Identity Authentication in Two-Subject Environments Using Microwave Doppler Radar and Machine Learning Classifiers
Identity authentication based on Doppler radar respiration sensing is gaining attention as it requires neither contact nor line of sight and does not give rise to privacy concerns associated with video imaging. Prior research demonstrating the recognition of individuals has been limited to isolated...
Saved in:
Published in | IEEE transactions on microwave theory and techniques Vol. 70; no. 11; pp. 5063 - 5076 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Identity authentication based on Doppler radar respiration sensing is gaining attention as it requires neither contact nor line of sight and does not give rise to privacy concerns associated with video imaging. Prior research demonstrating the recognition of individuals has been limited to isolated single-subject scenarios. When two equidistant subjects are present, identification is more challenging due to the interference of respiration motion patterns in the reflected radar signal. In this research, respiratory signature separation techniques are functionally combined with machine learning (ML) classifiers for reliable subject identity authentication. An improved version of the dynamic segmentation algorithm (peak search and triangulation) was proposed, which can extract distinguishable airflow profile-related features (exhale area, inhale area, inhale/exhale speed, and breathing depth) for medium-scale experiments of 20 different participants to examine the feasibility of extraction of an individual's respiratory features from a combined mixture of motions for subjects. Independent component analysis with the joint approximation of diagonalization of eigenmatrices (ICA-JADE) algorithm was employed to isolate individual respiratory signatures from combined mixtures of breathing patterns. The extracted hyperfeature sets were then evaluated by integrating two different popular ML classifiers, k-nearest neighbor (KNN) and support vector machine (SVM), for subject authentication. Accuracies of 97.5% for two-subject experiments and 98.33% for single-subject experiments were achieved, which supersedes the performance of prior reported methods. The proposed identity authentication approach has several potential applications, including security/surveillance, the Internet-of-Things (IoT) applications, virtual reality, and health monitoring. |
---|---|
AbstractList | Identity authentication based on Doppler radar respiration sensing is gaining attention as it requires neither contact nor line of sight and does not give rise to privacy concerns associated with video imaging. Prior research demonstrating the recognition of individuals has been limited to isolated single-subject scenarios. When two equidistant subjects are present, identification is more challenging due to the interference of respiration motion patterns in the reflected radar signal. In this research, respiratory signature separation techniques are functionally combined with machine learning (ML) classifiers for reliable subject identity authentication. An improved version of the dynamic segmentation algorithm (peak search and triangulation) was proposed, which can extract distinguishable airflow profile-related features (exhale area, inhale area, inhale/exhale speed, and breathing depth) for medium-scale experiments of 20 different participants to examine the feasibility of extraction of an individual's respiratory features from a combined mixture of motions for subjects. Independent component analysis with the joint approximation of diagonalization of eigenmatrices (ICA-JADE) algorithm was employed to isolate individual respiratory signatures from combined mixtures of breathing patterns. The extracted hyperfeature sets were then evaluated by integrating two different popular ML classifiers, k-nearest neighbor (KNN) and support vector machine (SVM), for subject authentication. Accuracies of 97.5% for two-subject experiments and 98.33% for single-subject experiments were achieved, which supersedes the performance of prior reported methods. The proposed identity authentication approach has several potential applications, including security/surveillance, the Internet-of-Things (IoT) applications, virtual reality, and health monitoring. |
Author | Lubecke, Victor M. Islam, Shekh M. M. Boric-Lubecke, Olga |
Author_xml | – sequence: 1 givenname: Shekh M. M. orcidid: 0000-0001-8602-6970 surname: Islam fullname: Islam, Shekh M. M. email: shekh@hawaii.edu organization: Department of Electrical and Computer Engineering, University of Hawaii at Mānoa, Honolulu, HI, USA – sequence: 2 givenname: Olga surname: Boric-Lubecke fullname: Boric-Lubecke, Olga organization: Department of Electrical and Computer Engineering, University of Hawaii at Mānoa, Honolulu, HI, USA – sequence: 3 givenname: Victor M. orcidid: 0000-0001-8407-3554 surname: Lubecke fullname: Lubecke, Victor M. organization: Department of Electrical and Computer Engineering, University of Hawaii at Mānoa, Honolulu, HI, USA |
BookMark | eNp9kMFuGyEURVHlSnXSfEDVDVLX4_BgZhiWlps0kWxVaibrEYZHjWUzLuBE-fvOxFYWWWT1eOJc0D0XZBL6gIR8AzYDYOq6XbXtjDPOZwKULEF8IlOoKlmoWrIJmTIGTaHKhn0hFylth7WsWDMl8d5iyD6_0Pkxb8aj0dn3gfpA2-e-eDiut2gyvQlPPvZhPxCJPiYf_tKVN7F_1k9If_aHww4j_aOtjlQHS1fabHxAukQdwwgvdjol7zzG9JV8dnqX8Oo8L8nj7U27uCuWv3_dL-bLwnAlcqGc5cZC6Rhw69a8aoQBoySiAeek5DUfrlC5UoNjum5qYcG6ZmimLZdaXJIfp3cPsf93xJS7bX-MYfiy41JAUwkm1UDJEzWUSSmi64zPrwpy1H7XAetGwd0ouBsFd2fBQxLeJQ_R73V8-TDz_ZTxiPjGq6YuAaT4Dxq1ipk |
CODEN | IETMAB |
CitedBy_id | crossref_primary_10_3390_rs14246220 crossref_primary_10_1109_JIOT_2023_3336839 crossref_primary_10_3389_fphys_2024_1344221 crossref_primary_10_1109_ACCESS_2024_3482690 crossref_primary_10_3390_info14100538 crossref_primary_10_3389_fphys_2022_955208 crossref_primary_10_1109_JIOT_2024_3395287 crossref_primary_10_1109_TMTT_2024_3361949 |
Cites_doi | 10.1109/ARFTG.2019.8739240 10.1109/MWSYM.2013.6697618 10.1109/IEMBS.2011.6090450 10.1049/iet-bmt.2016.0106 10.1109/TMTT.2020.3020082 10.1016/j.trac.2013.03.013 10.1109/TMTT.2013.2288226 10.1109/ICPEICES.2016.7853731 10.3390/s20185446 10.1049/cp:19950480 10.1109/ICB.2012.6199778 10.1109/TIFS.2017.2713340 10.1109/JETCAS.2018.2818181 10.1016/S0034-5687(00)00154-7 10.1049/iet-bmt.2016.0112 10.23919/EuMC48046.2021.9338011 10.23919/EUSIPCO.2017.8081348 10.1109/RWS45077.2020.9049983 10.1109/EMBC.2018.8512583 10.1145/3023359 10.1145/2382196.2382307 10.1109/TCYB.2014.2360894 10.3390/rs11101220 10.1109/SSAP.1996.534890 10.1109/LSENS.2017.2673551 10.1109/ACCESS.2020.2988038 10.1109/JSEN.2020.2977170 10.1109/APMC47863.2020.9331715 10.23919/APMC.2018.8617539 10.1109/LMWC.2021.3138767 10.1109/TIFS.2014.2361020 10.1109/5.720250 10.1109/ISBA.2015.7126356 10.1145/3117811.3117839 10.1109/TMTT.2007.895653 10.1109/TMTT.2008.2007139 10.1109/TMTT.2013.2256924 10.1109/TIFS.2016.2639342 10.1109/I2MTC.2018.8409645 10.1109/RWS45077.2020.9050013 10.3390/rs12142279 10.1109/TDSC.2017.2767587 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TMTT.2022.3197413 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9670 |
EndPage | 5076 |
ExternalDocumentID | 10_1109_TMTT_2022_3197413 9864117 |
Genre | orig-research |
GrantInformation_xml | – fundername: U.S. National Science Foundation (NSF) grantid: IIS1915738; CNS2039089 funderid: 10.13039/100000001 |
GroupedDBID | -~X .GJ 0R~ 29I 3EH 4.4 5GY 5VS 66. 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c293t-9fd2cd14f012dfb2583c1c97eec1ff77262f01e9f4a1f0a6863d1df8014ad27a3 |
IEDL.DBID | RIE |
ISSN | 0018-9480 |
IngestDate | Mon Jun 30 09:56:35 EDT 2025 Tue Jul 01 02:00:25 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Aug 27 02:18:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-9fd2cd14f012dfb2583c1c97eec1ff77262f01e9f4a1f0a6863d1df8014ad27a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8407-3554 0000-0001-8602-6970 |
PQID | 2731853079 |
PQPubID | 106035 |
PageCount | 14 |
ParticipantIDs | ieee_primary_9864117 proquest_journals_2731853079 crossref_citationtrail_10_1109_TMTT_2022_3197413 crossref_primary_10_1109_TMTT_2022_3197413 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on microwave theory and techniques |
PublicationTitleAbbrev | TMTT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref52 ref11 ref10 ref16 ref19 ref18 pinto (ref14) 2014; 7908 ref51 ref50 (ref5) 2022 ref45 ref48 ref47 ref44 ref49 (ref2) 2013 ref8 ref7 ref9 belifore (ref17) 2015 ref6 li (ref46) 2008; 56 ref40 ref35 ref34 ref37 kotsiantis (ref41) 2007; 31 ref36 (ref38) 2022 ref31 ref30 ref33 whittaker (ref4) 2016 ref32 ref1 ref39 suthaharan (ref42) 2015; 36 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 (ref3) 2014 (ref43) 2022 |
References_xml | – ident: ref26 doi: 10.1109/ARFTG.2019.8739240 – ident: ref47 doi: 10.1109/MWSYM.2013.6697618 – year: 2013 ident: ref2 publication-title: Chaos Computer Club Breaks Apple-Touch ID – ident: ref50 doi: 10.1109/IEMBS.2011.6090450 – ident: ref6 doi: 10.1049/iet-bmt.2016.0106 – ident: ref51 doi: 10.1109/TMTT.2020.3020082 – year: 2014 ident: ref3 publication-title: Fingerprint Biometrics hacked again – ident: ref36 doi: 10.1016/j.trac.2013.03.013 – ident: ref48 doi: 10.1109/TMTT.2013.2288226 – year: 2015 ident: ref17 publication-title: Making Windows 10 More Personal and More Secure – ident: ref8 doi: 10.1109/ICPEICES.2016.7853731 – ident: ref44 doi: 10.3390/s20185446 – ident: ref15 doi: 10.1049/cp:19950480 – ident: ref9 doi: 10.1109/ICB.2012.6199778 – ident: ref7 doi: 10.1109/TIFS.2017.2713340 – volume: 36 start-page: 207 year: 2015 ident: ref42 article-title: Support vector machine publication-title: Machine learning models and algorithms for big data classification thinking with examples for effective learning – ident: ref25 doi: 10.1109/JETCAS.2018.2818181 – ident: ref40 doi: 10.1016/S0034-5687(00)00154-7 – ident: ref12 doi: 10.1049/iet-bmt.2016.0112 – ident: ref49 doi: 10.23919/EuMC48046.2021.9338011 – ident: ref19 doi: 10.23919/EUSIPCO.2017.8081348 – ident: ref45 doi: 10.1109/RWS45077.2020.9049983 – ident: ref31 doi: 10.1109/EMBC.2018.8512583 – year: 2016 ident: ref4 publication-title: These Companies Lost Your Data in 2015 Biggest hacks and Breaches – ident: ref18 doi: 10.1145/3023359 – ident: ref16 doi: 10.1145/2382196.2382307 – ident: ref10 doi: 10.1109/TCYB.2014.2360894 – volume: 7908 start-page: 33 year: 2014 ident: ref14 article-title: Free typed text using keystroke dynamics for continuous authentication publication-title: Communications and Multimedia Security – ident: ref27 doi: 10.3390/rs11101220 – year: 2022 ident: ref43 – ident: ref35 doi: 10.1109/SSAP.1996.534890 – year: 2022 ident: ref5 – volume: 31 start-page: 249 year: 2007 ident: ref41 article-title: Supervised machine learning: A review of classification techniques publication-title: Informatica Internat J Comput Inform – ident: ref22 doi: 10.1109/LSENS.2017.2673551 – ident: ref28 doi: 10.1109/ACCESS.2020.2988038 – ident: ref29 doi: 10.1109/JSEN.2020.2977170 – ident: ref30 doi: 10.1109/APMC47863.2020.9331715 – ident: ref37 doi: 10.23919/APMC.2018.8617539 – ident: ref52 doi: 10.1109/LMWC.2021.3138767 – ident: ref11 doi: 10.1109/TIFS.2014.2361020 – ident: ref34 doi: 10.1109/5.720250 – year: 2022 ident: ref38 – ident: ref23 doi: 10.1109/ISBA.2015.7126356 – ident: ref1 doi: 10.1145/3117811.3117839 – ident: ref33 doi: 10.1109/TMTT.2007.895653 – volume: 56 start-page: 3143 year: 2008 ident: ref46 article-title: Random body movement cancellation in Doppler radar vital sign detection publication-title: IEEE Trans Microw Theory Techn doi: 10.1109/TMTT.2008.2007139 – ident: ref32 doi: 10.1109/TMTT.2013.2256924 – ident: ref13 doi: 10.1109/TIFS.2016.2639342 – ident: ref24 doi: 10.1109/I2MTC.2018.8409645 – ident: ref39 doi: 10.1109/RWS45077.2020.9050013 – ident: ref21 doi: 10.3390/rs12142279 – ident: ref20 doi: 10.1109/TDSC.2017.2767587 |
SSID | ssj0014508 |
Score | 2.4751856 |
Snippet | Identity authentication based on Doppler radar respiration sensing is gaining attention as it requires neither contact nor line of sight and does not give rise... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5063 |
SubjectTerms | Air flow Algorithms Authentication Breathing Classifiers Doppler radar Dynamic segmentation Experiments Feature extraction Heuristic algorithms identity authentication Image segmentation Independent component analysis Internet of Things Machine learning machine learning (ML) classifiers Microwave theory and techniques Mixtures Radar Radar antennas Radar signatures Receivers Respiration RF sensing Support vector machines Triangulation Virtual reality |
Title | Identity Authentication in Two-Subject Environments Using Microwave Doppler Radar and Machine Learning Classifiers |
URI | https://ieeexplore.ieee.org/document/9864117 https://www.proquest.com/docview/2731853079 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEB_Up_ah2mrpVS158Km4Z5Lb2708ih-IsD6UFXxbcsmkiLIn511F_3pnsrlDbSm-BTZZAr9k5jeT-QDYC2XpiBWHzJJ6Y9eNyyxKT1ZrkKEwGjWya6C6KM4u8_Or4dUK7C9zYRAxBp9hn4fxLd9P3JxdZQdcSlypchVWyXDrcrWWLwb5UCapSxc4Hy1eMJU0B3VV12QJak0GKtFnNXilg2JTlb8kcVQvp-tQLTbWRZXc9Oezcd89vanZ-N6db8CnxDPFYXcwPsMKtl_g44vqg5swTUm6j4L9ZDzs3HfiuhX1wyQjmcJOGnHyIhdOxBADUXEY34P9g-J4QjQWp-KX9XYqbOtFFcMzUaTKrb9F7Lt5Hbjn9hZcnp7UR2dZasGQOeIBs8wEr51XeSA95sNYD0cDp5wpEZ0KhLMuNH1CE3JL4NpiVAy88oFL0livSzv4CmvtpMVvIIyXiGSd2dyZPBTeoB16WZC9FaS2yvdALkBpXKpPzm0ybptop0jTMI4N49gkHHvwc7nkrivO8b_Jm4zLcmKCpAc7C-SbdH3vG-J0zGNkab7_e9U2fOB_d0mJO7A2m85xl9jJbPwjHstnNx_itA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6V9gAceBVEoIAPnBCb2s4-4iOCVil0e0BbqbeVY4-rCrRBadKq_fXMeJ2oPFT1ZmltraXPnvlmPA-A96GqHLHikFlSb-y6cZlF6clqDTKURqNGdg3UR-XkOP96UpxswMd1LgwixuAzHPIwvuX7mVuyq2yXS4krVd2DLdL7heqztdZvBnkhk9ylK5yPV2-YSprdpm4asgW1JhOVCLQa_aGFYluVf2RxVDD7j6Feba2PK_kxXC6mQ3f9V9XGu-79CTxKTFN86o_GU9jA7hk8vFF_cBvmKU33SrCnjIe9A0-cdaK5nGUkVdhNI_ZuZMOJGGQgag7ku7QXKL7MiMjiXHy33s6F7byoY4AmilS79VTEzptngbtuP4fj_b3m8yRLTRgyR0xgkZngtfMqD6TJfJjqYjxyypkK0alASOtS0yc0IbcEry3H5cgrH7gojfW6sqMXsNnNOnwJwniJSPaZzZ3JQ-kN2sLLkiyuILVVfgByBUrrUoVybpTxs42WijQt49gyjm3CcQAf1kt-9eU5bpu8zbisJyZIBrCzQr5NF_i8JVbHTEZW5tX_V72D-5OmPmwPD46-vYYH_J8-RXEHNhfzJb4hrrKYvo1H9DcwCuX9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identity+Authentication+in+Two-Subject+Environments+Using+Microwave+Doppler+Radar+and+Machine+Learning+Classifiers&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Islam%2C+Shekh+M+M&rft.au=Boric-Lubecke%2C+Olga&rft.au=Lubecke%2C+Victor+M&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9480&rft.eissn=1557-9670&rft.volume=70&rft.issue=11&rft.spage=5063&rft_id=info:doi/10.1109%2FTMTT.2022.3197413&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon |