Intercalibration of FY-3C MWRI Over Forest Warm-Scenes Based on Microwave Radiative Transfer Model
In order to cover the warm end of Earth-scene brightness temperature (TB) range of passive microwave radiometers, intercalibration over warm scenes is necessary. This article presents a methodology to intercalibrate the microwave radiation imager (MWRI) on the Chinese second-generation meteorologica...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0196-2892 1558-0644 |
DOI | 10.1109/TGRS.2021.3086801 |
Cover
Loading…
Abstract | In order to cover the warm end of Earth-scene brightness temperature (TB) range of passive microwave radiometers, intercalibration over warm scenes is necessary. This article presents a methodology to intercalibrate the microwave radiation imager (MWRI) on the Chinese second-generation meteorological satellite Fengyun 3C (FY-3C) with the Global Precipitation Measurement (GPM) Microwave Imager (GMI) over the warm scenes of dense forests using the double-difference (DD) method. Based on the microwave radiative transfer model (RTM), an intercalibration method is developed, in which a modified land surface emissivity (LSE) model for dense forests is proposed. The forests with optically thick canopy are identified in terms of polarization TB differences and normalized difference vegetation index (NDVI) extracted from the latest vegetation product of Moderate-Resolution Imaging Spectroradiometer (MODIS). The matching TBs between FY-3C MWRI and GMI over dense forest warm scenes are collected and analyzed together with the TBs over ocean surfaces obtained by Zeng and Jiang (2020). The results show that: 1) FY-3C MWRI's observations are generally underestimated, and the intercalibration biases are polynomial functions of observations; 2) the intercalibration biases at the warm end are relatively smaller than those at the cold end; and 3) the calibration in the ascending orbits (MWRIA) is relatively better than that in the descending orbits (MWRID). At the tropical rain forest scene TBs defined in this work, the intercalibration biases (mean ± standard deviation at the mean) in the FY-3C MWRI channels of 10 V, 10 H, 18 V, 18 H, 23 V, 36 V, 36 H, 89 V, and 89 H are, respectively, −1.3 ± 0.7, −1.9 ± 1.1, 1.6 ± 0.6, 2.5 ± 0.8, −0.2 ± 0.5, −2.0 ± 0.6, −2.4 ± 0.7, −0.2 ± 0.6, and −0.1 ± 0.6 K for the ascending orbits, while they are, respectively, −4.0 ± 0.8, −5.4 ± 1.2, −1.4 ± 0.7, −1.2 ± 0.8, −2.9 ± 0.5, −4.9 ± 0.7, −5.5 ± 0.7, −2.7 ± 0.8, and −2.3 ± 0.7 K for the descending orbits. The in-orbit calibration coefficients of GMI are successfully transferred to FY-3C MWRI. |
---|---|
AbstractList | In order to cover the warm end of Earth-scene brightness temperature (TB) range of passive microwave radiometers, intercalibration over warm scenes is necessary. This article presents a methodology to intercalibrate the microwave radiation imager (MWRI) on the Chinese second-generation meteorological satellite Fengyun 3C (FY-3C) with the Global Precipitation Measurement (GPM) Microwave Imager (GMI) over the warm scenes of dense forests using the double-difference (DD) method. Based on the microwave radiative transfer model (RTM), an intercalibration method is developed, in which a modified land surface emissivity (LSE) model for dense forests is proposed. The forests with optically thick canopy are identified in terms of polarization TB differences and normalized difference vegetation index (NDVI) extracted from the latest vegetation product of Moderate-Resolution Imaging Spectroradiometer (MODIS). The matching TBs between FY-3C MWRI and GMI over dense forest warm scenes are collected and analyzed together with the TBs over ocean surfaces obtained by Zeng and Jiang (2020). The results show that: 1) FY-3C MWRI's observations are generally underestimated, and the intercalibration biases are polynomial functions of observations; 2) the intercalibration biases at the warm end are relatively smaller than those at the cold end; and 3) the calibration in the ascending orbits (MWRIA) is relatively better than that in the descending orbits (MWRID). At the tropical rain forest scene TBs defined in this work, the intercalibration biases (mean ± standard deviation at the mean) in the FY-3C MWRI channels of 10 V, 10 H, 18 V, 18 H, 23 V, 36 V, 36 H, 89 V, and 89 H are, respectively, −1.3 ± 0.7, −1.9 ± 1.1, 1.6 ± 0.6, 2.5 ± 0.8, −0.2 ± 0.5, −2.0 ± 0.6, −2.4 ± 0.7, −0.2 ± 0.6, and −0.1 ± 0.6 K for the ascending orbits, while they are, respectively, −4.0 ± 0.8, −5.4 ± 1.2, −1.4 ± 0.7, −1.2 ± 0.8, −2.9 ± 0.5, −4.9 ± 0.7, −5.5 ± 0.7, −2.7 ± 0.8, and −2.3 ± 0.7 K for the descending orbits. The in-orbit calibration coefficients of GMI are successfully transferred to FY-3C MWRI. |
Author | Jiang, Geng-Ming Zhang, Wen-Liang |
Author_xml | – sequence: 1 givenname: Wen-Liang orcidid: 0000-0003-2923-0873 surname: Zhang fullname: Zhang, Wen-Liang email: 19210720054@fudan.edu.cn organization: Key Laboratory for Information Science of Electromagnetic Waves (Ministry of Education) and the School of Information Science and Technology, Fudan University, Shanghai, China – sequence: 2 givenname: Geng-Ming orcidid: 0000-0002-8022-1959 surname: Jiang fullname: Jiang, Geng-Ming email: jianggm@fudan.edu.cn organization: Key Laboratory for Information Science of Electromagnetic Waves (Ministry of Education) and the School of Information Science and Technology, Fudan University, Shanghai, China |
BookMark | eNp9kEFPwkAQhTcGEwH9AcbLJp6LO7vdtntUIkgiIQEM8dRsu9OkpLS4WzD-e7dCPHjwNHN435s3b0B6dVMjIbfARgBMPayny9WIMw4jwZIoYXBB-iBlErAoDHukz0BFAU8UvyID57aMQSgh7pNsVrdoc12VmdVt2dS0KejkPRBjOt8sZ3RxREsnjUXX0o22u2CVY42OPmmHhnr5vMxt86mPSJfalN7Cb2ura1d4cN4YrK7JZaErhzfnOSRvk-f1-CV4XUxn48fXIOdKtIHy4ZBDzEOT64wZEYGWPItFWOSxRJmZIhKascRIY5gCoQGAJ92UkcxQDMn9yXdvm4-DD5xum4Ot_cmUR6AYJJKBV8UnlY_tnMUizcv25_PW6rJKgaVdoWlXaNoVmp4L9ST8Ife23Gn79S9zd2JKRPzVq1CqkCfiG4PjgYM |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_TGRS_2022_3215806 crossref_primary_10_1109_TGRS_2022_3176748 crossref_primary_10_1109_TGRS_2023_3346819 crossref_primary_10_1109_JSTARS_2021_3104829 |
Cites_doi | 10.1109/TGRS.2015.2458851 10.1080/01431161.2016.1232873 10.1007/BF01009565 10.1109/TGRS.2020.3034302 10.1109/TGRS.2009.2028882 10.1080/01431160802392638 10.1109/TGRS.2015.2472532 10.1109/JSTARS.2017.2672723 10.1109/JSTARS.2012.2195773 10.11834/jrs.20198235 10.1175/JTECH-D-16-0100.1 10.56236/rss-au 10.1109/36.905249 10.1080/01431169308904400 10.1109/LGRS.2010.2050135 10.1002/qj.49712051706 10.1029/98RS01182 10.1109/JSTARS.2018.2801305 10.1109/JSTARS.2015.2403303 10.1109/IGARSS.2015.7326995 10.1109/TGRS.2012.2206601 10.1029/2010JD014988 10.1175/JTECH1769.1 10.1002/qj.2122 10.1109/MICRORAD.2016.7530527 10.1029/93jc03042 10.1109/36.905247 10.1029/RS020i005p01069 10.1109/TGRS.2010.2068052 10.1016/S0034-4257(00)00171-1 10.1109/TGRS.2012.2217148 10.1109/TGRS.2008.2005200 10.1109/IGARSS.2016.7729095 10.1175/mwr-d-12-00232.1 10.1029/2012JD018144 10.3998/0472119356 10.1002/jgrd.50840 10.1109/ACCESS.2020.2984090 10.1080/17538947.2012.658666 10.1109/36.823900 10.1109/IGARSS.2015.7326336 10.1002/2016JD024937 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2021.3086801 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 11 |
ExternalDocumentID | 10_1109_TGRS_2021_3086801 9459428 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018YFB0504900; 2018YFB0504902 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 41871222 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c293t-9892e21724dcab0d361a52b734fc75e5bdf63a008d5dd0913a1112813a1565be3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 08:19:11 EDT 2025 Tue Jul 01 01:34:28 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 Wed Aug 27 03:03:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-9892e21724dcab0d361a52b734fc75e5bdf63a008d5dd0913a1112813a1565be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8022-1959 0000-0003-2923-0873 |
PQID | 2619018501 |
PQPubID | 85465 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9459428 proquest_journals_2619018501 crossref_citationtrail_10_1109_TGRS_2021_3086801 crossref_primary_10_1109_TGRS_2021_3086801 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 Borbas (ref40) ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Liebe (ref35) 1987 ref5 Liebe (ref37); 542 Bai (ref44) 2014; 40 |
References_xml | – year: 1987 ident: ref35 article-title: Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling – ident: ref28 doi: 10.1109/TGRS.2015.2458851 – ident: ref20 doi: 10.1080/01431161.2016.1232873 – ident: ref36 doi: 10.1007/BF01009565 – ident: ref30 doi: 10.1109/TGRS.2020.3034302 – ident: ref6 doi: 10.1109/TGRS.2009.2028882 – ident: ref19 doi: 10.1080/01431160802392638 – volume: 40 start-page: 1363 issue: 11 year: 2014 ident: ref44 article-title: Sensitivity of CRTM simulated microwave brightness temperature to land surface and cloud parameters publication-title: Meteorological Monthly – ident: ref16 doi: 10.1109/TGRS.2015.2472532 – ident: ref21 doi: 10.1109/JSTARS.2017.2672723 – volume: 542 start-page: 3.1 volume-title: Proc. AGARD Conf. ident: ref37 article-title: Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz – ident: ref9 doi: 10.1109/JSTARS.2012.2195773 – ident: ref23 doi: 10.11834/jrs.20198235 – ident: ref26 doi: 10.1175/JTECH-D-16-0100.1 – ident: ref33 doi: 10.56236/rss-au – ident: ref5 doi: 10.1109/36.905249 – ident: ref41 doi: 10.1080/01431169308904400 – ident: ref7 doi: 10.1109/LGRS.2010.2050135 – ident: ref39 doi: 10.1002/qj.49712051706 – ident: ref38 doi: 10.1029/98RS01182 – ident: ref22 doi: 10.1109/JSTARS.2018.2801305 – ident: ref13 doi: 10.1109/JSTARS.2015.2403303 – ident: ref31 doi: 10.1109/IGARSS.2015.7326995 – ident: ref10 doi: 10.1109/TGRS.2012.2206601 – ident: ref24 doi: 10.1029/2010JD014988 – ident: ref15 doi: 10.1175/JTECH1769.1 – ident: ref2 doi: 10.1002/qj.2122 – ident: ref32 doi: 10.1109/MICRORAD.2016.7530527 – ident: ref46 doi: 10.1029/93jc03042 – ident: ref43 doi: 10.1109/36.905247 – ident: ref34 doi: 10.1029/RS020i005p01069 – ident: ref12 doi: 10.1109/TGRS.2010.2068052 – ident: ref42 doi: 10.1016/S0034-4257(00)00171-1 – ident: ref17 doi: 10.1109/TGRS.2012.2217148 – ident: ref18 doi: 10.1109/TGRS.2008.2005200 – ident: ref29 doi: 10.1109/IGARSS.2016.7729095 – ident: ref1 doi: 10.1175/mwr-d-12-00232.1 – ident: ref45 doi: 10.1029/2012JD018144 – ident: ref3 doi: 10.3998/0472119356 – ident: ref8 doi: 10.1002/jgrd.50840 – ident: ref25 doi: 10.1109/ACCESS.2020.2984090 – ident: ref27 doi: 10.1080/17538947.2012.658666 – start-page: 763 volume-title: Proc. 14th Int. ATOVS Study Conf., Beijing, China, Univ. Wisconsin-Madison, Space Sci. Eng. Center, Cooperat. Inst. Meteorological Satell. Stud. (CIMSS) ident: ref40 article-title: Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity – ident: ref4 doi: 10.1109/36.823900 – ident: ref14 doi: 10.1109/IGARSS.2015.7326336 – ident: ref11 doi: 10.1002/2016JD024937 |
SSID | ssj0014517 |
Score | 2.4287121 |
Snippet | In order to cover the warm end of Earth-scene brightness temperature (TB) range of passive microwave radiometers, intercalibration over warm scenes is... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Atmospheric modeling Brightness temperature Calibration Coefficients Electromagnetic heating Emissivity Forests Functions (mathematics) Global Precipitation Measurement (GPM) Intercalibration Meteorological satellites Microwave imagery Microwave imaging Microwave measurement microwave propagation Microwave radiation microwave radiation imager (MWRI) Microwave radiometers Microwave radiometry Microwave theory and techniques Normalized difference vegetative index Orbits Plant cover Polynomials Radiative transfer Radiometers Rainforests Spectroradiometers Surface radiation temperature Tropical climate Tropical forests Vegetation Vegetation index |
Title | Intercalibration of FY-3C MWRI Over Forest Warm-Scenes Based on Microwave Radiative Transfer Model |
URI | https://ieeexplore.ieee.org/document/9459428 https://www.proquest.com/docview/2619018501 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH6oIOjBXawbOXgSU2fJTJujinWBKlRFPQ2ZLBdrK3aq4K_3vTQtoiKeZg4JhPky731f8haAPWUyqax2PHdJgwujJFcmdlzkNpHo4nPrfJTvVX5-Jy4fsocpOJjkwlhrffCZrdOrv8s3fT2ko7JDKTKJdHkaplG4jXK1JjcGIotDanTOUUQk4QYzjuTh7VnnBpVgEtdTJPDN0P9l7IN8U5Uflti7l9YitMcLG0WVPNWHVVnXH99qNv535UuwEHgmOxptjGWYsr0VmP9SfXAFZn30px6sQunPBREt0s6EFOs71nrk6Qlr33cu2DXud0ZNPAcVu1evz_xGk4lkx-gCDcPhbQrre1dvlnWo1gGZUOa9oMOJ1G6tuwZ3rdPbk3Memi9wjQyg4hK_oaXuVcJoVUYmzWOVJWUjFU43MpuVxuWpQgZhMmOouKhCq5k06YkcsbTpOsz0-j27AQwpQMPY1KH4UUIa0Yxcrl1CdX4U8iNZg2gMR6FDZXJqkNEtvEKJZEEIFoRgERCswf5kysuoLMdfg1cJkcnAAEYNtseYF-HHHRQkKCPkMFG8-fusLZhLKAPCn8Jsw0z1OrQ7yEuqctdvyE_Lp9yD |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BFYIeaIEiUij1gVNVh33Ym_jYoqbhESqFRKGnldePSyGpyKaV-us74zgRohXitHuwJWs_78w39sw3AMfaSqWd8bzwWYsLqxXXNvVcFC5T6OIL50OW71XRHYrzG3mzAh-XtTDOuZB85pr0Gu7y7cTM6KjsRAmpkC6vwgtJxbjzaq3lnYGQaSyOLjiGEVm8w0wTdTL42r_GWDBLmzlS-HbsALPwQqGtyj-2ODiYzivoLZY2zyv50ZzVVdP8eaTa-Ny1v4atyDTZp_nW2IYVN96Blw_0B3dgPeR_mukuVOFkEPGi6JmwYhPPOt95fsp6o_4Z-4Y7nlEbz2nNRvr-jl8bMpLsMzpBy3B4jxL7futfjvVJ7YCMKAt-0ONEarh2-waGnS-D0y6P7Re4QQ5Qc4Xf0FH_KmGNrhKbF6mWWdXKhTct6WRlfZFr5BBWWkvyohrtZtamJ7LEyuV7sDaejN0-MCQBLetyj-GPFsqKduIL4zNS-tHIkFQDkgUcpYna5NQi47YMMUqiSkKwJATLiGADPiyn_JwLczw1eJcQWQ6MYDTgcIF5GX_daUkhZYIsJknf_n_We9joDnqX5eXZ1cUBbGZUDxHOZA5hrb6fuXfIUurqKGzOv3ag38s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intercalibration+of+FY-3C+MWRI+Over+Forest+Warm-Scenes+Based+on+Microwave+Radiative+Transfer+Model&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Wen-Liang&rft.au=Jiang%2C+Geng-Ming&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTGRS.2021.3086801&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3086801 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |