iRNA-2OM: A Sequence-Based Predictor for Identifying 2'-O-Methylation Sites in Homo sapiens
2'-O-methylation plays an important biological role in gene expression. Owing to the explosive increase in genomic sequencing data, it is necessary to develop a method for quickly and efficiently identifying whether a sequence contains the 2'-O-methylation site. As an additional method to...
Saved in:
Published in | Journal of computational biology Vol. 25; no. 11; p. 1266 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2018
|
Subjects | |
Online Access | Get more information |
ISSN | 1557-8666 |
DOI | 10.1089/cmb.2018.0004 |
Cover
Abstract | 2'-O-methylation plays an important biological role in gene expression. Owing to the explosive increase in genomic sequencing data, it is necessary to develop a method for quickly and efficiently identifying whether a sequence contains the 2'-O-methylation site. As an additional method to the experimental technique, a computational method may help to identify 2'-O-methylation sites. In this study, based on the experimental 2'-O-methylation data of Homo sapiens, we proposed a support vector machine-based model to predict 2'-O-methylation sites in H. sapiens. In this model, the RNA sequences were encoded with the optimal features obtained from feature selection. In the fivefold cross-validation test, the accuracy reached 97.95%. |
---|---|
AbstractList | 2'-O-methylation plays an important biological role in gene expression. Owing to the explosive increase in genomic sequencing data, it is necessary to develop a method for quickly and efficiently identifying whether a sequence contains the 2'-O-methylation site. As an additional method to the experimental technique, a computational method may help to identify 2'-O-methylation sites. In this study, based on the experimental 2'-O-methylation data of Homo sapiens, we proposed a support vector machine-based model to predict 2'-O-methylation sites in H. sapiens. In this model, the RNA sequences were encoded with the optimal features obtained from feature selection. In the fivefold cross-validation test, the accuracy reached 97.95%. |
Author | Chen, Wei Lv, Hao Lin, Hao Yang, Hui Ding, Hui |
Author_xml | – sequence: 1 givenname: Hui surname: Yang fullname: Yang, Hui organization: 1 Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China , Chengdu, China – sequence: 2 givenname: Hao surname: Lv fullname: Lv, Hao organization: 1 Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China , Chengdu, China – sequence: 3 givenname: Hui surname: Ding fullname: Ding, Hui organization: 1 Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China , Chengdu, China – sequence: 4 givenname: Wei surname: Chen fullname: Chen, Wei organization: 2 Department of Physics, School of Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology , Tangshan, China – sequence: 5 givenname: Hao surname: Lin fullname: Lin, Hao organization: 1 Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China , Chengdu, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30113871$$D View this record in MEDLINE/PubMed |
BookMark | eNo1jz1PwzAUAC0Eoh8wsiJvTC7v2Ulss5UKaKWWIAoTQ-XYDhg1TonTof8eJGA43XbSjchxbKMn5AJhgqD0tW2qCQdUEwDIjsgQ81wyVRTFgIxS-gRAUYA8JQMBiEJJHJK38Pw4Zbxc3dApXfuvvY_Ws1uTvKNPnXfB9m1H6x8Wzsc-1IcQ3ym_YiVb-f7jsDV9aCNdh94nGiKdt01Lk9kFH9MZOanNNvnzP4_J6_3dy2zOluXDYjZdMsu16Jk2mcEanM585gSXuUWBXFiuarC5zqU2mNWoORQSsJIuB6-EUli5imss-Jhc_nZ3-6rxbrPrQmO6w-b_kn8DmnJRLQ |
CitedBy_id | crossref_primary_10_1016_j_ygeno_2019_05_026 crossref_primary_10_1109_TCBB_2023_3307419 crossref_primary_10_1016_j_knosys_2018_10_007 crossref_primary_10_1109_ACCESS_2020_2966576 crossref_primary_10_1109_TNB_2019_2936398 crossref_primary_10_1515_cmb_2019_0001 crossref_primary_10_1038_s41467_021_24313_3 crossref_primary_10_2174_1573406415666191004125551 crossref_primary_10_3389_fgene_2019_00399 crossref_primary_10_1016_j_csbj_2020_06_010 crossref_primary_10_3389_fcell_2021_686894 crossref_primary_10_1016_j_csbj_2024_08_004 crossref_primary_10_3390_genes15080996 crossref_primary_10_1093_nar_gkac830 crossref_primary_10_1109_ACCESS_2023_3285197 crossref_primary_10_3389_fgene_2019_00793 crossref_primary_10_34133_research_0011 crossref_primary_10_1093_bib_bbab088 crossref_primary_10_1111_jcmm_14830 crossref_primary_10_2174_1574893614666190902151038 crossref_primary_10_1093_bioinformatics_btz246 crossref_primary_10_1093_bfgp_elaa023 crossref_primary_10_2174_1381612826666201112142826 crossref_primary_10_1093_bib_bbab480 crossref_primary_10_1093_bib_bbac053 crossref_primary_10_1016_j_omtn_2019_05_028 crossref_primary_10_1360_SSV_2022_0074 crossref_primary_10_2174_1566523219666190925115535 crossref_primary_10_1016_j_ab_2019_01_002 crossref_primary_10_3389_fbioe_2020_00183 crossref_primary_10_1093_bfgp_elz036 crossref_primary_10_3389_fgene_2018_00613 crossref_primary_10_2174_1573406415666191004115128 crossref_primary_10_1186_s12859_024_05738_1 crossref_primary_10_2174_1381612826666200310122324 crossref_primary_10_3389_fmicb_2019_00507 crossref_primary_10_1007_s11704_024_40072_y crossref_primary_10_2174_0929866526666191112150636 crossref_primary_10_2174_1385272823666190723141347 crossref_primary_10_2174_1574893614666191018171521 crossref_primary_10_1016_j_omtn_2019_03_010 crossref_primary_10_2174_1386207322666191203141102 crossref_primary_10_1142_S0219720021500190 crossref_primary_10_1016_j_omtn_2019_11_014 crossref_primary_10_1177_1176934320925752 crossref_primary_10_3389_fbioe_2020_00553 crossref_primary_10_1152_ajpcell_00437_2022 crossref_primary_10_1093_bioinformatics_btaa1074 crossref_primary_10_2174_1566523221666210707140839 crossref_primary_10_3389_fbioe_2020_00274 crossref_primary_10_2174_1574893614666190730103156 crossref_primary_10_3390_biology13100777 crossref_primary_10_3389_fgene_2020_00088 crossref_primary_10_1016_j_ymeth_2021_01_007 crossref_primary_10_1016_j_ymthe_2022_05_001 crossref_primary_10_59717_j_xinn_life_2024_100112 crossref_primary_10_1016_j_chemolab_2020_104223 crossref_primary_10_2174_0929866526666190410124642 crossref_primary_10_1016_j_ins_2024_120105 crossref_primary_10_1093_bib_bbz123 crossref_primary_10_2174_1574893617666220815153653 crossref_primary_10_1016_j_csbj_2025_03_024 crossref_primary_10_1021_acs_jproteome_9b00250 crossref_primary_10_1016_j_omtn_2019_08_023 crossref_primary_10_1016_j_chemolab_2019_103855 crossref_primary_10_1021_acs_jproteome_9b00012 crossref_primary_10_2174_1389200219666181010114750 crossref_primary_10_1016_j_omtn_2020_06_004 crossref_primary_10_2174_1573406415666191002152441 crossref_primary_10_2174_1381612826666200331091156 crossref_primary_10_1186_s12859_023_05543_2 crossref_primary_10_1002_pmic_201900007 crossref_primary_10_2174_1381612826666200617170826 crossref_primary_10_1093_bib_bbaa202 crossref_primary_10_3934_mbe_2022644 crossref_primary_10_1016_j_ymeth_2022_03_001 crossref_primary_10_3389_fgene_2019_00003 crossref_primary_10_1109_JAS_2024_124233 crossref_primary_10_1016_j_omtn_2020_09_031 crossref_primary_10_2174_0929866526666191002104735 crossref_primary_10_1016_j_jbc_2024_107140 crossref_primary_10_1093_bib_bbad476 crossref_primary_10_1093_bioinformatics_btaa155 crossref_primary_10_1109_ACCESS_2024_3352823 crossref_primary_10_2174_0929866526666191014144015 crossref_primary_10_1016_j_gpb_2022_09_001 crossref_primary_10_3390_ijms21239169 crossref_primary_10_1016_j_ijbiomac_2020_11_111 crossref_primary_10_2174_1573406415666191004142810 crossref_primary_10_1016_j_biopha_2019_109810 crossref_primary_10_3389_fgene_2023_1334132 crossref_primary_10_1016_j_csbj_2021_09_025 crossref_primary_10_2174_1574893614666191113143840 crossref_primary_10_1093_bib_bbab167 crossref_primary_10_2174_1389202921666200214125102 crossref_primary_10_3390_molecules23082000 crossref_primary_10_1109_TCBB_2023_3237769 crossref_primary_10_2174_1573406415666181219101613 crossref_primary_10_1016_j_omtn_2019_07_019 crossref_primary_10_1093_bib_bby124 crossref_primary_10_1016_j_ijbiomac_2023_124247 crossref_primary_10_3389_fmicb_2019_00827 crossref_primary_10_1093_bioinformatics_btz358 crossref_primary_10_7717_peerj_15899 crossref_primary_10_1016_j_jmb_2023_168299 crossref_primary_10_2174_1570163817666200806165934 crossref_primary_10_2174_1570178615666180925125912 crossref_primary_10_1093_bioinformatics_bty824 crossref_primary_10_1093_bioinformatics_bty943 crossref_primary_10_2174_1574893614666190723114923 crossref_primary_10_1109_TCBB_2023_3283985 crossref_primary_10_1016_j_ygeno_2020_07_035 crossref_primary_10_1093_nar_gkz074 crossref_primary_10_1093_bib_bbz048 crossref_primary_10_1093_bioinformatics_bty827 crossref_primary_10_1016_j_omtn_2023_01_014 crossref_primary_10_1093_nar_gkaa790 crossref_primary_10_7717_peerj_18878 crossref_primary_10_3389_fgene_2019_00295 crossref_primary_10_1093_bib_bby107 crossref_primary_10_1016_j_csbj_2020_04_001 crossref_primary_10_2174_0929866526666190226160629 crossref_primary_10_1016_j_ymeth_2021_11_010 crossref_primary_10_1016_j_ab_2021_114385 crossref_primary_10_3389_fgene_2019_00459 crossref_primary_10_2174_1385272823666190718145613 crossref_primary_10_3390_molecules24030380 crossref_primary_10_1109_ACCESS_2020_2980897 crossref_primary_10_1093_bib_bbae601 crossref_primary_10_1016_j_ymeth_2021_07_003 crossref_primary_10_1016_j_chemolab_2020_104034 crossref_primary_10_1016_j_ymeth_2021_05_016 crossref_primary_10_1016_j_chemolab_2020_104151 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1089/cmb.2018.0004 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1557-8666 |
ExternalDocumentID | 30113871 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 29K 34G 39C 4.4 53G 5GY ABBKN ABEFU ACGFO ADBBV AENEX AFOSN AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BNQNF CAG COF CS3 D-I DIK DU5 EBS EJD F5P IAO IER IGS IHR IM4 ITC MV1 NPM NQHIM O9- P2P R.V RIG RML RMSOB RNS TN5 TR2 UE5 VH1 |
ID | FETCH-LOGICAL-c293t-9a4a1f0d94e4d3275c13123c28f0c59579a14f19206701b7d50e83881bdb29162 |
IngestDate | Thu Apr 03 07:01:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | chemical property Homo sapiens PseKNC RNA sequence 2′-O-methylation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c293t-9a4a1f0d94e4d3275c13123c28f0c59579a14f19206701b7d50e83881bdb29162 |
PMID | 30113871 |
ParticipantIDs | pubmed_primary_30113871 |
PublicationCentury | 2000 |
PublicationDate | 2018-11-00 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of computational biology |
PublicationTitleAlternate | J Comput Biol |
PublicationYear | 2018 |
SSID | ssj0013607 |
Score | 2.5696096 |
Snippet | 2'-O-methylation plays an important biological role in gene expression. Owing to the explosive increase in genomic sequencing data, it is necessary to develop... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1266 |
Title | iRNA-2OM: A Sequence-Based Predictor for Identifying 2'-O-Methylation Sites in Homo sapiens |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30113871 |
Volume | 25 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZOSkNyCK3T5l10SOnBqF1pH9Lm5oQUU7ANcUIDPYRdrRb24AfYCSS_PqPHbtZ2HNJcFiPJy6L5NJoZzTdC6MQPuR9RGpMkSMBBiZKQpDyPCZOwWWQqkDag3-1Fnevgz01402jc1dkls_SnfHyRV_IeqUIbyFWzZP9DstVLoQF-g3zhCRKG55tkXFz22oT1u5ZePnBZ0eQMdiZNAdBnMOBSm0xCS8i1pCb2nXHSJ10FQrKpcK1BMTOZWa3OeDhuTZMJrPjpCsNVmosgyiCiq-JUaQ8Xf-7cFVWuz71pSMaV0VwsjTl3JJG_qqjHIahwhDyzjTjdGcKGF9lLVErlalnNJYhoTVVSZkcu6XBP6BKocpjqxDthyqnWx8GUToZGoFo3-cLe4PJ670JJ7bJrDa1xrrV5T4d4yqOnyOOuGCt8ya-579hEG-V_F9wQY45cfULbThy4bUHxGTXUqIk-2ptFH5poq1uV453uoH8lUE5xG8_DBFcwwQATXIMJZj_mQYINSHAxwhok2IHkC7r-fXF13iHuVg0iwbSbkVivytzL4kAFmc94KKkP5otkIvdkqE9tExrkYPhrBhdNeRZ6SvgC3JssZeBMsK9ofTQeqT2EoziIo4ynnqLwNsZFHgkJNqYv49DnSbCPdu0c3U5s6ZTbcvYOVvYcos1ndB2hDzmsVXUMht8s_WYE9QS8B1FL |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iRNA-2OM%3A+A+Sequence-Based+Predictor+for+Identifying+2%27-O-Methylation+Sites+in+Homo+sapiens&rft.jtitle=Journal+of+computational+biology&rft.au=Yang%2C+Hui&rft.au=Lv%2C+Hao&rft.au=Ding%2C+Hui&rft.au=Chen%2C+Wei&rft.date=2018-11-01&rft.eissn=1557-8666&rft.volume=25&rft.issue=11&rft.spage=1266&rft_id=info:doi/10.1089%2Fcmb.2018.0004&rft_id=info%3Apmid%2F30113871&rft_id=info%3Apmid%2F30113871&rft.externalDocID=30113871 |