Intercalibration of FY-3C MWRI Over Forest Warm-Scenes Based on Microwave Radiative Transfer Model

In order to cover the warm end of Earth-scene brightness temperature (TB) range of passive microwave radiometers, intercalibration over warm scenes is necessary. This article presents a methodology to intercalibrate the microwave radiation imager (MWRI) on the Chinese second-generation meteorologica...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 11
Main Authors Zhang, Wen-Liang, Jiang, Geng-Ming
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2021.3086801

Cover

Loading…
Abstract In order to cover the warm end of Earth-scene brightness temperature (TB) range of passive microwave radiometers, intercalibration over warm scenes is necessary. This article presents a methodology to intercalibrate the microwave radiation imager (MWRI) on the Chinese second-generation meteorological satellite Fengyun 3C (FY-3C) with the Global Precipitation Measurement (GPM) Microwave Imager (GMI) over the warm scenes of dense forests using the double-difference (DD) method. Based on the microwave radiative transfer model (RTM), an intercalibration method is developed, in which a modified land surface emissivity (LSE) model for dense forests is proposed. The forests with optically thick canopy are identified in terms of polarization TB differences and normalized difference vegetation index (NDVI) extracted from the latest vegetation product of Moderate-Resolution Imaging Spectroradiometer (MODIS). The matching TBs between FY-3C MWRI and GMI over dense forest warm scenes are collected and analyzed together with the TBs over ocean surfaces obtained by Zeng and Jiang (2020). The results show that: 1) FY-3C MWRI's observations are generally underestimated, and the intercalibration biases are polynomial functions of observations; 2) the intercalibration biases at the warm end are relatively smaller than those at the cold end; and 3) the calibration in the ascending orbits (MWRIA) is relatively better than that in the descending orbits (MWRID). At the tropical rain forest scene TBs defined in this work, the intercalibration biases (mean ± standard deviation at the mean) in the FY-3C MWRI channels of 10 V, 10 H, 18 V, 18 H, 23 V, 36 V, 36 H, 89 V, and 89 H are, respectively, −1.3 ± 0.7, −1.9 ± 1.1, 1.6 ± 0.6, 2.5 ± 0.8, −0.2 ± 0.5, −2.0 ± 0.6, −2.4 ± 0.7, −0.2 ± 0.6, and −0.1 ± 0.6 K for the ascending orbits, while they are, respectively, −4.0 ± 0.8, −5.4 ± 1.2, −1.4 ± 0.7, −1.2 ± 0.8, −2.9 ± 0.5, −4.9 ± 0.7, −5.5 ± 0.7, −2.7 ± 0.8, and −2.3 ± 0.7 K for the descending orbits. The in-orbit calibration coefficients of GMI are successfully transferred to FY-3C MWRI.
AbstractList In order to cover the warm end of Earth-scene brightness temperature (TB) range of passive microwave radiometers, intercalibration over warm scenes is necessary. This article presents a methodology to intercalibrate the microwave radiation imager (MWRI) on the Chinese second-generation meteorological satellite Fengyun 3C (FY-3C) with the Global Precipitation Measurement (GPM) Microwave Imager (GMI) over the warm scenes of dense forests using the double-difference (DD) method. Based on the microwave radiative transfer model (RTM), an intercalibration method is developed, in which a modified land surface emissivity (LSE) model for dense forests is proposed. The forests with optically thick canopy are identified in terms of polarization TB differences and normalized difference vegetation index (NDVI) extracted from the latest vegetation product of Moderate-Resolution Imaging Spectroradiometer (MODIS). The matching TBs between FY-3C MWRI and GMI over dense forest warm scenes are collected and analyzed together with the TBs over ocean surfaces obtained by Zeng and Jiang (2020). The results show that: 1) FY-3C MWRI's observations are generally underestimated, and the intercalibration biases are polynomial functions of observations; 2) the intercalibration biases at the warm end are relatively smaller than those at the cold end; and 3) the calibration in the ascending orbits (MWRIA) is relatively better than that in the descending orbits (MWRID). At the tropical rain forest scene TBs defined in this work, the intercalibration biases (mean ± standard deviation at the mean) in the FY-3C MWRI channels of 10 V, 10 H, 18 V, 18 H, 23 V, 36 V, 36 H, 89 V, and 89 H are, respectively, −1.3 ± 0.7, −1.9 ± 1.1, 1.6 ± 0.6, 2.5 ± 0.8, −0.2 ± 0.5, −2.0 ± 0.6, −2.4 ± 0.7, −0.2 ± 0.6, and −0.1 ± 0.6 K for the ascending orbits, while they are, respectively, −4.0 ± 0.8, −5.4 ± 1.2, −1.4 ± 0.7, −1.2 ± 0.8, −2.9 ± 0.5, −4.9 ± 0.7, −5.5 ± 0.7, −2.7 ± 0.8, and −2.3 ± 0.7 K for the descending orbits. The in-orbit calibration coefficients of GMI are successfully transferred to FY-3C MWRI.
Author Jiang, Geng-Ming
Zhang, Wen-Liang
Author_xml – sequence: 1
  givenname: Wen-Liang
  orcidid: 0000-0003-2923-0873
  surname: Zhang
  fullname: Zhang, Wen-Liang
  email: 19210720054@fudan.edu.cn
  organization: Key Laboratory for Information Science of Electromagnetic Waves (Ministry of Education) and the School of Information Science and Technology, Fudan University, Shanghai, China
– sequence: 2
  givenname: Geng-Ming
  orcidid: 0000-0002-8022-1959
  surname: Jiang
  fullname: Jiang, Geng-Ming
  email: jianggm@fudan.edu.cn
  organization: Key Laboratory for Information Science of Electromagnetic Waves (Ministry of Education) and the School of Information Science and Technology, Fudan University, Shanghai, China
BookMark eNp9kEFPwkAQhTcGEwH9AcbLJp6LO7vdtntUIkgiIQEM8dRsu9OkpLS4WzD-e7dCPHjwNHN435s3b0B6dVMjIbfARgBMPayny9WIMw4jwZIoYXBB-iBlErAoDHukz0BFAU8UvyID57aMQSgh7pNsVrdoc12VmdVt2dS0KejkPRBjOt8sZ3RxREsnjUXX0o22u2CVY42OPmmHhnr5vMxt86mPSJfalN7Cb2ura1d4cN4YrK7JZaErhzfnOSRvk-f1-CV4XUxn48fXIOdKtIHy4ZBDzEOT64wZEYGWPItFWOSxRJmZIhKascRIY5gCoQGAJ92UkcxQDMn9yXdvm4-DD5xum4Ot_cmUR6AYJJKBV8UnlY_tnMUizcv25_PW6rJKgaVdoWlXaNoVmp4L9ST8Ife23Gn79S9zd2JKRPzVq1CqkCfiG4PjgYM
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2022_3215806
crossref_primary_10_1109_TGRS_2022_3176748
crossref_primary_10_1109_TGRS_2023_3346819
crossref_primary_10_1109_JSTARS_2021_3104829
Cites_doi 10.1109/TGRS.2015.2458851
10.1080/01431161.2016.1232873
10.1007/BF01009565
10.1109/TGRS.2020.3034302
10.1109/TGRS.2009.2028882
10.1080/01431160802392638
10.1109/TGRS.2015.2472532
10.1109/JSTARS.2017.2672723
10.1109/JSTARS.2012.2195773
10.11834/jrs.20198235
10.1175/JTECH-D-16-0100.1
10.56236/rss-au
10.1109/36.905249
10.1080/01431169308904400
10.1109/LGRS.2010.2050135
10.1002/qj.49712051706
10.1029/98RS01182
10.1109/JSTARS.2018.2801305
10.1109/JSTARS.2015.2403303
10.1109/IGARSS.2015.7326995
10.1109/TGRS.2012.2206601
10.1029/2010JD014988
10.1175/JTECH1769.1
10.1002/qj.2122
10.1109/MICRORAD.2016.7530527
10.1029/93jc03042
10.1109/36.905247
10.1029/RS020i005p01069
10.1109/TGRS.2010.2068052
10.1016/S0034-4257(00)00171-1
10.1109/TGRS.2012.2217148
10.1109/TGRS.2008.2005200
10.1109/IGARSS.2016.7729095
10.1175/mwr-d-12-00232.1
10.1029/2012JD018144
10.3998/0472119356
10.1002/jgrd.50840
10.1109/ACCESS.2020.2984090
10.1080/17538947.2012.658666
10.1109/36.823900
10.1109/IGARSS.2015.7326336
10.1002/2016JD024937
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3086801
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 11
ExternalDocumentID 10_1109_TGRS_2021_3086801
9459428
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFB0504900; 2018YFB0504902
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 41871222
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-9892e21724dcab0d361a52b734fc75e5bdf63a008d5dd0913a1112813a1565be3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:19:11 EDT 2025
Tue Jul 01 01:34:28 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Wed Aug 27 03:03:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-9892e21724dcab0d361a52b734fc75e5bdf63a008d5dd0913a1112813a1565be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8022-1959
0000-0003-2923-0873
PQID 2619018501
PQPubID 85465
PageCount 11
ParticipantIDs ieee_primary_9459428
proquest_journals_2619018501
crossref_citationtrail_10_1109_TGRS_2021_3086801
crossref_primary_10_1109_TGRS_2021_3086801
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
Borbas (ref40)
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Liebe (ref35) 1987
ref5
Liebe (ref37); 542
Bai (ref44) 2014; 40
References_xml – year: 1987
  ident: ref35
  article-title: Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling
– ident: ref28
  doi: 10.1109/TGRS.2015.2458851
– ident: ref20
  doi: 10.1080/01431161.2016.1232873
– ident: ref36
  doi: 10.1007/BF01009565
– ident: ref30
  doi: 10.1109/TGRS.2020.3034302
– ident: ref6
  doi: 10.1109/TGRS.2009.2028882
– ident: ref19
  doi: 10.1080/01431160802392638
– volume: 40
  start-page: 1363
  issue: 11
  year: 2014
  ident: ref44
  article-title: Sensitivity of CRTM simulated microwave brightness temperature to land surface and cloud parameters
  publication-title: Meteorological Monthly
– ident: ref16
  doi: 10.1109/TGRS.2015.2472532
– ident: ref21
  doi: 10.1109/JSTARS.2017.2672723
– volume: 542
  start-page: 3.1
  volume-title: Proc. AGARD Conf.
  ident: ref37
  article-title: Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz
– ident: ref9
  doi: 10.1109/JSTARS.2012.2195773
– ident: ref23
  doi: 10.11834/jrs.20198235
– ident: ref26
  doi: 10.1175/JTECH-D-16-0100.1
– ident: ref33
  doi: 10.56236/rss-au
– ident: ref5
  doi: 10.1109/36.905249
– ident: ref41
  doi: 10.1080/01431169308904400
– ident: ref7
  doi: 10.1109/LGRS.2010.2050135
– ident: ref39
  doi: 10.1002/qj.49712051706
– ident: ref38
  doi: 10.1029/98RS01182
– ident: ref22
  doi: 10.1109/JSTARS.2018.2801305
– ident: ref13
  doi: 10.1109/JSTARS.2015.2403303
– ident: ref31
  doi: 10.1109/IGARSS.2015.7326995
– ident: ref10
  doi: 10.1109/TGRS.2012.2206601
– ident: ref24
  doi: 10.1029/2010JD014988
– ident: ref15
  doi: 10.1175/JTECH1769.1
– ident: ref2
  doi: 10.1002/qj.2122
– ident: ref32
  doi: 10.1109/MICRORAD.2016.7530527
– ident: ref46
  doi: 10.1029/93jc03042
– ident: ref43
  doi: 10.1109/36.905247
– ident: ref34
  doi: 10.1029/RS020i005p01069
– ident: ref12
  doi: 10.1109/TGRS.2010.2068052
– ident: ref42
  doi: 10.1016/S0034-4257(00)00171-1
– ident: ref17
  doi: 10.1109/TGRS.2012.2217148
– ident: ref18
  doi: 10.1109/TGRS.2008.2005200
– ident: ref29
  doi: 10.1109/IGARSS.2016.7729095
– ident: ref1
  doi: 10.1175/mwr-d-12-00232.1
– ident: ref45
  doi: 10.1029/2012JD018144
– ident: ref3
  doi: 10.3998/0472119356
– ident: ref8
  doi: 10.1002/jgrd.50840
– ident: ref25
  doi: 10.1109/ACCESS.2020.2984090
– ident: ref27
  doi: 10.1080/17538947.2012.658666
– start-page: 763
  volume-title: Proc. 14th Int. ATOVS Study Conf., Beijing, China, Univ. Wisconsin-Madison, Space Sci. Eng. Center, Cooperat. Inst. Meteorological Satell. Stud. (CIMSS)
  ident: ref40
  article-title: Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity
– ident: ref4
  doi: 10.1109/36.823900
– ident: ref14
  doi: 10.1109/IGARSS.2015.7326336
– ident: ref11
  doi: 10.1002/2016JD024937
SSID ssj0014517
Score 2.4287121
Snippet In order to cover the warm end of Earth-scene brightness temperature (TB) range of passive microwave radiometers, intercalibration over warm scenes is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Atmospheric modeling
Brightness temperature
Calibration
Coefficients
Electromagnetic heating
Emissivity
Forests
Functions (mathematics)
Global Precipitation Measurement (GPM)
Intercalibration
Meteorological satellites
Microwave imagery
Microwave imaging
Microwave measurement
microwave propagation
Microwave radiation
microwave radiation imager (MWRI)
Microwave radiometers
Microwave radiometry
Microwave theory and techniques
Normalized difference vegetative index
Orbits
Plant cover
Polynomials
Radiative transfer
Radiometers
Rainforests
Spectroradiometers
Surface radiation temperature
Tropical climate
Tropical forests
Vegetation
Vegetation index
Title Intercalibration of FY-3C MWRI Over Forest Warm-Scenes Based on Microwave Radiative Transfer Model
URI https://ieeexplore.ieee.org/document/9459428
https://www.proquest.com/docview/2619018501
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH6oIOjBXawbOXgSU2fJTJujinWBKlRFPQ2ZLBdrK3aq4K_3vTQtoiKeZg4JhPky731f8haAPWUyqax2PHdJgwujJFcmdlzkNpHo4nPrfJTvVX5-Jy4fsocpOJjkwlhrffCZrdOrv8s3fT2ko7JDKTKJdHkaplG4jXK1JjcGIotDanTOUUQk4QYzjuTh7VnnBpVgEtdTJPDN0P9l7IN8U5Uflti7l9YitMcLG0WVPNWHVVnXH99qNv535UuwEHgmOxptjGWYsr0VmP9SfXAFZn30px6sQunPBREt0s6EFOs71nrk6Qlr33cu2DXud0ZNPAcVu1evz_xGk4lkx-gCDcPhbQrre1dvlnWo1gGZUOa9oMOJ1G6tuwZ3rdPbk3Memi9wjQyg4hK_oaXuVcJoVUYmzWOVJWUjFU43MpuVxuWpQgZhMmOouKhCq5k06YkcsbTpOsz0-j27AQwpQMPY1KH4UUIa0Yxcrl1CdX4U8iNZg2gMR6FDZXJqkNEtvEKJZEEIFoRgERCswf5kysuoLMdfg1cJkcnAAEYNtseYF-HHHRQkKCPkMFG8-fusLZhLKAPCn8Jsw0z1OrQ7yEuqctdvyE_Lp9yD
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BFYIeaIEiUij1gVNVh33Ym_jYoqbhESqFRKGnldePSyGpyKaV-us74zgRohXitHuwJWs_78w39sw3AMfaSqWd8bzwWYsLqxXXNvVcFC5T6OIL50OW71XRHYrzG3mzAh-XtTDOuZB85pr0Gu7y7cTM6KjsRAmpkC6vwgtJxbjzaq3lnYGQaSyOLjiGEVm8w0wTdTL42r_GWDBLmzlS-HbsALPwQqGtyj-2ODiYzivoLZY2zyv50ZzVVdP8eaTa-Ny1v4atyDTZp_nW2IYVN96Blw_0B3dgPeR_mukuVOFkEPGi6JmwYhPPOt95fsp6o_4Z-4Y7nlEbz2nNRvr-jl8bMpLsMzpBy3B4jxL7futfjvVJ7YCMKAt-0ONEarh2-waGnS-D0y6P7Re4QQ5Qc4Xf0FH_KmGNrhKbF6mWWdXKhTct6WRlfZFr5BBWWkvyohrtZtamJ7LEyuV7sDaejN0-MCQBLetyj-GPFsqKduIL4zNS-tHIkFQDkgUcpYna5NQi47YMMUqiSkKwJATLiGADPiyn_JwLczw1eJcQWQ6MYDTgcIF5GX_daUkhZYIsJknf_n_We9joDnqX5eXZ1cUBbGZUDxHOZA5hrb6fuXfIUurqKGzOv3ag38s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intercalibration+of+FY-3C+MWRI+Over+Forest+Warm-Scenes+Based+on+Microwave+Radiative+Transfer+Model&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Wen-Liang&rft.au=Jiang%2C+Geng-Ming&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTGRS.2021.3086801&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3086801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon