Impact of Bending on the Critical Current of HTS CrossConductors
Fusion applications require high magnetic fields for plasma confinement, which results in magnet coils with high operational currents. To achieve these high currents, high temperature superconductor (HTS) strands like the HTS CrossConductor (HTS CroCo) are an option. However, to reach the required h...
Saved in:
Published in | IEEE transactions on applied superconductivity Vol. 31; no. 5; pp. 1 - 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fusion applications require high magnetic fields for plasma confinement, which results in magnet coils with high operational currents. To achieve these high currents, high temperature superconductor (HTS) strands like the HTS CrossConductor (HTS CroCo) are an option. However, to reach the required high currents, multiple HTS CroCo strands have to be assembled as cable. These cabling processes as well as the winding of the magnet coil induce mechanical strain in the HTS CroCo. In this work the results of modelling critical currents of HTS CroCos at different bending radii are discussed and validated by experiments. The simulation uses the finite element method and is capable to calculate the critical current of the ideal HTS CroCo at different bending radii as well as predicting the possible range of the critical current degradation due to production tolerances of the HTS CroCos. For the experimental tests the examined samples were bent to radius at room temperature, afterwards the critical current measurement took place at T = 77 K and self-field conditions. Each sample was characterized at different bending radii in decreasing order. After the sequence of measurements, cross-sectional images of the samples were prepared to analyze macroscopic damage of the HTS CroCo. |
---|---|
AbstractList | Fusion applications require high magnetic fields for plasma confinement, which results in magnet coils with high operational currents. To achieve these high currents, high temperature superconductor (HTS) strands like the HTS CrossConductor (HTS CroCo) are an option. However, to reach the required high currents, multiple HTS CroCo strands have to be assembled as cable. These cabling processes as well as the winding of the magnet coil induce mechanical strain in the HTS CroCo. In this work the results of modelling critical currents of HTS CroCos at different bending radii are discussed and validated by experiments. The simulation uses the finite element method and is capable to calculate the critical current of the ideal HTS CroCo at different bending radii as well as predicting the possible range of the critical current degradation due to production tolerances of the HTS CroCos. For the experimental tests the examined samples were bent to radius at room temperature, afterwards the critical current measurement took place at T = 77 K and self-field conditions. Each sample was characterized at different bending radii in decreasing order. After the sequence of measurements, cross-sectional images of the samples were prepared to analyze macroscopic damage of the HTS CroCo. Fusion applications require high magnetic fields for plasma confinement, which results in magnet coils with high operational currents. To achieve these high currents, high temperature superconductor (HTS) strands like the HTS CrossConductor (HTS CroCo) are an option. However, to reach the required high currents, multiple HTS CroCo strands have to be assembled as cable. These cabling processes as well as the winding of the magnet coil induce mechanical strain in the HTS CroCo. In this work