-the-art STTMs against low-altitude moving backgrounds. |
Author | Ma, Yueran Wang, Tianrun Ma, Pengge Pang, Dongdong Li, Wei Shan, Tao Tao, Ran |
Author_xml | – sequence: 1 givenname: Dongdong orcidid: 0000-0002-2934-1840 surname: Pang fullname: Pang, Dongdong email: 3120185397@bit.edu.cn organization: Beijing Key Laboratory of Fractional Signals and Systems, School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Pengge surname: Ma fullname: Ma, Pengge email: mapenge@163.com organization: School of Intelligent Engineering, Zhengzhou University of Aeronautics, Zhengzhou, China – sequence: 3 givenname: Tao orcidid: 0000-0002-5351-2312 surname: Shan fullname: Shan, Tao email: shantao@bit.edu.cn organization: Beijing Key Laboratory of Fractional Signals and Systems, School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Wei orcidid: 0000-0001-7015-7335 surname: Li fullname: Li, Wei email: liwei089@ieee.org organization: Beijing Key Laboratory of Fractional Signals and Systems, School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Ran orcidid: 0000-0002-5243-7189 surname: Tao fullname: Tao, Ran email: rantao@bit.edu.cn organization: Beijing Key Laboratory of Fractional Signals and Systems, School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 6 givenname: Yueran surname: Ma fullname: Ma, Yueran email: 202011081013@mail.bnu.edu.cn organization: School of Artificial Intelligence, Beijing Normal University, Beijing, China – sequence: 7 givenname: Tianrun surname: Wang fullname: Wang, Tianrun organization: Beijing Key Laboratory of Fractional Signals and Systems, School of Information and Electronics, Beijing Institute of Technology, Beijing, China |
BookMark | eNp9kEFLwzAUx4MoOKcfQLwEPHfmJW3SeBN1KijCWvFYsvZlZmTtTLODfno7Jx48eHo8-P_-j_c7Ivtt1yIhp8AmAExflHezYsIZ5xMBiqs02yMjyLI8YTJN98mIgZYJzzU_JEd9v2QM0gzUiISiLJ-SYjq7pMXaRGd8UuJq3QXjaYlt3wX61DXoXbugry6-0cJ4h239QafORwx0houNN8F9DnDXUjsAD60NJmBDi5XxQ40JC4z0BiPW28wxObDG93jyM8fkZXpbXt8nj893D9dXj0nNtYiJYVALJmxqMj23rGGNVWhRY40SGs0EcNmoWuBcqWEBmUrMrRQ5S9O5ESDG5HzXuw7d-wb7WC27TWiHkxWXUoMELvIhpXapOnR9H9BWtYvfv8RgnK-AVVvB1VZwtRVc_QgeSPhDroNbmfDxL3O2Yxwi_ua1krmUSnwB1AKI0g |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1049_2024_9914774 crossref_primary_10_1109_TIM_2024_3480220 crossref_primary_10_1109_LGRS_2024_3467676 crossref_primary_10_1109_TGRS_2023_3277848 crossref_primary_10_1109_JSTARS_2024_3491221 crossref_primary_10_1109_TGRS_2024_3446608 crossref_primary_10_1109_TGRS_2024_3358831 crossref_primary_10_1109_TGRS_2023_3347420 crossref_primary_10_1109_TGRS_2024_3422404 crossref_primary_10_1109_TAES_2023_3320635 crossref_primary_10_1109_TGRS_2022_3230051 crossref_primary_10_1109_JSEN_2023_3309849 crossref_primary_10_1109_JSTARS_2024_3463017 crossref_primary_10_1109_TGRS_2023_3263677 crossref_primary_10_1109_TGRS_2024_3431698 |
Cites_doi | 10.1109/ACCESS.2019.2912976 10.1109/SENSORS47125.2020.9278924 10.1109/JSTARS.2017.2700023 10.1016/j.patcog.2016.04.002 10.3390/rs10111821 10.1016/j.infrared.2019.103050 10.1109/TGRS.2021.3068465 10.1109/TPAMI.2020.3017672 10.1109/ICNISC.2018.00036 10.1109/TGRS.2021.3098969 10.1109/ICASSP.2018.8461540 10.1109/MSP.2018.2826566 10.1016/j.patcog.2017.11.016 10.1109/LGRS.2019.2912989 10.23919/ICIF.2017.8009810 10.1109/7.7174 10.1109/JSTARS.2019.2931566 10.1049/el:20081781 10.1109/TGRS.2017.2709250 10.1109/TGRS.2021.3057696 10.1117/12.492788 10.1109/LGRS.2019.2954715 10.1109/TAES.2002.1008987 10.3390/rs12091520 10.1109/TIP.2013.2281420 10.1109/JSTARS.2020.2998822 10.1145/1970392.1970395 10.1016/j.laa.2010.09.020 10.1109/CYBER.2017.8446117 10.1109/LGRS.2017.2711047 10.1109/TGRS.2019.2911513 10.1109/JSTARS.2018.2877501 10.1109/TIP.2020.3028457 10.1109/LGRS.2018.2790909 10.1016/j.infrared.2016.02.010 10.1109/LGRS.2016.2594299 10.1109/TGRS.2020.3022069 10.1109/TAES.2015.140878 10.1109/TPAMI.2019.2891760 10.24963/ijcai.2017/303 10.3390/rs11040382 10.1109/TGRS.2020.2989825 10.1109/TGRS.2020.3037938 10.1109/TGRS.2020.3022863 10.1109/TGRS.2017.2660879 10.1109/LGRS.2020.3048199 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2022.3172745 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 18 |
ExternalDocumentID | 10_1109_TGRS_2022_3172745 9768667 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1833203; 61931015; 61922013 funderid: 10.13039/501100001809 – fundername: Key Scientific and Technological Projects in Henan Province grantid: 212102210519 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c293t-a01c303f4a59bf0d0df7efe9ece61d903126d7c3eb770311646e8f638044ba313 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 08:12:20 EDT 2025 Tue Jul 01 01:34:37 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Wed Aug 27 02:36:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-a01c303f4a59bf0d0df7efe9ece61d903126d7c3eb770311646e8f638044ba313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5351-2312 0000-0002-2934-1840 0000-0002-5243-7189 0000-0001-7015-7335 |
PQID | 2669161238 |
PQPubID | 85465 |
PageCount | 18 |
ParticipantIDs | ieee_primary_9768667 crossref_citationtrail_10_1109_TGRS_2022_3172745 proquest_journals_2669161238 crossref_primary_10_1109_TGRS_2022_3172745 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 Zhou (ref47) ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref16 doi: 10.1109/ACCESS.2019.2912976 – ident: ref22 doi: 10.1109/SENSORS47125.2020.9278924 – ident: ref32 doi: 10.1109/JSTARS.2017.2700023 – ident: ref2 doi: 10.1016/j.patcog.2016.04.002 – ident: ref28 doi: 10.3390/rs10111821 – ident: ref38 doi: 10.1016/j.infrared.2019.103050 – ident: ref36 doi: 10.1109/TGRS.2021.3068465 – ident: ref43 doi: 10.1109/TPAMI.2020.3017672 – ident: ref25 doi: 10.1109/ICNISC.2018.00036 – ident: ref41 doi: 10.1109/TGRS.2021.3098969 – ident: ref20 doi: 10.1109/ICASSP.2018.8461540 – ident: ref18 doi: 10.1109/MSP.2018.2826566 – ident: ref30 doi: 10.1016/j.patcog.2017.11.016 – ident: ref5 doi: 10.1109/LGRS.2019.2912989 – ident: ref10 doi: 10.23919/ICIF.2017.8009810 – ident: ref9 doi: 10.1109/7.7174 – ident: ref26 doi: 10.1109/JSTARS.2019.2931566 – ident: ref42 doi: 10.1049/el:20081781 – ident: ref27 doi: 10.1109/TGRS.2017.2709250 – ident: ref35 doi: 10.1109/TGRS.2021.3057696 – ident: ref11 doi: 10.1117/12.492788 – ident: ref13 doi: 10.1109/LGRS.2019.2954715 – ident: ref8 doi: 10.1109/TAES.2002.1008987 – ident: ref34 doi: 10.3390/rs12091520 – ident: ref23 doi: 10.1109/TIP.2013.2281420 – ident: ref31 doi: 10.1109/JSTARS.2020.2998822 – ident: ref17 doi: 10.1145/1970392.1970395 – start-page: 650 volume-title: Proc. Int. Conf. Artif. Intell. Statist. ident: ref47 article-title: Greedy bilateral sketch, completion & smoothing – ident: ref44 doi: 10.1016/j.laa.2010.09.020 – ident: ref24 doi: 10.1109/CYBER.2017.8446117 – ident: ref46 doi: 10.1109/LGRS.2017.2711047 – ident: ref4 doi: 10.1109/TGRS.2019.2911513 – ident: ref45 doi: 10.1109/JSTARS.2018.2877501 – ident: ref29 doi: 10.1109/TIP.2020.3028457 – ident: ref1 doi: 10.1109/LGRS.2018.2790909 – ident: ref12 doi: 10.1016/j.infrared.2016.02.010 – ident: ref7 doi: 10.1109/LGRS.2016.2594299 – ident: ref39 doi: 10.1109/TGRS.2020.3022069 – ident: ref3 doi: 10.1109/TAES.2015.140878 – ident: ref19 doi: 10.1109/TPAMI.2019.2891760 – ident: ref21 doi: 10.24963/ijcai.2017/303 – ident: ref33 doi: 10.3390/rs11040382 – ident: ref37 doi: 10.1109/TGRS.2020.2989825 – ident: ref40 doi: 10.1109/TGRS.2020.3037938 – ident: ref6 doi: 10.1109/TGRS.2020.3022863 – ident: ref15 doi: 10.1109/TGRS.2017.2660879 – ident: ref14 doi: 10.1109/LGRS.2020.3048199 |
SSID | ssj0014517 |
Score | 2.5082965 |
Snippet | Detecting small infrared (IR) targets against low-altitude complex background is always a challenge for IR search and tracking (IRST) system due to limited... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Alternating direction method of multipliers (ADMM) Altitude Analytical models Approximation Data models Detection False alarms Image edge detection image sequence Infrared filters Infrared imaging Low altitude low-altitude moving background Mathematical analysis Matrix decomposition Methods Object detection Optimization Regularization Salience saliency filter regularization (SFR) small infrared (IR) target detection spatial–temporal tensor model (STTM) Target detection Tensors Tracking |
Title | STTM-SFR: Spatial-Temporal Tensor Modeling With Saliency Filter Regularization for Infrared Small Target Detection |
URI | https://ieeexplore.ieee.org/document/9768667 https://www.proquest.com/docview/2669161238 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaSkhw4NGCWCjIB04Ibx3HeXFDwFKQlsMmFb1FtjMWFUsWpdkLv54Zx7uqACFuPtiWpRl7ZjzzfcPYC7w_4JUuBXQmFdp4KSoNktKFyhS5y0xApS0_5-cX-tNldnnAXu2xMAAQis9gTsOQy-82bktfZWdoOss8Lw7ZIQZuE1ZrnzHQWRKh0bnAIELFDGYiq7Pmw6rGSFApDFDRXBNy6YYNCk1V_niJg3lZ3GPL3cGmqpJv8-1o5-7nb5yN_3vy--xu9DP5m0kxHrAD6I_ZnRvsg8fsVqj-dNcnbKibZinqxeo1pxbFqJKimSir1rzBOHczcOqZRsh1_uVq_Mpr9N4Js8kXV5Rt56vQ0X6ImE6OjjD_2PuBitt5_d2scZtQcc7fwRhqv_qH7GLxvnl7LmIzBuHQIxiFkYlDc-e1ySrrZSc7X4CHChzkSVfh26DyrnAp2IIo8Ym2DEqPt1tqbU2apI_YUb_p4THjFBQbowpQNtU29aWxurS4uVRQQpHNmNyJp3WRqZwaZqzbELHIqiWJtiTRNkp0xl7ul_yYaDr-NfmEJLSfGIUzY6c7HWjjRb5u0X9BBxrNe_nk76uestu09_Qrc8qOxmELz9BPGe3zoKC_AHfo42E |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQ98GiLulDAB06IbJ3EeXGrCssWuj1sUtFbZDsTUbHNVmn2wq9nxsmuKkCIWw62Y2nGnhnPfN8AvKXzg3WgUg8rHXpK19LLFEpOFwY6iW2kHSptdh5PL9SXy-hyC95vsDCI6IrPcMyfLpdfLe2Kn8qOyHSmcZzcg_sRg3F7tNYmZ6AifwBHxx6FEcGQw_RldlR8nucUCwYBhahksBm7dMcKubYqf9zFzsBMnsBsvbW-ruTHeNWZsf35G2vj_-79KTwePE1x3KvGM9jCZhd27vAP7sIDV_9pb_egzYti5uWT-QfBTYpJKb2iJ61aiIIi3WUruGsaY9fFt6vuu8jJf2fUpphccb5dzF1P-3ZAdQpyhcVpU7dc3i7ya72gZVzNufiInav-avbhYvKpOJl6QzsGz5JP0Hla-pYMXq10lJlaVrKqE6wxQ4uxX2V0OwRxldgQTcKk-ExchmlN51sqZXToh89hu1k2eACCw2KtgwQDEyoT1qk2KjW0uAwwxSQagVyLp7QDVzm3zFiULmaRWckSLVmi5SDREbzbTLnpiTr-NXiPJbQZOAhnBIdrHSiHo3xbkgdDLjQZ-PTF32e9gYfTYnZWnp2ef30Jj_g__RvNIWx37QpfkdfSmddOWX8BeZPmqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STTM-SFR%3A+Spatial%E2%80%93Temporal+Tensor+Modeling+With+Saliency+Filter+Regularization+for+Infrared+Small+Target+Detection&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Pang%2C+Dongdong&rft.au=Ma%2C+Pengge&rft.au=Shan%2C+Tao&rft.au=Li%2C+Wei&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1109%2FTGRS.2022.3172745&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2022_3172745 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |