Impact of Bending on the Critical Current of HTS CrossConductors

Fusion applications require high magnetic fields for plasma confinement, which results in magnet coils with high operational currents. To achieve these high currents, high temperature superconductor (HTS) strands like the HTS CrossConductor (HTS CroCo) are an option. However, to reach the required h...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on applied superconductivity Vol. 31; no. 5; pp. 1 - 4
Main Authors Nickel, Daniel S., Fietz, Walter H., Weiss, Klaus-Peter, Wolf, Michael J.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fusion applications require high magnetic fields for plasma confinement, which results in magnet coils with high operational currents. To achieve these high currents, high temperature superconductor (HTS) strands like the HTS CrossConductor (HTS CroCo) are an option. However, to reach the required high currents, multiple HTS CroCo strands have to be assembled as cable. These cabling processes as well as the winding of the magnet coil induce mechanical strain in the HTS CroCo. In this work the results of modelling critical currents of HTS CroCos at different bending radii are discussed and validated by experiments. The simulation uses the finite element method and is capable to calculate the critical current of the ideal HTS CroCo at different bending radii as well as predicting the possible range of the critical current degradation due to production tolerances of the HTS CroCos. For the experimental tests the examined samples were bent to radius at room temperature, afterwards the critical current measurement took place at T = 77 K and self-field conditions. Each sample was characterized at different bending radii in decreasing order. After the sequence of measurements, cross-sectional images of the samples were prepared to analyze macroscopic damage of the HTS CroCo.
AbstractList Fusion applications require high magnetic fields for plasma confinement, which results in magnet coils with high operational currents. To achieve these high currents, high temperature superconductor (HTS) strands like the HTS CrossConductor (HTS CroCo) are an option. However, to reach the required high currents, multiple HTS CroCo strands have to be assembled as cable. These cabling processes as well as the winding of the magnet coil induce mechanical strain in the HTS CroCo. In this work the results of modelling critical currents of HTS CroCos at different bending radii are discussed and validated by experiments. The simulation uses the finite element method and is capable to calculate the critical current of the ideal HTS CroCo at different bending radii as well as predicting the possible range of the critical current degradation due to production tolerances of the HTS CroCos. For the experimental tests the examined samples were bent to radius at room temperature, afterwards the critical current measurement took place at T = 77 K and self-field conditions. Each sample was characterized at different bending radii in decreasing order. After the sequence of measurements, cross-sectional images of the samples were prepared to analyze macroscopic damage of the HTS CroCo.
Fusion applications require high magnetic fields for plasma confinement, which results in magnet coils with high operational currents. To achieve these high currents, high temperature superconductor (HTS) strands like the HTS CrossConductor (HTS CroCo) are an option. However, to reach the required high currents, multiple HTS CroCo strands have to be assembled as cable. These cabling processes as well as the winding of the magnet coil induce mechanical strain in the HTS CroCo. In this work the results of modelling critical currents of HTS CroCos at different bending radii are discussed and validated by experiments. The simulation uses the finite element method and is capable to calculate the critical current of the ideal HTS CroCo at different bending radii as well as predicting the possible range of the critical current degradation due to production tolerances of the HTS CroCos. For the experimental tests the examined samples were bent to radius at room temperature, afterwards the critical current measurement took place at T = 77 K and self-field conditions. Each sample was characterized at different bending radii in decreasing order. After the sequence of measurements, cross-sectional images of the samples were prepared to analyze macroscopic damage of the HTS CroCo.
Author Nickel, Daniel S.
Fietz, Walter H.
Wolf, Michael J.
Weiss, Klaus-Peter
Author_xml – sequence: 1
  givenname: Daniel S.
  orcidid: 0000-0001-5820-9358
  surname: Nickel
  fullname: Nickel, Daniel S.
  email: daniel.nickel@kit.edu
  organization: Institute for Technical Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
– sequence: 2
  givenname: Walter H.
  orcidid: 0000-0001-6298-8032
  surname: Fietz
  fullname: Fietz, Walter H.
  organization: Institute for Technical Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
– sequence: 3
  givenname: Klaus-Peter
  orcidid: 0000-0002-7504-4505
  surname: Weiss
  fullname: Weiss, Klaus-Peter
  organization: Institute for Technical Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
– sequence: 4
  givenname: Michael J.
  orcidid: 0000-0001-9080-080X
  surname: Wolf
  fullname: Wolf, Michael J.
  organization: Institute for Technical Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
BookMark eNo9UMFOwzAMjdCQ2AYfgLhU4twRJ03b3BgVsEmTOGycozR1odOWjKQ98PekDOGLn6z37Oc3IxPrLBJyC3QBQOXDbrmtFowyWHBa5JmECzIFIcqUCRCTiKmAtGSMX5FZCHtKISszMSWP6-NJmz5xbfKEtunsR-Js0n9iUvmu74w-JNXgPdpfymq3jXMXQuVsM5je-XBNLlt9CHjz1-fk_eV5V63SzdvrulpuUsMk71NpMOcN1zpv84K3KBvRNBRKrGvD0GCNsYAXDTWFLhhD2qLOuJCmrSOgfE7uz3tP3n0NGHq1d4O38aRigvNMxr-zyIIzy4wuPbbq5Luj9t8KqBqDUmNQagxK_QUVNXdnTRct_PNlBrKAnP8ALWJmWg
CODEN ITASE9
CitedBy_id crossref_primary_10_1109_TASC_2022_3151581
crossref_primary_10_1016_j_physc_2024_1354463
crossref_primary_10_1109_TASC_2022_3152130
Cites_doi 10.1088/1741-4326/aad835
10.1016/j.fusengdes.2018.05.065
10.1088/1757-899X/102/1/012023
10.1016/j.fusengdes.2018.04.001
10.1109/TASC.2013.2284854
10.1109/TASC.2016.2521323
10.1109/TASC.2016.2528501
10.1088/0953-2048/29/12/125003
10.1088/1361-6668/ab06a2
10.1088/0953-2048/28/4/045011
10.1109/TASC.2013.2259827
10.1109/TASC.2016.2515941
10.1016/j.fusengdes.2017.02.085
10.5445/KSP/1000122861
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TASC.2021.3076491
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-2515
EndPage 4
ExternalDocumentID 10_1109_TASC_2021_3076491
9419716
Genre orig-research
GrantInformation_xml – fundername: EUROfusion Consortium
– fundername: Euratom research and training programme 2014-2018 and 2019-2020
  grantid: 633053
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PZZ
RIA
RIE
RIG
RNS
TN5
VH1
XFK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-9ce63d3aa6f673fe9d5dd018ebbc2ecebeeee137d0c7a722e0fea4359cfbea403
IEDL.DBID RIE
ISSN 1051-8223
IngestDate Thu Oct 10 15:58:13 EDT 2024
Fri Aug 23 01:02:00 EDT 2024
Wed Jun 26 19:26:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-9ce63d3aa6f673fe9d5dd018ebbc2ecebeeee137d0c7a722e0fea4359cfbea403
ORCID 0000-0001-5820-9358
0000-0001-6298-8032
0000-0002-7504-4505
0000-0001-9080-080X
PQID 2533493074
PQPubID 85434
PageCount 4
ParticipantIDs proquest_journals_2533493074
ieee_primary_9419716
crossref_primary_10_1109_TASC_2021_3076491
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on applied superconductivity
PublicationTitleAbbrev TASC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref4
  doi: 10.1088/1741-4326/aad835
– ident: ref3
  doi: 10.1016/j.fusengdes.2018.05.065
– ident: ref13
  doi: 10.1088/1757-899X/102/1/012023
– ident: ref2
  doi: 10.1016/j.fusengdes.2018.04.001
– ident: ref7
  doi: 10.1088/1757-899X/102/1/012023
– ident: ref11
  doi: 10.1109/TASC.2013.2284854
– ident: ref8
  doi: 10.1109/TASC.2016.2521323
– ident: ref12
  doi: 10.1109/TASC.2016.2528501
– ident: ref10
  doi: 10.1088/0953-2048/29/12/125003
– ident: ref6
  doi: 10.1088/1361-6668/ab06a2
– ident: ref9
  doi: 10.1088/0953-2048/28/4/045011
– ident: ref14
  doi: 10.1109/TASC.2013.2259827
– ident: ref5
  doi: 10.1109/TASC.2016.2515941
– ident: ref1
  doi: 10.1016/j.fusengdes.2017.02.085
– ident: ref15
  doi: 10.5445/KSP/1000122861
SSID ssj0014845
Score 2.3552454
Snippet Fusion applications require high magnetic fields for plasma confinement, which results in magnet coils with high operational currents. To achieve these high...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Bend radius
Bending
Coils (windings)
Critical current (superconductivity)
Critical current density (superconductivity)
Finite element method
Fusion Magnets
High Temperature Superconductors
HTS Cables
HTS coils
Magnet coils
Plasma control
Production
Room temperature
Strain
Strands
Superconducting cables
Superconducting magnets
Tolerances
Title Impact of Bending on the Critical Current of HTS CrossConductors
URI https://ieeexplore.ieee.org/document/9419716
https://www.proquest.com/docview/2533493074
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7agqAHH61itcoePIlJk2xee1OLpQr10hZ6C9nXRUikj4u_3tlNUnwdzGkJO2EzM9n5NvMCuEm5zJVSsaNEJJ0wjjTugzxFXaYy0oi_uW3aN32NJ4vwZRktW3C3y4VBQht8plwztL58WYqt-VU2ZKFvKh61oZ0wVuVq7TwGYWobEiNc8B00erT2YPoeG84fZiM8CQa-iwodh8z_ZoNsU5VfO7E1L-MjmDYLq6JK3tzthrvi40fNxv-u_BgOa5xJHirFOIGWKrpw8KX6YBf2bPSnWPfg_tnmSpJSk0dl01xIWRCEhqTphEDqOk5mymQ-w_v4YqOyMNViy9X6FBbjp_lo4tStFRyB9n3jMKFiKmmexzpOqFZMRlJ6fqo4F4ESKFm8fJpITyR5EgTK0ypHZMWE5jjw6Bl0irJQ50ByP_AkR1SkzIbAOU95EgvNUkpDlkSiD7cNs7P3qoJGZk8eHsuMZDIjmayWTB96hnm7iTXf-jBoxJPV39g6C0wWMUPC8OJvqkvYN8-uwvUG0NmstuoKIcSGX1vd-QTRrcMw
link.rule.ids 315,783,787,799,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gxqgHH6ARRe3Bk7HQdvvam0gkRYELkHBruo9eTFoD5eKvd3ZbiK-DPW2anXQ7M935tvMCuAuZSKSUvim5J0zX91LcB1mIukyElyL-Zrpp33jiR3P3ZeEtavCwzYVBQh18JjtqqH35Iudr9ausS11bVTzagV1P4YoyW2vrM3BD3ZIYAYNtotkjlQ_Ttmh31pv28Szo2B1Uad-l9jcrpNuq_NqLtYEZHMN4s7QyruStsy5Yh3_8qNr437WfwFGFNI1eqRqnUJNZAw6_1B9swJ6O_-SrJjwOdbakkafGk9SJLkaeGQgOjU0vBKOq5KSmRLMp3scX6-eZqhebL1dnMB88z_qRWTVXMDla-MKkXPpEkCTxUz8gqaTCE8KyQ8kYdyRH2eJlk0BYPEgCx5FWKhPEVpSnDAcWOYd6lmfyAozEdizBEBdJtSUwxkIW-DylISEuDTzegvsNs-P3soZGrM8eFo2VZGIlmbiSTAuainnbiRXfWtDeiCeuvrJV7Kg8YoqE7uXfVLewH83Go3g0nLxewYF6Thm814Z6sVzLawQUBbvRevQJOEnGfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Bending+on+the+Critical+Current+of+HTS+CrossConductors&rft.jtitle=IEEE+transactions+on+applied+superconductivity&rft.au=Nickel%2C+Daniel+S.&rft.au=Fietz%2C+Walter+H.&rft.au=Weiss%2C+Klaus-Peter&rft.au=Wolf%2C+Michael+J.&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=1051-8223&rft.eissn=1558-2515&rft.volume=31&rft.issue=5&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FTASC.2021.3076491&rft.externalDocID=9419716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8223&client=summon