the results of modelling critical currents of HTS CroCos at different bending radii are discussed and validated by experiments. The simulation uses the finite element method and is capable to calculate the critical current of the ideal HTS CroCo at different bending radii as well as predicting the possible range of the critical current degradation due to production tolerances of the HTS CroCos. For the experimental tests the examined samples were bent to radius at room temperature, afterwards the critical current measurement took place at T = 77 K and self-field conditions. Each sample was characterized at different bending radii in decreasing order. After the sequence of measurements, cross-sectional images of the samples were prepared to analyze macroscopic damage of the HTS CroCo. |
Author | Nickel, Daniel S. Fietz, Walter H. Wolf, Michael J. Weiss, Klaus-Peter |
Author_xml | – sequence: 1 givenname: Daniel S. orcidid: 0000-0001-5820-9358 surname: Nickel fullname: Nickel, Daniel S. email: daniel.nickel@kit.edu organization: Institute for Technical Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany – sequence: 2 givenname: Walter H. orcidid: 0000-0001-6298-8032 surname: Fietz fullname: Fietz, Walter H. organization: Institute for Technical Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany – sequence: 3 givenname: Klaus-Peter orcidid: 0000-0002-7504-4505 surname: Weiss fullname: Weiss, Klaus-Peter organization: Institute for Technical Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany – sequence: 4 givenname: Michael J. orcidid: 0000-0001-9080-080X surname: Wolf fullname: Wolf, Michael J. organization: Institute for Technical Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany |
BookMark | eNo9UMFOwzAMjdCQ2AYfgLhU4twRJ03b3BgVsEmTOGycozR1odOWjKQ98PekDOGLn6z37Oc3IxPrLBJyC3QBQOXDbrmtFowyWHBa5JmECzIFIcqUCRCTiKmAtGSMX5FZCHtKISszMSWP6-NJmz5xbfKEtunsR-Js0n9iUvmu74w-JNXgPdpfymq3jXMXQuVsM5je-XBNLlt9CHjz1-fk_eV5V63SzdvrulpuUsMk71NpMOcN1zpv84K3KBvRNBRKrGvD0GCNsYAXDTWFLhhD2qLOuJCmrSOgfE7uz3tP3n0NGHq1d4O38aRigvNMxr-zyIIzy4wuPbbq5Luj9t8KqBqDUmNQagxK_QUVNXdnTRct_PNlBrKAnP8ALWJmWg |
CODEN | ITASE9 |
CitedBy_id | crossref_primary_10_1109_TASC_2022_3151581 crossref_primary_10_1016_j_physc_2024_1354463 crossref_primary_10_1109_TASC_2022_3152130 |
Cites_doi | 10.1088/1741-4326/aad835 10.1016/j.fusengdes.2018.05.065 10.1088/1757-899X/102/1/012023 10.1016/j.fusengdes.2018.04.001 10.1109/TASC.2013.2284854 10.1109/TASC.2016.2521323 10.1109/TASC.2016.2528501 10.1088/0953-2048/29/12/125003 10.1088/1361-6668/ab06a2 10.1088/0953-2048/28/4/045011 10.1109/TASC.2013.2259827 10.1109/TASC.2016.2515941 10.1016/j.fusengdes.2017.02.085 10.5445/KSP/1000122861 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TASC.2021.3076491 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-2515 |
EndPage | 4 |
ExternalDocumentID | 10_1109_TASC_2021_3076491 9419716 |
Genre | orig-research |
GrantInformation_xml | – fundername: EUROfusion Consortium – fundername: Euratom research and training programme 2014-2018 and 2019-2020 grantid: 633053 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PZZ RIA RIE RIG RNS TN5 VH1 XFK AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-9ce63d3aa6f673fe9d5dd018ebbc2ecebeeee137d0c7a722e0fea4359cfbea403 |
IEDL.DBID | RIE |
ISSN | 1051-8223 |
IngestDate | Thu Oct 10 15:58:13 EDT 2024 Fri Aug 23 01:02:00 EDT 2024 Wed Jun 26 19:26:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-9ce63d3aa6f673fe9d5dd018ebbc2ecebeeee137d0c7a722e0fea4359cfbea403 |
ORCID | 0000-0001-5820-9358 0000-0001-6298-8032 0000-0002-7504-4505 0000-0001-9080-080X |
PQID | 2533493074 |
PQPubID | 85434 |
PageCount | 4 |
ParticipantIDs | proquest_journals_2533493074 ieee_primary_9419716 crossref_primary_10_1109_TASC_2021_3076491 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on applied superconductivity |
PublicationTitleAbbrev | TASC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref4 doi: 10.1088/1741-4326/aad835 – ident: ref3 doi: 10.1016/j.fusengdes.2018.05.065 – ident: ref13 doi: 10.1088/1757-899X/102/1/012023 – ident: ref2 doi: 10.1016/j.fusengdes.2018.04.001 – ident: ref7 doi: 10.1088/1757-899X/102/1/012023 – ident: ref11 doi: 10.1109/TASC.2013.2284854 – ident: ref8 doi: 10.1109/TASC.2016.2521323 – ident: ref12 doi: 10.1109/TASC.2016.2528501 – ident: ref10 doi: 10.1088/0953-2048/29/12/125003 – ident: ref6 doi: 10.1088/1361-6668/ab06a2 – ident: ref9 doi: 10.1088/0953-2048/28/4/045011 – ident: ref14 doi: 10.1109/TASC.2013.2259827 – ident: ref5 doi: 10.1109/TASC.2016.2515941 – ident: ref1 doi: 10.1016/j.fusengdes.2017.02.085 – ident: ref15 doi: 10.5445/KSP/1000122861 |
SSID | ssj0014845 |
Score | 2.3552454 |
Snippet | Fusion applications require high magnetic fields for plasma confinement, which results in magnet coils with high operational currents. To achieve these high... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Bend radius Bending Coils (windings) Critical current (superconductivity) Critical current density (superconductivity) Finite element method Fusion Magnets High Temperature Superconductors HTS Cables HTS coils Magnet coils Plasma control Production Room temperature Strain Strands Superconducting cables Superconducting magnets Tolerances |
Title | Impact of Bending on the Critical Current of HTS CrossConductors |
URI | https://ieeexplore.ieee.org/document/9419716 https://www.proquest.com/docview/2533493074 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7agqAHH61itcoePIlJk2xee1OLpQr10hZ6C9nXRUikj4u_3tlNUnwdzGkJO2EzM9n5NvMCuEm5zJVSsaNEJJ0wjjTugzxFXaYy0oi_uW3aN32NJ4vwZRktW3C3y4VBQht8plwztL58WYqt-VU2ZKFvKh61oZ0wVuVq7TwGYWobEiNc8B00erT2YPoeG84fZiM8CQa-iwodh8z_ZoNsU5VfO7E1L-MjmDYLq6JK3tzthrvi40fNxv-u_BgOa5xJHirFOIGWKrpw8KX6YBf2bPSnWPfg_tnmSpJSk0dl01xIWRCEhqTphEDqOk5mymQ-w_v4YqOyMNViy9X6FBbjp_lo4tStFRyB9n3jMKFiKmmexzpOqFZMRlJ6fqo4F4ESKFm8fJpITyR5EgTK0ypHZMWE5jjw6Bl0irJQ50ByP_AkR1SkzIbAOU95EgvNUkpDlkSiD7cNs7P3qoJGZk8eHsuMZDIjmayWTB96hnm7iTXf-jBoxJPV39g6C0wWMUPC8OJvqkvYN8-uwvUG0NmstuoKIcSGX1vd-QTRrcMw |
link.rule.ids | 315,783,787,799,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gxqgHH6ARRe3Bk7HQdvvam0gkRYELkHBruo9eTFoD5eKvd3ZbiK-DPW2anXQ7M935tvMCuAuZSKSUvim5J0zX91LcB1mIukyElyL-Zrpp33jiR3P3ZeEtavCwzYVBQh18JjtqqH35Iudr9ausS11bVTzagV1P4YoyW2vrM3BD3ZIYAYNtotkjlQ_Ttmh31pv28Szo2B1Uad-l9jcrpNuq_NqLtYEZHMN4s7QyruStsy5Yh3_8qNr437WfwFGFNI1eqRqnUJNZAw6_1B9swJ6O_-SrJjwOdbakkafGk9SJLkaeGQgOjU0vBKOq5KSmRLMp3scX6-eZqhebL1dnMB88z_qRWTVXMDla-MKkXPpEkCTxUz8gqaTCE8KyQ8kYdyRH2eJlk0BYPEgCx5FWKhPEVpSnDAcWOYd6lmfyAozEdizBEBdJtSUwxkIW-DylISEuDTzegvsNs-P3soZGrM8eFo2VZGIlmbiSTAuainnbiRXfWtDeiCeuvrJV7Kg8YoqE7uXfVLewH83Go3g0nLxewYF6Thm814Z6sVzLawQUBbvRevQJOEnGfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Bending+on+the+Critical+Current+of+HTS+CrossConductors&rft.jtitle=IEEE+transactions+on+applied+superconductivity&rft.au=Nickel%2C+Daniel+S.&rft.au=Fietz%2C+Walter+H.&rft.au=Weiss%2C+Klaus-Peter&rft.au=Wolf%2C+Michael+J.&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=1051-8223&rft.eissn=1558-2515&rft.volume=31&rft.issue=5&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FTASC.2021.3076491&rft.externalDocID=9419716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8223&client=summon |