Identity Authentication in Two-Subject Environments Using Microwave Doppler Radar and Machine Learning Classifiers

Identity authentication based on Doppler radar respiration sensing is gaining attention as it requires neither contact nor line of sight and does not give rise to privacy concerns associated with video imaging. Prior research demonstrating the recognition of individuals has been limited to isolated...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 70; no. 11; pp. 5063 - 5076
Main Authors Islam, Shekh M. M., Boric-Lubecke, Olga, Lubecke, Victor M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Identity authentication based on Doppler radar respiration sensing is gaining attention as it requires neither contact nor line of sight and does not give rise to privacy concerns associated with video imaging. Prior research demonstrating the recognition of individuals has been limited to isolated single-subject scenarios. When two equidistant subjects are present, identification is more challenging due to the interference of respiration motion patterns in the reflected radar signal. In this research, respiratory signature separation techniques are functionally combined with machine learning (ML) classifiers for reliable subject identity authentication. An improved version of the dynamic segmentation algorithm (peak search and triangulation) was proposed, which can extract distinguishable airflow profile-related features (exhale area, inhale area, inhale/exhale speed, and breathing depth) for medium-scale experiments of 20 different participants to examine the feasibility of extraction of an individual's respiratory features from a combined mixture of motions for subjects. Independent component analysis with the joint approximation of diagonalization of eigenmatrices (ICA-JADE) algorithm was employed to isolate individual respiratory signatures from combined mixtures of breathing patterns. The extracted hyperfeature sets were then evaluated by integrating two different popular ML classifiers, k-nearest neighbor (KNN) and support vector machine (SVM), for subject authentication. Accuracies of 97.5% for two-subject experiments and 98.33% for single-subject experiments were achieved, which supersedes the performance of prior reported methods. The proposed identity authentication approach has several potential applications, including security/surveillance, the Internet-of-Things (IoT) applications, virtual reality, and health monitoring.
AbstractList Identity authentication based on Doppler radar respiration sensing is gaining attention as it requires neither contact nor line of sight and does not give rise to privacy concerns associated with video imaging. Prior research demonstrating the recognition of individuals has been limited to isolated single-subject scenarios. When two equidistant subjects are present, identification is more challenging due to the interference of respiration motion patterns in the reflected radar signal. In this research, respiratory signature separation techniques are functionally combined with machine learning (ML) classifiers for reliable subject identity authentication. An improved version of the dynamic segmentation algorithm (peak search and triangulation) was proposed, which can extract distinguishable airflow profile-related features (exhale area, inhale area, inhale/exhale speed, and breathing depth) for medium-scale experiments of 20 different participants to examine the feasibility of extraction of an individual's respiratory features from a combined mixture of motions for subjects. Independent component analysis with the joint approximation of diagonalization of eigenmatrices (ICA-JADE) algorithm was employed to isolate individual respiratory signatures from combined mixtures of breathing patterns. The extracted hyperfeature sets were then evaluated by integrating two different popular ML classifiers, k-nearest neighbor (KNN) and support vector machine (SVM), for subject authentication. Accuracies of 97.5% for two-subject experiments and 98.33% for single-subject experiments were achieved, which supersedes the performance of prior reported methods. The proposed identity authentication approach has several potential applications, including security/surveillance, the Internet-of-Things (IoT) applications, virtual reality, and health monitoring.
Author Lubecke, Victor M.
Islam, Shekh M. M.
Boric-Lubecke, Olga
Author_xml – sequence: 1
  givenname: Shekh M. M.
  orcidid: 0000-0001-8602-6970
  surname: Islam
  fullname: Islam, Shekh M. M.
  email: shekh@hawaii.edu
  organization: Department of Electrical and Computer Engineering, University of Hawaii at Mānoa, Honolulu, HI, USA
– sequence: 2
  givenname: Olga
  surname: Boric-Lubecke
  fullname: Boric-Lubecke, Olga
  organization: Department of Electrical and Computer Engineering, University of Hawaii at Mānoa, Honolulu, HI, USA
– sequence: 3
  givenname: Victor M.
  orcidid: 0000-0001-8407-3554
  surname: Lubecke
  fullname: Lubecke, Victor M.
  organization: Department of Electrical and Computer Engineering, University of Hawaii at Mānoa, Honolulu, HI, USA
BookMark eNp9kMFuGyEURVHlSnXSfEDVDVLX4_BgZhiWlps0kWxVaibrEYZHjWUzLuBE-fvOxFYWWWT1eOJc0D0XZBL6gIR8AzYDYOq6XbXtjDPOZwKULEF8IlOoKlmoWrIJmTIGTaHKhn0hFylth7WsWDMl8d5iyD6_0Pkxb8aj0dn3gfpA2-e-eDiut2gyvQlPPvZhPxCJPiYf_tKVN7F_1k9If_aHww4j_aOtjlQHS1fabHxAukQdwwgvdjol7zzG9JV8dnqX8Oo8L8nj7U27uCuWv3_dL-bLwnAlcqGc5cZC6Rhw69a8aoQBoySiAeek5DUfrlC5UoNjum5qYcG6ZmimLZdaXJIfp3cPsf93xJS7bX-MYfiy41JAUwkm1UDJEzWUSSmi64zPrwpy1H7XAetGwd0ouBsFd2fBQxLeJQ_R73V8-TDz_ZTxiPjGq6YuAaT4Dxq1ipk
CODEN IETMAB
CitedBy_id crossref_primary_10_3390_rs14246220
crossref_primary_10_1109_JIOT_2023_3336839
crossref_primary_10_3389_fphys_2024_1344221
crossref_primary_10_1109_ACCESS_2024_3482690
crossref_primary_10_3390_info14100538
crossref_primary_10_3389_fphys_2022_955208
crossref_primary_10_1109_JIOT_2024_3395287
crossref_primary_10_1109_TMTT_2024_3361949
Cites_doi 10.1109/ARFTG.2019.8739240
10.1109/MWSYM.2013.6697618
10.1109/IEMBS.2011.6090450
10.1049/iet-bmt.2016.0106
10.1109/TMTT.2020.3020082
10.1016/j.trac.2013.03.013
10.1109/TMTT.2013.2288226
10.1109/ICPEICES.2016.7853731
10.3390/s20185446
10.1049/cp:19950480
10.1109/ICB.2012.6199778
10.1109/TIFS.2017.2713340
10.1109/JETCAS.2018.2818181
10.1016/S0034-5687(00)00154-7
10.1049/iet-bmt.2016.0112
10.23919/EuMC48046.2021.9338011
10.23919/EUSIPCO.2017.8081348
10.1109/RWS45077.2020.9049983
10.1109/EMBC.2018.8512583
10.1145/3023359
10.1145/2382196.2382307
10.1109/TCYB.2014.2360894
10.3390/rs11101220
10.1109/SSAP.1996.534890
10.1109/LSENS.2017.2673551
10.1109/ACCESS.2020.2988038
10.1109/JSEN.2020.2977170
10.1109/APMC47863.2020.9331715
10.23919/APMC.2018.8617539
10.1109/LMWC.2021.3138767
10.1109/TIFS.2014.2361020
10.1109/5.720250
10.1109/ISBA.2015.7126356
10.1145/3117811.3117839
10.1109/TMTT.2007.895653
10.1109/TMTT.2008.2007139
10.1109/TMTT.2013.2256924
10.1109/TIFS.2016.2639342
10.1109/I2MTC.2018.8409645
10.1109/RWS45077.2020.9050013
10.3390/rs12142279
10.1109/TDSC.2017.2767587
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TMTT.2022.3197413
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9670
EndPage 5076
ExternalDocumentID 10_1109_TMTT_2022_3197413
9864117
Genre orig-research
GrantInformation_xml – fundername: U.S. National Science Foundation (NSF)
  grantid: IIS1915738; CNS2039089
  funderid: 10.13039/100000001
GroupedDBID -~X
.GJ
0R~
29I
3EH
4.4
5GY
5VS
66.
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-9fd2cd14f012dfb2583c1c97eec1ff77262f01e9f4a1f0a6863d1df8014ad27a3
IEDL.DBID RIE
ISSN 0018-9480
IngestDate Mon Jun 30 09:56:35 EDT 2025
Tue Jul 01 02:00:25 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Aug 27 02:18:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-9fd2cd14f012dfb2583c1c97eec1ff77262f01e9f4a1f0a6863d1df8014ad27a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8407-3554
0000-0001-8602-6970
PQID 2731853079
PQPubID 106035
PageCount 14
ParticipantIDs ieee_primary_9864117
proquest_journals_2731853079
crossref_citationtrail_10_1109_TMTT_2022_3197413
crossref_primary_10_1109_TMTT_2022_3197413
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on microwave theory and techniques
PublicationTitleAbbrev TMTT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref52
ref11
ref10
ref16
ref19
ref18
pinto (ref14) 2014; 7908
ref51
ref50
(ref5) 2022
ref45
ref48
ref47
ref44
ref49
(ref2) 2013
ref8
ref7
ref9
belifore (ref17) 2015
ref6
li (ref46) 2008; 56
ref40
ref35
ref34
ref37
kotsiantis (ref41) 2007; 31
ref36
(ref38) 2022
ref31
ref30
ref33
whittaker (ref4) 2016
ref32
ref1
ref39
suthaharan (ref42) 2015; 36
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
(ref3) 2014
(ref43) 2022
References_xml – ident: ref26
  doi: 10.1109/ARFTG.2019.8739240
– ident: ref47
  doi: 10.1109/MWSYM.2013.6697618
– year: 2013
  ident: ref2
  publication-title: Chaos Computer Club Breaks Apple-Touch ID
– ident: ref50
  doi: 10.1109/IEMBS.2011.6090450
– ident: ref6
  doi: 10.1049/iet-bmt.2016.0106
– ident: ref51
  doi: 10.1109/TMTT.2020.3020082
– year: 2014
  ident: ref3
  publication-title: Fingerprint Biometrics hacked again
– ident: ref36
  doi: 10.1016/j.trac.2013.03.013
– ident: ref48
  doi: 10.1109/TMTT.2013.2288226
– year: 2015
  ident: ref17
  publication-title: Making Windows 10 More Personal and More Secure
– ident: ref8
  doi: 10.1109/ICPEICES.2016.7853731
– ident: ref44
  doi: 10.3390/s20185446
– ident: ref15
  doi: 10.1049/cp:19950480
– ident: ref9
  doi: 10.1109/ICB.2012.6199778
– ident: ref7
  doi: 10.1109/TIFS.2017.2713340
– volume: 36
  start-page: 207
  year: 2015
  ident: ref42
  article-title: Support vector machine
  publication-title: Machine learning models and algorithms for big data classification thinking with examples for effective learning
– ident: ref25
  doi: 10.1109/JETCAS.2018.2818181
– ident: ref40
  doi: 10.1016/S0034-5687(00)00154-7
– ident: ref12
  doi: 10.1049/iet-bmt.2016.0112
– ident: ref49
  doi: 10.23919/EuMC48046.2021.9338011
– ident: ref19
  doi: 10.23919/EUSIPCO.2017.8081348
– ident: ref45
  doi: 10.1109/RWS45077.2020.9049983
– ident: ref31
  doi: 10.1109/EMBC.2018.8512583
– year: 2016
  ident: ref4
  publication-title: These Companies Lost Your Data in 2015 Biggest hacks and Breaches
– ident: ref18
  doi: 10.1145/3023359
– ident: ref16
  doi: 10.1145/2382196.2382307
– ident: ref10
  doi: 10.1109/TCYB.2014.2360894
– volume: 7908
  start-page: 33
  year: 2014
  ident: ref14
  article-title: Free typed text using keystroke dynamics for continuous authentication
  publication-title: Communications and Multimedia Security
– ident: ref27
  doi: 10.3390/rs11101220
– year: 2022
  ident: ref43
– ident: ref35
  doi: 10.1109/SSAP.1996.534890
– year: 2022
  ident: ref5
– volume: 31
  start-page: 249
  year: 2007
  ident: ref41
  article-title: Supervised machine learning: A review of classification techniques
  publication-title: Informatica Internat J Comput Inform
– ident: ref22
  doi: 10.1109/LSENS.2017.2673551
– ident: ref28
  doi: 10.1109/ACCESS.2020.2988038
– ident: ref29
  doi: 10.1109/JSEN.2020.2977170
– ident: ref30
  doi: 10.1109/APMC47863.2020.9331715
– ident: ref37
  doi: 10.23919/APMC.2018.8617539
– ident: ref52
  doi: 10.1109/LMWC.2021.3138767
– ident: ref11
  doi: 10.1109/TIFS.2014.2361020
– ident: ref34
  doi: 10.1109/5.720250
– year: 2022
  ident: ref38
– ident: ref23
  doi: 10.1109/ISBA.2015.7126356
– ident: ref1
  doi: 10.1145/3117811.3117839
– ident: ref33
  doi: 10.1109/TMTT.2007.895653
– volume: 56
  start-page: 3143
  year: 2008
  ident: ref46
  article-title: Random body movement cancellation in Doppler radar vital sign detection
  publication-title: IEEE Trans Microw Theory Techn
  doi: 10.1109/TMTT.2008.2007139
– ident: ref32
  doi: 10.1109/TMTT.2013.2256924
– ident: ref13
  doi: 10.1109/TIFS.2016.2639342
– ident: ref24
  doi: 10.1109/I2MTC.2018.8409645
– ident: ref39
  doi: 10.1109/RWS45077.2020.9050013
– ident: ref21
  doi: 10.3390/rs12142279
– ident: ref20
  doi: 10.1109/TDSC.2017.2767587
SSID ssj0014508
Score 2.4751856
Snippet Identity authentication based on Doppler radar respiration sensing is gaining attention as it requires neither contact nor line of sight and does not give rise...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5063
SubjectTerms Air flow
Algorithms
Authentication
Breathing
Classifiers
Doppler radar
Dynamic segmentation
Experiments
Feature extraction
Heuristic algorithms
identity authentication
Image segmentation
Independent component analysis
Internet of Things
Machine learning
machine learning (ML) classifiers
Microwave theory and techniques
Mixtures
Radar
Radar antennas
Radar signatures
Receivers
Respiration
RF sensing
Support vector machines
Triangulation
Virtual reality
Title Identity Authentication in Two-Subject Environments Using Microwave Doppler Radar and Machine Learning Classifiers
URI https://ieeexplore.ieee.org/document/9864117
https://www.proquest.com/docview/2731853079
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEB_Up_ah2mrpVS158Km4Z5Lb2708ih-IsD6UFXxbcsmkiLIn511F_3pnsrlDbSm-BTZZAr9k5jeT-QDYC2XpiBWHzJJ6Y9eNyyxKT1ZrkKEwGjWya6C6KM4u8_Or4dUK7C9zYRAxBp9hn4fxLd9P3JxdZQdcSlypchVWyXDrcrWWLwb5UCapSxc4Hy1eMJU0B3VV12QJak0GKtFnNXilg2JTlb8kcVQvp-tQLTbWRZXc9Oezcd89vanZ-N6db8CnxDPFYXcwPsMKtl_g44vqg5swTUm6j4L9ZDzs3HfiuhX1wyQjmcJOGnHyIhdOxBADUXEY34P9g-J4QjQWp-KX9XYqbOtFFcMzUaTKrb9F7Lt5Hbjn9hZcnp7UR2dZasGQOeIBs8wEr51XeSA95sNYD0cDp5wpEZ0KhLMuNH1CE3JL4NpiVAy88oFL0livSzv4CmvtpMVvIIyXiGSd2dyZPBTeoB16WZC9FaS2yvdALkBpXKpPzm0ybptop0jTMI4N49gkHHvwc7nkrivO8b_Jm4zLcmKCpAc7C-SbdH3vG-J0zGNkab7_e9U2fOB_d0mJO7A2m85xl9jJbPwjHstnNx_itA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6V9gAceBVEoIAPnBCb2s4-4iOCVil0e0BbqbeVY4-rCrRBadKq_fXMeJ2oPFT1ZmltraXPnvlmPA-A96GqHLHikFlSb-y6cZlF6clqDTKURqNGdg3UR-XkOP96UpxswMd1LgwixuAzHPIwvuX7mVuyq2yXS4krVd2DLdL7heqztdZvBnkhk9ylK5yPV2-YSprdpm4asgW1JhOVCLQa_aGFYluVf2RxVDD7j6Feba2PK_kxXC6mQ3f9V9XGu-79CTxKTFN86o_GU9jA7hk8vFF_cBvmKU33SrCnjIe9A0-cdaK5nGUkVdhNI_ZuZMOJGGQgag7ku7QXKL7MiMjiXHy33s6F7byoY4AmilS79VTEzptngbtuP4fj_b3m8yRLTRgyR0xgkZngtfMqD6TJfJjqYjxyypkK0alASOtS0yc0IbcEry3H5cgrH7gojfW6sqMXsNnNOnwJwniJSPaZzZ3JQ-kN2sLLkiyuILVVfgByBUrrUoVybpTxs42WijQt49gyjm3CcQAf1kt-9eU5bpu8zbisJyZIBrCzQr5NF_i8JVbHTEZW5tX_V72D-5OmPmwPD46-vYYH_J8-RXEHNhfzJb4hrrKYvo1H9DcwCuX9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identity+Authentication+in+Two-Subject+Environments+Using+Microwave+Doppler+Radar+and+Machine+Learning+Classifiers&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Islam%2C+Shekh+M+M&rft.au=Boric-Lubecke%2C+Olga&rft.au=Lubecke%2C+Victor+M&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9480&rft.eissn=1557-9670&rft.volume=70&rft.issue=11&rft.spage=5063&rft_id=info:doi/10.1109%2FTMTT.2022.3197413&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon