Adaptive Neural Self-Triggered Bipartite Fault-Tolerant Control for Nonlinear MASs With Dead-Zone Constraints
An adaptive neural bipartite tracking control approach is proposed for nonlinear multi-agent systems in this article. In contrast to previous results, it is worth noting that this paper considers a cooperative-competitive relationship in multi-agent systems, which stands for a more common situation....
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 20; no. 3; pp. 1663 - 1674 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An adaptive neural bipartite tracking control approach is proposed for nonlinear multi-agent systems in this article. In contrast to previous results, it is worth noting that this paper considers a cooperative-competitive relationship in multi-agent systems, which stands for a more common situation. In this paper, a distributed self-triggered communication strategy is designed to improve the transmission efficiency of the whole system. In addition, the designed controller can compensate the actuator failure and dead-zone nonlinearity, and increases the system fault-tolerance. The proposed method ensures the boundedness of all signals of the closed-loop system and the bipartite tracking performance. The effectiveness of the proposed method is verified by two simulation examples. Note to Practitioners -Since complex modern engineering systems are difficult to be controlled by a single component, the cooperative control mode of multi-agent systems has become the mainstream trend. For multi-agent systems with cooperative-competitive relationships, the unique bipartite consensus will allow each agent to better complete the control objectives according to their respective advantages. In addition, for engineering systems such as automated manufacturing systems and transportation systems, fault problems are becoming more commonplace. These faults may make the system difficult to operate normally, and then affect the project progress. Therefore, how to guarantee the normal work of the control system when subject to faults has become a key topic. On the other hand, the channel bandwidth of the actual communication system is limited, and frequent updating of control signals will produce huge communication pressure in the traditional control scheme. Hence, it is challenging to design a control strategy that can achieve system stability and reduce communication resources simultaneously. This paper discusses the bipartite fault-tolerant control problem for nonlinear multi-agent systems. Meanwhile, a distributed adaptive self-triggered mechanism is designed to save communication resources. |
---|---|
AbstractList | An adaptive neural bipartite tracking control approach is proposed for nonlinear multi-agent systems in this article. In contrast to previous results, it is worth noting that this paper considers a cooperative-competitive relationship in multi-agent systems, which stands for a more common situation. In this paper, a distributed self-triggered communication strategy is designed to improve the transmission efficiency of the whole system. In addition, the designed controller can compensate the actuator failure and dead-zone nonlinearity, and increases the system fault-tolerance. The proposed method ensures the boundedness of all signals of the closed-loop system and the bipartite tracking performance. The effectiveness of the proposed method is verified by two simulation examples. Note to Practitioners —Since complex modern engineering systems are difficult to be controlled by a single component, the cooperative control mode of multi-agent systems has become the mainstream trend. For multi-agent systems with cooperative-competitive relationships, the unique bipartite consensus will allow each agent to better complete the control objectives according to their respective advantages. In addition, for engineering systems such as automated manufacturing systems and transportation systems, fault problems are becoming more commonplace. These faults may make the system difficult to operate normally, and then affect the project progress. Therefore, how to guarantee the normal work of the control system when subject to faults has become a key topic. On the other hand, the channel bandwidth of the actual communication system is limited, and frequent updating of control signals will produce huge communication pressure in the traditional control scheme. Hence, it is challenging to design a control strategy that can achieve system stability and reduce communication resources simultaneously. This paper discusses the bipartite fault-tolerant control problem for nonlinear multi-agent systems. Meanwhile, a distributed adaptive self-triggered mechanism is designed to save communication resources. |
Author | Wang, Huanqing Liang, Hongjing Xu, Ning Cheng, Fabin Zong, Guangdeng |
Author_xml | – sequence: 1 givenname: Fabin orcidid: 0000-0001-7120-4164 surname: Cheng fullname: Cheng, Fabin email: chengfabin184@gmail.com organization: College of Control Science and Engineering, Bohai University, Jinzhou, China – sequence: 2 givenname: Hongjing orcidid: 0000-0003-1480-1872 surname: Liang fullname: Liang, Hongjing email: lianghongjing99@163.com organization: College of Control Science and Engineering, Bohai University, Jinzhou, China – sequence: 3 givenname: Huanqing orcidid: 0000-0001-5712-9356 surname: Wang fullname: Wang, Huanqing email: ndwhq@163.com organization: College of Mathematical Science, Bohai University, Jinzhou, China – sequence: 4 givenname: Guangdeng orcidid: 0000-0001-6498-5580 surname: Zong fullname: Zong, Guangdeng email: lovelyletian@gmail.com organization: School of Control Science and Engineering, Tiangong University, Tianjin, China – sequence: 5 givenname: Ning orcidid: 0000-0002-0717-1713 surname: Xu fullname: Xu, Ning email: hpxuning@163.com organization: Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China |
BookMark | eNp9kMlOwzAQhi0EEmV5AMTFEucUr419LKUsEsuhQUhcIicZg6sQF9tB4u1JVMSBA6eZw__N8h2g3c53gNAJJVNKiT4v5qvllBHGppwqMdQdNKFSqozniu-OvZCZ1FLuo4MY14QwoTSZoPd5YzbJfQJ-gD6YFq-gtVkR3OsrBGjwhduYkFwCfGX6NmWFbyGYLuGF71LwLbY-4Affta4DE_D9fBXxs0tv-BJMk70MR47JmIJxXYpHaM-aNsLxTz1ET1fLYnGT3T1e3y7md1nNNE-Z1pBLqiqhK22ltnRGuK0bwSjTkpMq5xVRYBkjfCYsI5IYzo2ZESEEq3nFD9HZdu4m-I8eYirXvg_dsLJkilPJ2CBpSOXbVB18jAFsWbtkkhs_M64tKSlHt-Xothzdlj9uB5L-ITfBvZvw9S9zumUcAPzmtaJE5YR_AxO4hb0 |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1109_TASE_2023_3340849 crossref_primary_10_1007_s40815_023_01560_8 crossref_primary_10_1016_j_amc_2024_128585 crossref_primary_10_1007_s10723_023_09651_4 crossref_primary_10_1080_00207721_2023_2169845 crossref_primary_10_1109_TASE_2023_3317902 crossref_primary_10_1007_s40815_024_01834_9 crossref_primary_10_1109_TASE_2023_3298343 crossref_primary_10_1109_TASE_2024_3390007 crossref_primary_10_1016_j_neucom_2024_128668 crossref_primary_10_1016_j_oceaneng_2024_119473 crossref_primary_10_1109_TFUZZ_2024_3423709 crossref_primary_10_1109_TITS_2023_3300911 crossref_primary_10_1016_j_jfranklin_2024_107241 crossref_primary_10_1109_TASE_2024_3411074 crossref_primary_10_1109_TAI_2023_3318895 crossref_primary_10_1109_TASE_2024_3432131 crossref_primary_10_1016_j_ins_2024_121619 crossref_primary_10_1093_imamci_dnae010 crossref_primary_10_1002_acs_3730 crossref_primary_10_1109_TASE_2023_3296259 crossref_primary_10_1109_TASE_2024_3436927 crossref_primary_10_1109_TASE_2024_3427771 crossref_primary_10_1109_TASE_2023_3349150 crossref_primary_10_1109_TASE_2024_3391312 crossref_primary_10_1109_TNSE_2023_3273205 crossref_primary_10_1002_ett_4905 crossref_primary_10_1088_1361_6501_ad9e27 crossref_primary_10_1016_j_sasc_2025_200197 crossref_primary_10_1002_rnc_7634 crossref_primary_10_1109_TASE_2023_3324397 crossref_primary_10_1002_rnc_6820 crossref_primary_10_1109_TIM_2023_3336446 crossref_primary_10_1177_09544100241240161 crossref_primary_10_1002_rnc_7112 crossref_primary_10_1109_TASE_2023_3324953 crossref_primary_10_3390_math11081845 crossref_primary_10_1109_TFUZZ_2023_3323650 crossref_primary_10_1093_imamci_dnae002 crossref_primary_10_1080_00051144_2023_2217601 crossref_primary_10_1109_TASE_2024_3439747 crossref_primary_10_1109_TASE_2024_3395325 crossref_primary_10_1007_s11071_023_08956_z crossref_primary_10_1109_TASE_2023_3297235 crossref_primary_10_1016_j_chaos_2025_116145 crossref_primary_10_1016_j_engappai_2025_110485 crossref_primary_10_1002_rnc_7821 crossref_primary_10_1109_TCSII_2023_3310275 crossref_primary_10_1109_TASE_2023_3341801 crossref_primary_10_1109_TCYB_2024_3379389 crossref_primary_10_3390_electronics12132924 crossref_primary_10_1109_TCSI_2023_3334869 crossref_primary_10_1109_TFUZZ_2024_3357083 crossref_primary_10_1109_TCYB_2023_3336737 crossref_primary_10_1109_TMECH_2023_3314640 crossref_primary_10_1016_j_cnsns_2023_107689 crossref_primary_10_1109_TASE_2024_3446862 crossref_primary_10_1109_TSIPN_2024_3384814 crossref_primary_10_1080_00207179_2023_2285408 crossref_primary_10_1177_09596518241300685 crossref_primary_10_1109_TASE_2023_3344087 crossref_primary_10_1080_00207721_2023_2293482 crossref_primary_10_1109_TASE_2024_3420447 crossref_primary_10_1109_TSMC_2024_3405568 crossref_primary_10_1002_acs_3708 crossref_primary_10_1016_j_jfranklin_2025_107514 crossref_primary_10_1080_00207721_2023_2293483 crossref_primary_10_1109_TAI_2024_3353150 crossref_primary_10_1016_j_jfranklin_2023_03_054 |
Cites_doi | 10.1016/j.ins.2021.08.062 10.1007/s11071-022-07459-7 10.1109/TFUZZ.2020.2982618 10.1002/rnc.6154 10.1080/00207721.2021.1943562 10.1016/S0167-6911(99)00059-6 10.1080/00207721.2020.1863503 10.1017/S0269888904000116 10.1080/00207721.2020.1831645 10.1016/j.physa.2019.123504 10.1016/j.isatra.2021.07.048 10.1109/TAC.2007.904277 10.1109/TNNLS.2016.2558195 10.1109/TCYB.2015.2456028 10.1016/j.neucom.2019.04.049 10.1109/TAC.2010.2042764 10.1016/j.automatica.2003.10.021 10.1016/j.automatica.2006.09.022 10.1016/j.automatica.2014.03.015 10.1016/j.automatica.2012.05.008 10.1109/TAC.2009.2015562 10.1109/ACC.2014.6858991 10.1016/j.neucom.2015.10.013 10.1016/j.automatica.2015.07.022 10.1109/TCSII.2022.3149886 10.1007/978-3-642-14435-6_7 10.1109/ACCESS.2018.2831228 10.1109/TNET.2022.3183862 10.1109/TAC.2011.2174666 10.1016/j.automatica.2017.06.008 10.1109/7.464346 10.1109/TAC.2004.832201 10.1002/acs.3283 10.1080/00207179.2017.1305510 10.1016/j.amc.2021.126330 10.1109/TASE.2015.2403261 10.1109/JPROC.2006.887293 10.1109/TCYB.2020.2970736 10.1016/j.amc.2020.125725 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TASE.2022.3184022 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 1674 |
ExternalDocumentID | 10_1109_TASE_2022_3184022 9810870 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61573069 funderid: 10.13039/501100001809 – fundername: Eduction Committee Liaoning Province, China grantid: LJ2019002 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-99e7518b49b9f59f1603fcd42129530b73b08ef220364f2050a33aa604442c3b3 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Mon Jun 30 06:32:22 EDT 2025 Tue Jul 01 02:56:32 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Wed Aug 27 02:25:49 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-99e7518b49b9f59f1603fcd42129530b73b08ef220364f2050a33aa604442c3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7120-4164 0000-0001-5712-9356 0000-0001-6498-5580 0000-0003-1480-1872 0000-0002-0717-1713 |
PQID | 2831522184 |
PQPubID | 27623 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9810870 proquest_journals_2831522184 crossref_primary_10_1109_TASE_2022_3184022 crossref_citationtrail_10_1109_TASE_2022_3184022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref15 ref37 ref36 ref31 ref30 ref11 ref10 ref1 ref39 ref16 ref38 ma (ref2) 2010; 55 ref19 ref18 zhou (ref41) 2008 ref24 ren (ref17) 2021 ref23 ref45 chen (ref33) 2021 ref26 ref25 ref20 ref42 yan (ref32) 2021 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 cai (ref14) 2022 ref9 ref4 wang (ref34) 2021 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref11 doi: 10.1016/j.ins.2021.08.062 – ident: ref27 doi: 10.1007/s11071-022-07459-7 – ident: ref35 doi: 10.1109/TFUZZ.2020.2982618 – ident: ref28 doi: 10.1002/rnc.6154 – ident: ref37 doi: 10.1080/00207721.2021.1943562 – ident: ref43 doi: 10.1016/S0167-6911(99)00059-6 – year: 2022 ident: ref14 article-title: Decentralized backstepping control for interconnected systems with non-triangular structural uncertainties publication-title: IEEE Trans Autom Control – ident: ref18 doi: 10.1080/00207721.2020.1863503 – ident: ref5 doi: 10.1017/S0269888904000116 – ident: ref19 doi: 10.1080/00207721.2020.1831645 – year: 2021 ident: ref32 article-title: Robust formation control for nonlinear heterogeneous multiagent systems based on adaptive event-triggered strategy publication-title: IEEE Trans Autom Sci Eng – ident: ref9 doi: 10.1016/j.physa.2019.123504 – ident: ref13 doi: 10.1016/j.isatra.2021.07.048 – ident: ref39 doi: 10.1109/TAC.2007.904277 – ident: ref24 doi: 10.1109/TNNLS.2016.2558195 – ident: ref25 doi: 10.1109/TCYB.2015.2456028 – ident: ref15 doi: 10.1016/j.neucom.2019.04.049 – volume: 55 start-page: 1263 year: 2010 ident: ref2 article-title: Necessary and sufficient conditions for consensusability of linear multi-agent systems publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2010.2042764 – ident: ref10 doi: 10.1016/j.automatica.2003.10.021 – year: 2021 ident: ref34 article-title: Neural adaptive self-triggered control for uncertain nonlinear systems with input hysteresis publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref12 doi: 10.1016/j.automatica.2006.09.022 – ident: ref44 doi: 10.1016/j.automatica.2014.03.015 – ident: ref38 doi: 10.1016/j.automatica.2012.05.008 – ident: ref42 doi: 10.1109/TAC.2009.2015562 – ident: ref8 doi: 10.1109/ACC.2014.6858991 – ident: ref7 doi: 10.1016/j.neucom.2015.10.013 – year: 2008 ident: ref41 publication-title: Adaptive Backstepping Control of Uncertain Systems Nonsmooth Nonlinearities Interactions or Time-Variations – ident: ref16 doi: 10.1016/j.automatica.2015.07.022 – ident: ref21 doi: 10.1109/TCSII.2022.3149886 – ident: ref6 doi: 10.1007/978-3-642-14435-6_7 – ident: ref1 doi: 10.1109/ACCESS.2018.2831228 – ident: ref31 doi: 10.1109/TNET.2022.3183862 – ident: ref40 doi: 10.1109/TAC.2011.2174666 – ident: ref26 doi: 10.1016/j.automatica.2017.06.008 – start-page: 1 year: 2021 ident: ref33 article-title: Adaptive self-triggered control for a nonlinear uncertain system based on neural observer publication-title: Int J Control – ident: ref20 doi: 10.1109/7.464346 – ident: ref23 doi: 10.1109/TAC.2004.832201 – ident: ref45 doi: 10.1002/acs.3283 – ident: ref36 doi: 10.1080/00207179.2017.1305510 – year: 2021 ident: ref17 article-title: Prescribed performance bipartite consensus control for stochastic nonlinear multiagent systems under event-triggered strategy publication-title: IEEE Trans Cybern – ident: ref29 doi: 10.1016/j.amc.2021.126330 – ident: ref4 doi: 10.1109/TASE.2015.2403261 – ident: ref3 doi: 10.1109/JPROC.2006.887293 – ident: ref30 doi: 10.1109/TCYB.2020.2970736 – ident: ref22 doi: 10.1016/j.amc.2020.125725 |
SSID | ssj0024890 |
Score | 2.6078875 |
Snippet | An adaptive neural bipartite tracking control approach is proposed for nonlinear multi-agent systems in this article. In contrast to previous results, it is... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1663 |
SubjectTerms | Actuator failure Actuators Adaptive control Adaptive systems Backstepping bipartite tracking control Closed loops Communication Communications systems Control systems design Cooperative control dead-zone constraints Fault tolerance Fault tolerant systems fault-tolerant control Feedback control Multi-agent systems Multiagent systems Nonlinear control Nonlinear systems Nonlinearity self-triggered Strategy Systems stability Tracking control Transmission efficiency Transportation systems |
Title | Adaptive Neural Self-Triggered Bipartite Fault-Tolerant Control for Nonlinear MASs With Dead-Zone Constraints |
URI | https://ieeexplore.ieee.org/document/9810870 https://www.proquest.com/docview/2831522184 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB01PcEBWgoi0FY-cEI4cbzrsD6mJVFVqb0kFRGXlb0ZQ9WQRI1z4dd3xrsJn0K97WGstTRj-z3P-A3AO4s9Tmd5aao-ypwgsnTOOokUIKoKBBlcqvK97l_c5JdTM92DD7u3MIiYis-ww58plz9bVhu-KuvaoqcovlrQIuJWv9X6qatXpPsURgTSWGOaDGZP2e5kMB4SE9SaCCrxGa1_O4NSU5W_duJ0vIyew9V2YnVVyV1nE32n-vGHZuNjZ34AzxqcKQZ1YBzCHi5ewNNf1AeP4Ptg5la82wlW6CDjMc6DnBBd_8oNPMXZ7YrjKqIYuc08yslyjnSyRXFel7cLwrviupbacPfiajBei8-38Zv4RHEjvywXyJbr1IQirl_CzWg4Ob-QTfcFWREEiNJa5JSMz623wdjA_ahDNeMMsjWZ8h8zrwoMOmUyg1ZGuSxzrs8CdLrKfPYK9hf0q9cgPKEknffNzJiQa_SFdcbnwatQIOZZ0Qa19UdZNdLkPLl5mSiKsiW7sGQXlo0L2_B-N2RV63L8z_iIXbIzbLzRhuOt08tm5a5LglsEaZj4vvn3qLfwhFvO1yW7x7Af7zd4QsAk-tMUkQ-GW91c |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2VcgAOfJWKQAEfOCGcOt51WB9DaRSgySVbUXFZ2ZsxVIQkapwLv54Z7yZ8CnHbw6zW0pv1vPGM3wA8t9jjcpaXpu6jzIkiS-esk0gOoupAlMGlLt9Jf3Sev7swF3vwcncXBhFT8xl2-THV8mfLesNHZce26Cnyr2twneK-0c1trR_KekU6UWFOII01pq1h9pQ9LgfTU8oFtaYUlTIarX-JQmmsyh97cQowwzsw3i6t6Sv50t1E362__aba-L9rvwu3W6YpBo1r3IM9XNyHWz_pDx7A18HMrXi_E6zRQcZTnAdZUsL-iUd4iteXK_asiGLoNvMoy-UcKbZFcdI0uAtivGLSiG24KzEeTNfiw2X8LN6Q58iPywWy5TqNoYjrB3A-PC1PRrKdvyBrIgFRWotclPG59TYYG3gidahnXEO2JlP-VeZVgUGnWmbQyiiXZc71WYJO15nPDmF_QZ96CMITT9J538yMCblGX1hnfB68CgVinhUdUFs8qroVJ-fFzauUpChbMYQVQ1i1EHbgxe6VVaPM8S_jA4ZkZ9ii0YGjLehV---uKyJcRGo49X3097eewY1ROT6rzt5O3j-GmzyAvmngPYL9eLXBJ0RTon-avPM7Pxjgpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Neural+Self-Triggered+Bipartite+Fault-Tolerant+Control+for+Nonlinear+MASs+With+Dead-Zone+Constraints&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Cheng%2C+Fabin&rft.au=Liang%2C+Hongjing&rft.au=Wang%2C+Huanqing&rft.au=Zong%2C+Guangdeng&rft.date=2023-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=20&rft.issue=3&rft.spage=1663&rft_id=info:doi/10.1109%2FTASE.2022.3184022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |